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Preface

Nowadays, more and more attention are being paid on the exploration of the human vision re-
search from mathematical and computational perspectives. The goal is to unveil the principles
that govern the functioning of neurons and assemblies thereof and to use the results to bridge the
gap between biological and computational vision. Depending on the scale of analysis, a variety of
mathematical frameworks to model the brain have been taken into consideration.

The first goal of this paper is to establish a review of recent literature relevant to center-surround
interactions within early cortical areas (with the focus to begin on V1 and LGN). Giving a coherent
description of the stimulus factors that may influence suppression and enhancement prepares us
the necessary biological background for mathematical modeling. The second goal is to present
the result of implementing a quantitative model towards explaining the nature and dynamics of
center-surround interactions, which provides an evidence that contradicts with Petrov and McKee
(2006)’s conclusion in [1].

Chapter 1 firstly introduces fundamental concepts and mechanisms in human vision
research, including the pathway of visualizing and perceiving natural images in visual
system in brain. Secondly, it explains what is center-surround interaction and related
factors which may account for such phenomenon.

Chapter 2 investigates several primary mathematical models being studied in vision
research. Each of them has both improved performance and drawback in fitting data
collected by neurophysiological and psychological researches comparing to other models.
This chapter also gives a brief introduction of some popular processing tools in image
research.

Chapter 3 gives a brief introduction of some popular processing tools in image research,
including Gabor filter, steerable pyramid and wavelet pyramid. It summarizes both the
advantage and the drawback of each method.

Chapter 4 is concerned with the implementation of a quantitative model proposed in a
specific paper. It describes the numerical optimization and its numerical result. It also
discusses the meaning what the result indicates and the relationship between the results
in this paper and from other researches.

Chapter 5 focus on continuing some concepts firstly referred in the Chapter 1 with
more details to give a more comprehensive picture about the center-surround interaction
phenomenon. In addition, this chapter provides some hints about where further interest
in this topic may lie in.
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Chapter 1

Introduction

1.1 An overall introduction of v1

The image captured by each eye is converted into nerve impulses by retina and trans-
mitted to the brain by the optic nerve. This nerve terminates on the cells of the lateral
geniculate nucleus (LGN), the first relay in the brain’s visual pathways. The cells of LGN
then project to their main target, the primary visual cortex (V1). It is in the primary visual
cortex that the brain begins to reconstitute the image from the receptive fields of the cells
of the retina. Fig.1.1 and 1.2 illustrate both the structure and the pathway. A large por-
tion of V1 is mapped to the Fovea, a spot located in the center of the retina responsible
for sharp vision, this is known as cortical-magnification. V1 neurons have strong tuning
to a small set of stimuli, the neuronal responses can discriminate small changes in vi-
sual orientations, spatial frequencies and colors, furthermore, these neurons have Ocular
Dominance, tuning to one of the two eyes, and they tend to cluster together as cortical
columns.

Another important notation is receptive field (RF) of each cell in the visual cortex. It is a
discrete area in space relative to the fovea where the presentation or removal of a visual
stimulus will cause cellular activation. Cells tend to respond to simple patterns (such
as oriented bars) and code for a specific region of visual space. By definition, stimuli
presented outside of this receptive field will neither increase nor decrease the ongoing
activity of that individual cell. The location and size of RF could be also discussed based
on center-surround interaction in V1.

There are three types of cells or neurons in the Primary Visual Cortex (V1):

1. Simple Cells: Respond to bars of light, excited to a specific line of a particular orien-
tation placed in the center of its receptive field, and stops firing if moved away from
its center.

2. Complex Cells: Respond to line orientation in or out of its excitatory/ inhibitory zones,
and particularly so to movement.

