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1. Derivation of Maxwell equations.

The equations, which are the most frequently used in electromagnetics, are Maxwell's

equations. Behind microscopic Maxwell's equations one usually considers the system of

4 equations, which relate the electric and magnetic �elds. This system is given by the

following:

∇ · E =
ρ(x, t)
ε0

∇× E = −∂B
∂t

∇ ·B = 0

∇×B = µ0j(t, x) + ε0µ0
∂E

∂t

The �rst equation is a Gauss' law for electrostatics.

The second equation is a Faraday's law.

The third equation means that there are no free magnetic charges.

The fourth equation is a Maxwell's law.

Here E is an electric �eld,

B � magnetic �eld,

ε0 is an electric permittivity in vacuum (≈ 8.85× 10−12 F/m),

µ0 is a vacuum magnetic permeability (≈ 1.2566× 10−6 H/m),

j is a total electric current (which in general can be both time and space dependent),

ρ represents a total electric charge (which again can be both time and space dependent).

These equations form a system of well-posed equations and together with initial and

boundary conditions which are imposed in each situation, completely determine �elds E

and B.

When we consider only the static �elds we have equations

∇ · E =
ρ(x)
ε0

∇× E = 0

∇ ·B = 0

∇×B = µ0j(x)

So the two �elds are independent. This comes from the expressions for Estat and Bstat.

Indeed, we have

Estat(x) =
1

4πε0

∑
i

q′i
x− x′i
|x− x′i|

3 = − 1
4πε0

ˆ
V ′
d3x′

ρ(x′)
|x− x′|
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(comes from Coulomb's law) and

Bstat(x) =
µ0

4π

ˆ
V ′
d3x′j(x′)× x− x′

|x− x′|3
=
µ0

4π
∇×

ˆ
V ′
d3x′

j(x′)
|x− x′|

(this is Biot-Savart's law which uses Ampere's law).

But when we consider dynamic �elds, we have the continuity of charge

∂ρ(t, x)
∂t

+∇ · j(t, x) = 0,

and so we have Maxwell's source equation for B �eld

∇×B(t, x) = µ0

(
j(t, x) +

∂

∂t
ε0E(t, x)

)
= µ0j(t, x) +

1
c2
∂

∂t
E(t, x)

and the equation which comes from applying Stokes theorem to the integral form of

Faraday's law

∇× E(t, x) = −∂B
∂t

2. Maxwell equations in 1D and 2D.

Firstly one write the general form of Maxwell's equations.
ε0
∂E

∂t
−∇×H = j(t, x)

µ0
∂H

∂t
+∇× E = 0

We now write the system in 3D

ε0
∂Ex
∂t
− ∂Hz

∂y
+
∂Hy

∂z
= jx

ε0
∂Ey
∂t
− ∂Hx

∂z
+
∂Hz

∂x
= jy

ε0
∂Ez
∂t
− ∂Hy

∂x
+
∂Hx

∂y
= jz

µ0
∂Hx

∂t
+
∂Ez
∂y
− ∂Ey

∂z
= 0

µ0
∂Hy

∂t
+
∂Ex
∂z
− ∂Ez

∂x
= 0

µ0
∂Hz

∂t
+
∂Ey
∂x
− ∂Ex

∂y
= 0

Let us now write Maxwell's equations in 2D.
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This is done by imposing the certain components of E and H to zero. One notes, that in

order to preserve orthogonality one has to set to zero the components which are orthogonal.

Indeed, we have E = (Ex, Ey, Ez), H = (Hx, Hy, Hz). Then we set
Ey = 0

Ez = 0

Hx = 0

So we obtain the system
ε0
∂Ex
∂t
− ∂Hz

∂y
+
∂Hy

∂z
= jx

µ0
∂Hy

∂t
+
∂Ex
∂z

= 0

µ0
∂Hz

∂t
− ∂Ex

∂y
= 0

To obtain the system in 1D, we need to set additionally for example Hy = 0.
We obtain