3. Hyper Complex Cells: Respond to moving corners or angles.
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Figure 1.1: The structure of the brain

Figure 1.2: The relationship between different parts in the brain

V1 consists of tiled sets of selective spatio-temporal filters, together they can carry out
neuronal processing of spatial frequency, orientation, motion, direction and speed (thus
temporal frequency). The visual information relayed to V1 is not coded in terms of spatial
(or optical) imagery, but rather as local contrast. For example, an image with one half black
and one half white, the separating line has the strongest local contrast and is encoded,
while few neurons code the brightness information (black or white). As information is
send further to other visual areas, it is coded as increasingly non-local frequency/phase
signals, at these early stages of visual processing, spatial location of visual information is
well preserved amid the local contrast encoding.

V1 is the first site where strong orientation and direction selectivities are observed in the
macaque monkey (Hubel and Wiesel, 1968)in [2]. While the vast majority of V1 cells
show some degree of orientation selectivity, only approximately 25-35%of V1 cells are
strongly directionally selective (Schiller et. al., 1976 [3]; DeValois et al., 1982 [4]). The
classic method for testing orientation and direction selectivity is to measure the spike rate
of a single cell in response to drifting oriented luminance bars and/or drifting luminance
spots as Fig.1.3. The orientations of center and surround stimuli are orthogonal in the left
sub-image. And the center and surround stimuli are of the same orientation in the right
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sub-image.

Figure 1.3: The drifting oriented luminance spots.

1.2 Center-surround interaction

The spiking response of a primary visual cortical cell to a stimulus placed within its re-
ceptive field can be up- and down-regulated by the simultaneous presentation of objects
or scenes in the ””silent” regions wich surround the receptive field. Such phenomenon in
perceiving is called center-surround interaction. For some stimulus conditions, the appar-
ent contrast is suppressed and for other conditions the apparent contrast is enhanced.
Some 40 years ago, Hubel and Wiesel (1965) [5] noticed that neurons in Visual areas
18 and 19 of cats responded much more weakly if the otherwise optimal stimulus was
extended beyond the neuron’s receptive field. Since then, this type of inhibition termed
surround suppression has been commonly observed in early visual areas of both cats and
primates. In recent psychophysical study, (Petrov, Carandini and McKee, 2005) found the
same properties of the surround suppression in human observers [6]. However, the ex-
planations suggested so far (e.g., Schwartz and Simoncelli, 2001) [7] tend to focus on
one aspect of the suppression (usually, its orientation tuning), while ignoring others. In
addition, many relevant properties have not been studied.

Among all relevant factors,spatial aspects are of particular interest because the proposed
models make specific assumptions about how the location of the surround mask affects
suppression. Contrast detection and contrast matching are two primary kinds of experi-
ments to collect data. For instance, in contrast matching tasks, the contrast dependence
of center-surround interactions was measured by systematically varying the suprathresh-
old contrasts of the central and surround gratings (Xing and Heeger, 2001). The effects
of surround on the perceived contrast of the target were, overall, in agreement with the
cat and monkey neurophysiological data: (a) the effect of the surround was to suppress
perceived contrast, (b) the suppression was strongest when the target and the surround
carriers had the same orientation, and (c) the strength of the suppression did not change
significantly between collinear and flanking surround layouts (Cannon and Fullenkamp,
1991 [8]; Ejima and Takahashi, 1985; Xing and Heeger, 2001).

The observed phenomenon that the center-surround interaction could be either inhibitory
or facilitary are addressed by many researches. The effect of surrounds on contrast
detection thresholds varies from facilitation (Polat and Sagi, 1993 [9], 1994 [10]; Yu, Klein,
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Figure 1.4: The center-surround interaction,the right center seems to be ”stronger” than the the left center,
while actually they are of same strength. The apparent contrast of center stimulus is affected by its surround.

and Levi, 2002 [11]; Zenger-Landolt and Koch, 2001 [12]) to suppression (Solomon and
Morgan, 2000 [13]; Williams and Hess, 1998 [14]), depending on the surround area,
orientation, and phase with respect to the target, as well as the stimulus eccentricity
(Andriessen and Bouma, 1976 [15]; Petrov et al., 2005 [16]; Snowden and Hammett,
1998 [17]; Zenger-Landolt and Koch, 2001). Recently, Petrov, Verghese, and McKee
(2006) showed that the facilitation observed in contrast detection thresholds is primarily
due to a reduction in uncertainty about target location. Mahmoodi and Young (2005)
suggested that the center-surround interaction in area V1 is sensitive to the higher-order
structures of natural scene images, such as image contours[18].



Chapter 2

Mathematical models

The responses of cells in the primary visual cortex are influenced in interesting and com-
plex ways by the presence of patterned stimuli appearing in the visual space surrounding
the receptive field of a given cell. And there exist a variety of different models that consider
the nature of these interactions. When a neighbor stimulus is present, mutual inhibition
of the responses to both target and neighbor stimuli is often observable. Two kinds of
models, a simple multiplicative model and the divisive normalization model, have been
used to describe the spatial interaction in the visual cortex.

2.1 The normalization model

The normalization model was originally proposed to describe the interaction among cor-
tical channels, such as orientation and spatial frequency channels. Note that interactions
among cortical channels differ from the spatial interaction: the visual stimuli used for
studying interactions among cortical channels often overlap each other, while the stimuli
used for studying spatial interaction should be separated. Nonetheless, the success of the
normalization model indicates that features of the normalization model, such as mutual
inhibition and response normalization, are important in describing spatial interaction.

The normalization model assumes that the responses to multiple stimuli are pooled to
generate a divisive inhibition. Although it appears in various forms in different papers, the
normalization model can be expressed as (Xing and Heeger, 2001) in [19]

R =
RmaxC

α
t

σβ + Cβ
t + kCβ

n

(1)

where Cn is the contrast of a neighbor stimulus, k is factor that determines the strength of
the inhibitory effect, Rmax is the asymptotic amplitude of the response,Ct is the contrast of
the stimulus, α and β are related to the excitatory and inhibitory modulation respectively,
σ is the semi-saturation contrast.

The normalization model has been shown to be fairly consistent with a wide range of sin-
gle cell recordings and psychophysical data. It captures both the nonlinearity of the visual
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system and the reduction in response amplitude by the neighbor stimulus. In addition, it
has been shown, with reducing information redundancy, to allow the visual system to code
nature images more efficiently. However, the normalization model does not appropriately
describe the responses when the neighbor stimulus has a high contrast and the target
stimulus has a low contrast. For instance, Ejima and Takahashi (1985) reported that the
inhibitory effect of the neighbor stimulus approaches an asymptotic level when the con-
trast of the neighbor stimulus is much higher than the contrast of the target contrast in
[20].

2.2 The multiplicative model

To overcome the primary drawback of normalization model, a multiplicative spatial inter-
action model, which fits data better when the neighbor contrast is high, is proposed in
[21].

R =
ACα

t

σβ + Cβ
t

(1 +
B

1 + ( qCn

Ct
)γ

) (2)

where, R is the amplitude of the response, B is the factor describing the strength of the
spatial interaction, γ is a power term that describes nonlinearity of the spatial interaction,
q is a factor that describes the effective contrast of the neighbor stimulus. When Cn is
zero, A(1 + B) is just the Rmax in normalization model (1).

The spacial interaction is described as a multiplicative process here. Firstly, the spatial
interaction term and the physical contrast of the target stimulus are separate terms that
are multiplied together to determine the amplitude of the target response. Secondly, the
spatial interaction mechanism is nonlinear. the γ term here is larger than 1. Therefore,
when Cn/Ct deviates slightly from (Cn/Ct)

γ, and the spacial interaction term will change
dramatically. This reflects the mutual inhibition between target and neighbor, where the
stimulus with the slightly larger contrast exhibits a much stronger influence than predicted
by the difference in contrasts of the two stimuli. Consequently, the difference between
target contrast and the neighbor stimuli is amplified. Thirdly, the multiplicative model
emphasizes the saturation of the spatial interaction when two stimuli have very difference
contrasts. Therefore, a weak target stimulus among strong neighbor stimuli can remain
visible because the spatial inhibition from the neighbor response is limited.