ε0
∂Ex
∂t
− ∂Hz

∂y
= jx

µ0
∂Hz

∂t
− ∂Ex

∂y
= 0

3. Domain decomposition methods for Laplace equation.

3.1. Basic aspects.

Let us consider Poisson problem of the form

−∆u = f in Ω
u = 0 on ∂Ω

Here Ωis 2 or 3-dimensional domain with a Lipschitz boundary ∂Ω.
The above Poisson problem can be reformulated in multi-domain form. Assume that do-

main Ωis divided into two non-overlapping sub-domains Ω1 and Ω2 with common boundary

Γ. Then one can write the following:

−∆u1 = f in Ω1

u1 = 0 on ∂Ω1 ∩ ∂Ω
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u1 = u2 on Γ
∂u1

∂n
=
∂u2

∂n
on Γ

u2 = 0 on ∂Ω2 ∩ ∂Ω
−∆u2 = f in Ω2

In other words, ui is the restriction of u on Ωi.
Equations 3 and 4 in the last system are called the transmission conditions for u1 and

u2 on Γ.

3.2. Steklov-Poincare interface equation.

Let λdenote the unknown value of u on Γ. Then we consider two problems:

−∆wi = f in Ω
wi = 0 on ∂Ωi ∩ ∂Ω
wi = λ on Γ

We can view wi as the sum of solutions to corresponding two problems: one � with zero

boundary conditions both on Γ and ∂Ωi ∩ ∂Ω and right-hand side equal to f , which one

denotes Gif ; and the other one � which is equal to λon Γ, zero on ∂Ωi∩∂Ω and is harmonic

inside Ωi, and is denoted by Hiλ.

Further, it is easy to see that wi = ui if and only if
∂w1

∂n
=
∂w2

∂n
on Γ.

The last condition means that λ has to satisfy Steklov-Poincare interface equation on Γ:

Sλ = Ξ

where Ξ is de�ned by

Ξ =
∂

∂n
G2f −

∂

∂n
G1f

and S is Steklov-Poincare operator, de�ned by

Sη =
∂

∂n
H1η −

∂

∂n
H2η

The Steklov-Poincare operator maps the function, de�ned on the interface, to the normal

derivative of di�erence of the solutions of corresponding Laplace problems.

Remark. For the general type of equation (Lu = f), where L is some operator, we have

to impose some transmission conditions of the form
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Φ(u1) = Φ(u2) on Γ
Ψ(u1) = Ψ(u2) on Γ

These conditions should be derived in each case and they come from the fact that u

should satisfy the equation not only in Ω1 and Ω2 but also through the interface Γ.

3.3. Domain decomposition algorithms.

Following [4], we consider two domain decomposition algorithms for wave equation.

The Dirichlet-Neumann algorithm is the following:

1. Set some initial guess � the value of the solution on the interface λ0.

2. A) Solve the problem

-∆uk+1
1 = f in Ω1

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω
uk+1

1 = λk on Γ

B) Solve the problem

-∆uk+1
2 = f in Ω2

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω
∂uk+1

2

∂n
=
∂uk+1

1

∂n
on Γ

3. Update λ: λk+1 = θuk+1
2|Γ + (1− θ)λk

Remark. It is also possible to consider relaxation on Neumann condition.

Neumann-Neumann algorithm is the following:

1. Set some initial guess � the value of the solution on the interface λ0.

2. A) Solve the problems

-∆uk+1
i = f in Ωi

uk+1
i = 0 on ∂Ωi ∩ ∂Ω
uk+1
i = λk on Γ

B) Solve the problem
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-∆ψk+1
i = 0 in Ωi

ψk+1
i = 0 on ∂Ωi ∩ ∂Ω

ψi =
∂uk+1

1

∂n
− ∂uk+1

2

∂n
on Γ

3. Update λ: λk+1 = λk − θ(σ1ψ
k+1
1|Γ − σ2ψ

k+1
2|Γ )

Here θ, σ1, σ2 are some non-negative real parameters.

For wave equation the relaxation is needed, because non-overlapping Schwarz does not

converge in this case without relaxation.