2.3 Other models

Besides of above two primary categories of mathematical models, a divisive model (R◦G)
is proposed by assuming independent center and surround mechanisms in which the
surround influences responses through a divisive gain control. It is based on the ratio of
two Gaussian sensitivity distributions to study responses to circular patches of grating[22]:
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R(x) =
KcLc(x)

1 + ksLs(x)
(3)

where
Lc(x) = (

2√
π

∫ x

0

e−(y/wc)2dy)2 (4)

and
Ls(x) = (

2√
π

∫ x

0

e−(y/ws)2dy)2 (5)

This model is intended to provide a simple explanation of changes in receptive field size
by using mechanisms with spatially constant dimensions. The sensitivity distribution of
each mechanism is model with a one-dimensional Gaussian envelope. It is important to
understand that the Gaussian envelopes do not describe the spatial weighing function of
the receptive field but only the envelope of that function. So for a linear approximation to
a simple cell, the center envelope would correspond roughly to the Gaussian envelope
of a Gabor filter. x is the stimulus diameter, kc and ks are the gains of the center and
surround mechanisms, Lc and Ls are the summed squared activities of the center and
surround mechanisms. The spatial extents of the center and surround components are
represented by wc and ws, wc < ws.

Another kind of model(D ◦G) is based on the difference of two Gaussians that describes
the mechanisms of the center and the surround respectively .

The response of simple cell is modeled as a convolution of a Gabor on an input image
I(x, y):

R(x, y, θ, F, σ, φ) = I(x, y) ∗ g(x, y, θ, F, σ, φ) (6)

g(x, y, θ, F, σ, φ) =
1

2πσ2
exp(−x′2 + λy′2

2σ2
) cos(2πF0x

′ + φ) (7)

where x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ).

And the response of complex cell is modeled as the responses of a pair of simple cells
which are with π

2
phase difference:

EF,σ,θ(x, y) =

√
R(x, y, θ, F, σ, φ)2 + R(x, y, θ, F, σ,−φ

2
)2 (8)

where θi = iπ
8
, (i = 0, · · · , 7) is the orientation of the normal to the parallel stripes of the

Gabor function, and the optimal response could be expressed as:

ÊF,σ = max{EF,σ,θ(x, y)|(i = 0, · · · , 7)} (9)
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Define A(x, y) = θk and k = arg max{EF,σ,θ(x, y)|(i = 0, · · · , 7)}
The impact of nonclassical inhibitory field is modeled by a D ◦G function:

D ◦Gσ,θ(x, y) = [
1

2π(4σ)2
exp(−x′2 + λy′2

2(4σ)2
)− 1

2πσ2
exp(−x′2 + λy′2

2σ2
)]+ (10)

And the weighting coefficient of position is as follows:

W+
σ,θ(x, y) =

D ◦Gσ,θ(x, y) · V (x′ − σ)∫ ∫
D ◦Gσ,θ(x, y) · V (x′ − σ)dxdy

(11)

W−
σ,θ(x, y) =

D ◦Gσ,θ(x, y) · V (−x′ − σ)∫ ∫
D ◦Gσ,θ(x, y) · V (−x′ − σ)dxdy

(12)

V (ξ) =

{
1, for x ≥ 0 (2.1)
0, for x < 0 (2.2)

The weighting coefficient of phase difference is as follows, where σ4 is the Gaussian
variance.

A′
θ,σ4(x, y) = exp(−min(|A(x, y)− θ|, π − |A(x, y)− θ|)2

2σ2
4

)

Finally, the inhibitory impact is modeled as:

Hθ(x, y) = min{[ÊF,σ ∗W+
σ,θ ∗ A′

θ,σ4 ](x, y), [ÊF,σ ∗W−
σ,θ ∗ A′

θ,σ4 ](x, y)}

with α modulates the inhibitory strength, the final Gabor energy response is :

Cσ(x, y) = [Ê(x, y)− αH((x, y))]+

This (D ◦ G) model is according to the biological mechanism of non-classical receptive
field inhibition in the visual cortex. With Gabor energy as a response of receptive field, a
non-classical receptive field of region is modeled by two ellipsoid semi-circle with direc-
tion based on the difference of two Gaussian functions. The weight function has been
designed by difference of phase between center receptive field and the surrounding in-
hibitive region, to stimulate the non-classical receptive field inhibition mechanism. Model-
ing the non-classical receptive field as two ellipsoid semi-circle is the important aspect of
this quantitative model.



Chapter 3

Image decompostion

The visual stimuli used for studying interactions among cortical channels often overlap
each other, while the stimuli used for studying spatial interaction should be separated.
Thus, it is necessary to apply image decomposition to take a close look at details at
different channels.

Multi-scale linear transforms such as wavelets have become popular for image repre-
sentation. Typically, the basis functions of these representations are localized in spatial
position, orientation, and spatial frequency (scale). The coefficients resulting from pro-
jection of natural images onto these functions are essentially uncorrelated. In addition, a
number of authors have noted that wavelet coefficients have significantly non-Gaussian
marginal statistics. Because of these properties, it is believed that wavelet bases provide
a close approximation to the independent components decomposition for natural images.
There are several widely used image decomposition methods, including the Gabor filter,
the wavelet pyramid (separable) and the steerable pyramid.

3.1 Gabor filter

The Gabor filter is a linear filter whose impulse response is defined by a harmonic function
multiplied by a Gaussian function as follows:

g(x, y, λ, θ, φ, σ, ν) = exp(−x′2 + νy′2

2σ2
) cos(2π

x′

λ
+ φ)

where x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ). λ represents the wavelength
of the cosine factor, θ represents the orientation of the normal to the parallel stripes of a
Gabor function, φ is the phase offset, σ is the sigma of the Gaussian envelope and ν is
the spatial aspect ratio, and specifies the ellipticity of the support of the Gabor function.
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Figure 3.1: Gabor filter, Wavelength=8, orientation=0, phase offset=90, aspect ratio=0.5, band-
width=1, number of orientation=6

Applying Gabor filter to the test image ”Lena” to get Fig. 3.1, the result illustrates the idea
that one can view the details of an image through extracting each subband at different
directions. The Gabor filter is popular in image processing since its orientated kernel
models the orientational inclination of human vision well.

3.2 The steerable pyramid

The steerable pyramid is a linear multi-scale, multi-orientation image decomposition that
provides a useful front-end for image-processing and computer vision applications. It
overcomes the limitations of orthogonal separable wavelet decompositions that those
representations are heavily aliased, and do not represent oblique orientations well. It
performs a polar-separable decomposition in the frequency domain, thus allowing inde-
pendent representation of scale and orientation. Since it is a tight frame (self-inverting),
it obeys the generalized form of Parseval’s Equality: The vector-length (L2-norm) of the
coefficients equals that of the original signal. More importantly, the representation is
translation-invariant and rotation-invariant. This can make a big difference in applications
that involve representation of position or orientation of image structure. The primary draw-
back is that the representation is overcomplete by a factor of 4k/3, where k is the number
of orientation bands.
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Figure 3.2: Steerable pyramid decomposition

The basis functions of the steerable pyramid are directional derivative operators, that
come in different sizes and orientations. An example decomposition of the same image
”Lena” which is used in the explanation of Gabor filter is shown above. This particular
steerable pyramid contains 2 orientation subbands, at 2 scales. The number of orienta-
tions may be adjusted by changing the derivative order (for example, first derivatives yield
two orientations).