Dirichlet-Neumann algorithm cannot really be done in parallel, unlike the Neumann-

Neumann algorithm.

4. Absorbing boundary conditions for wave equation.

Following [2], assume that we have to solve boundary-value problem in Ω ⊂ Rd with a

smooth boundary Γ

�cu :=
1
c2
∂2u

∂t2
−4u = f in Ω× (0, T ),

u = g on Γ× (0, T )
u(·, 0) = u0 in Ω
u′(·, 0) = u′0 in Ω

We assume also, that all conditions for existence and uniqueness of solution are satis�ed.

Then we decompose Ω in two domains Ω1 and Ω2 that do not intersect. So we obtain

parallel Schwarz method for wave equation:

�cu1 = f in Ω1 × (0, T ),
u1 = g on Γ10 × (0, T )
u1(·, 0) = u0 in Ω1

u′1(·, 0) = u′0 in Ω1

u1 = u2 on Γ

and

�cu2 = f in Ω2 × (0, T ),
u2 = g on Γ20 × (0, T )
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u2(·, 0) = u0 in Ω2

u′2(·, 0) = u′0 in Ω2

∂u1

∂n1
+
∂u2

∂n2
= 0 on Γ

We assume, that f , u0, u
′
0 vanish in Ω2.

We introduce the problem for a given h ∈ L2(0, T ;H
1
2
00) for some w:

�cw = 0 in Ω2 × (0, T ),
w = 0 on Γ20 × (0, T )
u2(·, 0) = 0 in Ω2

u′2(·, 0) = 0 in Ω2

Then we de�ne the Steklov-Poincare operator by Sex1,Γh :=
∂w

∂n2
. So this operator trans-

forms the function from the boundary to the function of the dual space. As we have
∂w

∂n2
= − ∂w

∂n1
so we have Steklov-Poincare operator of the following form:

∂w

∂n1
+ Sex1,Γw = 0 on Γ× (0, T )

The operators Bex1,Γ :=
∂

∂n1
+ Sex1,Γ and Bex2,Γ :=

∂

∂n2
+ Sex2,Γ are called the exact trans-

parent operators.

In the case when the wave speed c is constant, it is easy to �nd the symbols of Steklov-

Poincare operators. This is done by writing the wave equation in a Fourier space. So we do

the Fourier transform of our problem in t and d−1 space dimensions, leaving one dimension

in order to obtain ODE to �nd the symbol of the Steklov-Poincare operator.

So we obtain

−∂
2w̃

∂x2
+
(
|k|2 − ω2

c2

)
w̃ = 0 for x ≥ δ

w̃ = h̃ at x = δ

So we have two cases:

1) |k|2 − ω2

c2
≥ 0. Then the solution of the above IVP is w̃ = h̃e

−(x−δ)
√
|k|2−ω2

c2

2) |k|2 − ω2

c2
< 0. Then the solution of the above IVP is w̃ = h̃e

−i(x−δ)
√

ω2

c2
−|k|2

(since

the initial conditions are zero there are no waves coming from the in�nity in the x direction).

So in the case of constant wave speed we have that two operators coincide (Sex1 = Sex2 )

and are independent of Γ. They are given by
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σex1 = σex2 =


√
|k|2 − ω2

c2
|k|2 − ω2

c2
≥ 0

i

√
ω2

c2
− |k|2 |k|2 − ω2

c2
< 0

5. Absorbing boundary conditions for Maxwell equations.

1. 1D Calculations.

We recall Maxwell equations in 1D
ε
∂Ex
∂t
− ∂Hz

∂y
= 0

µ
∂Hz

∂t
− ∂Ex

∂y
= 0

Firstly, it is necessary to rewrite this system in a matrix form:(
ε 0
0 µ

)
∂

∂t

(
E

H

)
+

(
0 −1
−1 0

)
∂

∂y

(
E

H

)
=

(
0
0

)

To get the Steklov-Poincare operator, we do �rstly Laplace transform in t and get(
1 0
0 1

)
∂

∂y

(
Ê

Ĥ

)
=

(
0 µs

εs 0

)(
Ê

Ĥ

)

Above system can be rewritten as(
1 0
0 1

)
∂

∂y

(
Ê

Ĥ

)
+

(
0 −µs
−εs 0

)(
Ê

Ĥ

)
= 0

In order to compute incoming and outgoing waves, we need to diagonalize matrix A,

where

A =

(
0 −µs
−εs 0

)

De�ne z =
√
µ

ε
, c =

1
√
µε

.