3.3 The wavelet pyramid

The wavelet pyramid will be explained in more details in the later chapter with some
example. An overall picture of comparing the difference between each of them could be
viewed:

1. Gabor filter: oriented kernels, not inverse jointly-localized, not translation-invariant,
not rotation-invariant, not self-inverting

2. Wavelet decomposition: no oriented kernels (not diagonals), jointly-localized, not
translation-invariant, not rotation-invariant, self-inverting

3. Steerable pyramid: oriented kernels, jointly-localized, approximately translation-invariant,
approximately rotation-invariant, approximately self-inverting



Chapter 4

Implementation results

When reading through relevant literatures of the centre-surround interaction, we found an
interesting question: It is proposed that surround suppression should be locally anisotropic
(Schwartz and Simoncelli, 2001). In the contrast, Petrov and McKee (2006) gave a conclu-
sion that surround suppression is locally isotropic based on psychological experiments.
Since the first proposal is not consistent with the latter one, we implement the model
adopted by Schwartz and Simoncelli (2001) to test which conclusion is more reasonable.
Besides, centre-surround interaction in the primary visual cortex (area V1) has been stud-
ied extensively using artificial, abstract stimulus patterns, such as bars, gratings and sim-
ple texture patterns. In this report, we extend the study of centre-surround interaction by
using natural scene images and the divisive normalization model proposed by Schwartz
and Simoncelli (1999) in [23]:

R = C2/[
∑

k

ωkP
2
k + σ2]

The parameters {ωk} and σ are chosen to minimize squared prediction error through
extracting the coefficient of corresponding subband in the wavelet pyramid decomposition:

{ω̂, σ̂} = arg minE[C2 −
∑

ωkP
2
k − σ2]2 ,

Where C is the value of center coefficient, Pk are the values of coefficients at adjacent
spatial positions, orientations and scales, and E[·] indicates expected mean value.

Using a multi-scale wavelet basis to decompose natural test images, we examine their
statistics from decomposition coefficients. Although the coefficients of this representation
are nearly decorrelated, they exhibit important higher-order statistical dependencies that
cannot be eliminated with purely linear pro- cessing. In particular, rectified coefficients
corresponding to basis functions at neighboring spatial positions, orientations and scales
are highly correlated. A method of removing these dependencies is to divide each coeffi-
cient by a weighted combination of its rectified neighbors to have a divisive normalization
model as above.

To study the model, we adopt the Wavelet decomposition pyramid to have a weighted
combination of squared coefficients at two scales, all three orientations. The weights
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parameters {ωk}, representing the interaction between center and surround neurons, of
the final normalization signal are optimized for the statistics of a set of three 512 × 512
images as follow:

Figure 4.1: Boat

Figure 4.2: Lena

Figure 4.3: Goldhill
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For instance, applying the wavelet pyramid to the second image ”Lena”, we get the coef-
ficients at different scales and orientations as Fig. 4.4.

Figure 4.4: Wavelet pyramid

4.1 Numerical optimization

The primary steps to analyze the optimized weights of the details from 2nd recursive level
at vertical direction could be summarized as:

1. Extract the corresponding coefficients matrix which is 128× 128

2. Choose a 13× 13 window with the center pixel modeling the center neuron

3. Link {ωk} to each pixel in this window

4. Move the window over the whole extracted area to establish the objective function

5. Apply optimization algorithm to find the weights {ωk} by minimizing the objective
function
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The optimized weights {ωk} of each subband could be visually represented as follows.
Fig. 4.5 and Fig. 4.6 represent the value of optimized weights corresponding to horizon-
tal details and diagonal details respectively. For each image, one can observe that the
weights are symmetric with respect to the center, which verifies that surround neurons
whose position are symmetric on one direction will have the same impact on the center
neuron. Besides, it also suggests that the center-surround interaction declines as the
distance between the center neuron and the surrounding neuron increases.
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4.2 Results analysis

Petrov and McKee (2006) suggested in [1] that surround suppression should be locally
isotropic. In their experiment, the five different layouts illustrated in Fig.4.7b-f were used
to test for both surround collinearity with the target and surround symmetry (unilateral vs.
bilateral). To test for collinearity effects, suppression from the bow-tie mask collinear with
the target, C (Fig.4.7e), was compared with suppression from the bow-tie mask flanking
the target, F (Fig.4.7f). Also, suppression from the half-annulus mask shown near the
end of the target, E (Fig.4.7c), was compared with that from the half-annulus mask shown
near the side of the target, S (Fig.4.7d). To test the effects of symmetry, suppression
from the two unilateral masks, E and S, was compared with that from the two bilateral
masks, C and F. The results for four subjects are shown in Fig.4.8. They concluded that
the suppression was unaffected by either the surround collinearity (C vs. F and E vs. S)
or its symmetry (E and S vs. C and F) based on the final average data.

Figure 4.7: (a) No surround condition. A cosine phase Gabor target with 45 deg orientation and a thin
localizer circle is shown. (b) The Gabor target surrounded by the full-annulus mask. The same-phase
surround condition is shown. (c) The half-annulus mask positioned at the end of the Gabor target. (d) The
half-annulus mask positioned at the side of the target. (e) The bow-tie mask collinear with the target. (f)
The bow-tie mask flanking the target.
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Figure 4.8: A:full annulus; C:collinear bow-tie mask; F:flanking bow-tie mask; E:end half-annulus mask;
S:side half-annulus mask

On the contrary, from the optimal weights values of Fig. 4.5 and Fig. 4.6 being displayed
above, we could observe an orientated and symmetric characteristic, which indicates that
nearby neurons in different positions are in charge of responding to stimuli in different
orientations in the center-surround interaction. It also implies that surround suppression
acts as a fine-tuned divisive normalization, with larger weights assigned to surround sig-
nals having the same orientation as the center. It illustrates that the suppression has the
orientational selectiveness along every direction of the channel.

These quantitative findings verifies the conclusion that surround suppression is locally
anisotropic based on their mathematical model given by Schwartz and Simoncelli (2001).
The conclusion has only been qualitatively suggested before. Our results quantitatively
give a support to it. Meanwhile, it raises another interesting problem. Concerning to the
question that whether the inhibitory impact is locally anisotropic or isotropic, both qual-
itative and quantitative analysis based on the divisive normalization model indicate the
anisotropicity, while the records of human subject tests support isotropicity. Mathemat-
ically, from which aspect should the model be modified to fit data better? Biologically,
what factors related to center-surround interactions have been ignored or underestimated
during modeling?



Chapter 5

Discussion

The model we have studied and implemented captures many important characters of
center-surround interaction in early visual cortex. And it fits and explains sets of data
collected by biological experiments and psychophysical studies well. However, This sim-
plified model also contradicts with some conclusions drawn from other experiments. To
have a conclusion with more credibility, we may take into consideration of more aspects,
such as the size of receptive field, stimulus contrast, recent stimulation history, phase
difference, etc..

For instance, the single-cell search for feature-trigger specificity has fostered a view of
visual neurons as static and localized windows of the visual world historically, functioning
independently of one another. However, The observation of center-surround modulations
shows that this assumption is inaccurate. Classical receptive field of neurons in V1, their
size and functional selectivities, are found to be dynamically altered by the spatial and
temporal context of the visual stimulation. When multiple objects or natural scenes are
shown, they interact non-linearly over extended cortical regions and periods of time. An-
other aspect is the influence of stimulus contrast. A large part of investigations implicitly
or explicitly considered the extent of cortical spatial summation and, therefore, the size
of the classical receptive field to be fixed and independent of stimulus characteristics or
surrounding context. On the contrary, some investigators found that the extent of spatial
summation in V1 neurons depended on contrast, and was on average 2.3-fold greater at
low contrast. This adaptive increase in spatial summation at low contrast was seen in
cells throughout V1 and was independent of surround inhibition.

The precise relationship between the response of a cell and its surrounding pattern is a
phenomenon that merits further investigation. Moreover, new psychophysical and neu-
rophysiological results have emerged in this domain in the past several years providing
new observations regarding the manner in which these interactions vary over space and
time. This allows the possibility of attaining a clearer picture of the nature and dynamics
of these interactions.
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