The eigenvalues of this matrix are λ1 =
√
µεs, λ2 = −√µεs. The corresponding eigen-

vectors are x1 = (−z, 1), x2 = (z, 1).
So we can write matrix A as A = PΛP−1, where
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P =

(
−z z

1 1

)
,

P−1 = 1
2z

(
−1 z

1 z

)
.

Then we can denote

W = P−1X,

where

X =

(
Ê

Ĥ

)

It is easy to see that W =
1
2z

(
−Ê + zĤ

Ê + zĤ

)
.

So the system of ODE's has the following form:
dW1

dy
+ λ1W1 = 0

dW2

dy
+ λ2W2 = 0

W1 = ĝ

The general solution of this system is(
Ê

Ĥ

)
= α1e

−λ1yx1 + α2e
−λ2yx2.

As we look for bounded solution at in�nity we must impose α2 = 0.
So the solution of the problem has the form(

Ê

Ĥ

)
= α1e

−λ1y

(
−z
1

)
.

Inserting the general solution into a boundary condition at y = 0 we obtain

α1

2z
(z + z) = g.

From this one obtains α1 = ĝ.

Finally, we conclude(
Ê

Ĥ

)
= e−λ1y

(
−z
1

)
ĝ
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Therefore, the outgoing wave is

W2 =
1
2z

(Ê + zĤ) = 0.

2. 2D Calculations.

We write Maxwell equations in 2D
ε
∂Ex
∂t
− ∂Hz

∂y
+
∂Hy

∂z
= 0

µ
∂Hy

∂t
+
∂Ex
∂z

= 0

µ
∂Hz

∂t
− ∂Ex

∂y
= 0

We rewrite this system in a matrix form: ε 0 0
0 µ 0
0 0 µ

 ∂

∂t

 E

Hy

Hz

+

 0 0 −1
0 0 0
−1 0 0

 ∂

∂y

 E

Hy

Hz

+

 0 1 0
1 0 0
0 0 0

 ∂

∂z

 E

Hy

Hz

 =

 0
0
0

.

In order to obtain Steklov-Poincare operator, we do Fourier transform in z and Laplace

transform in t and get:
sεEx −

∂Hz

∂y
+ iξHy = 0

sµHy + iξEx = 0

sµHz −
∂Ex
∂y

= 0

One rewrites the above system in a matrix form

(
1 0
0 1

)
∂

∂y

(
Êx

Ĥz

)
=

 0 µs

s2εµ+ ξ2

µs
0

( Êx

Ĥz

)
.

We can rewrite the above system in the following form(
1 0
0 1

)
∂

∂y

(
Êx

Ĥz

)
+

 0 −µs

−s
2εµ+ ξ2

µs
0

( Êx

Ĥz

)
= 0

Let us denote B =

 0 −µs

−s
2εµ+ ξ2

µs
0

.
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The eigenvalues of B are λ1 =
√
s2εµ+ ξ2, λ2 = −

√
s2εµ+ ξ2. The corresponding

eigenvectors are x1 = (− µs√
s2εµ+ ξ2

, 1), x2 = (
µs√

s2εµ+ ξ2
, 1).

So we obtain the following transformation matrices

P =

 − µs√
s2εµ+ ξ2

µs√
s2εµ+ ξ2

1 1

,

P−1 = −
√
s2εµ+ ξ2

2µs


µs√

s2εµ+ ξ2
1

− µs√
εµs2 + ξ2

−1

.

We denote again W = P−1X,

where

X =

(
Êx

Ĥz

)
.

Let us now denote k =
µs√

µεs2 + ξ2
.

It is easy to see that W =
1
2k

(
−Êx + kĤz

Êx + kĤz

)
.

So the system of ODE's has the following form:
dW1

dy
+ λ1W1 = 0

dW2

dy
+ λ2W2 = 0

W1 = ĝ

The general solution of this system is(
Ê

Ĥ

)
= α1e

−λ1yx1 + α2e
−λ2yx2.

As we look for bounded solution at in�nity we must impose α2 = 0.
So the solution of the problem has the form(

Êx

Ĥz

)
= α1e

−λ1y

(
−k
1

)
.

Inserting the general solution into a boundary condition at y = 0 we obtain

α1

2k
(k + k) = g.
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From this one obtains α1 = ĝ.

Finally, we conclude(
Êx

Ĥz

)
= e−λ1y

(
−k
1

)
ĝ

Therefore, the outgoing wave is

W2 =
1
2k

(Êx + kĤz) = 0.

Therefore, the outgoing wave is

W2 =
1
2k

(Ê + kĤ) = 0,

where k =
µs√

µεs2 + ξ2
.

6. Numerical algorithm.

6.1. Finite Volumes discretization for one domain.

Before doing Finite Volumes discretization it is useful to rewrite Maxwell equations in a

quasi-nonconservative form

B
∂W

∂t
+
∂F (W )
∂x

= 0 on ]a, b[, t > 0,

where

W =

(
E

H

)
, B = B(x) =

(
ε(x) 0

0 µ(x)

)
, F (W ) = AW , A =

(
0 −1
−1 0

)
.

The idea of Finite Volumes discretization is the following: we divide the interval ]a, b[
into N cells with ∆xj = xj+ 1

2
− xj− 1

2
. After that we de�ne the mean-value of W on each

cell and denote it by Wj .

In other words,

Wj =
1

∆xj

ˆ

Cj

W (x, t)dx.
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Multiplying the equations in quasi-nonconservative form by some test function ψ(x) and
intergrating over the domain yields into

ˆ

C

(
B
∂W

∂t
+
∂F (W )
∂x

)
ψ(x) = 0

Now as test function we take the characterization function on each cell. So we get

Bj
dWj

dt
+ φj,j−1 + φj,j+1 = 0

The question is how to approximate the �uxes φj,j−1 and φj,j+1. The simplest way is

to take the centered approximation. So in this case we get

φj,j±1 =
1
2

(Fj + Fj±1) = ∓1
2

(
Hj +Hj±1

Ej + Ej±1

)

6.2. Choice of schemes.

For the discretization of Maxwell equations we use forward di�erence in time and Crank-

Nicolson scheme in space

This gives the following discretized system
εj
En+1
j − Enj

∆t
=

1
2∆xj

[(
Hn
j+1 +Hn+1

j+1

2

)
−

(
Hn
j−1 +Hn+1

j−1

2

)]

µj
Hn+1
j −Hn

j

∆t
=

1
2∆xj

[(
Enj+1 + En+1

j+1

2

)
−

(
Enj−1 + En+1

j−1

2

)]
Reorganizing the above system we get σjεjE

n+1
j +Hn+1

j−1 −H
n+1
j+1 = σjεjE

n
j +Hn

j+1 −Hn
j−1

σjµjH
n+1
j + En+1

j−1 − E
n+1
j+1 = σjµjH

n
j + Enj+1 − Enj−1

Here σj =
4∆xj

∆t
.

6.3. Satisfying absorbing boundary conditions.

Following [1], we have That the total �ux for j = 1 is

φ1.2 + φ1,0 =
1
2

(AW2 +AW1) + (−Z1)+B1W1

It is easy to see that
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φj,j±1 = ∓1
2

(
Hj +Hj±1

Ej + Ej±1

)

(if the centered approximation of �ux is considered).

From the above formula for φ1,2 and φ1,0 it is obvious that φ1,2 + φ1,0 = −1
2

(
H0 −H2

E0 − E2

)

From the de�nition of Z and B we get (−Z)+
1 BW = −1

2

(
cεE1 −H1

−E1 + cµH1

)
From the de�nition of A we have

1
2

(AW2 +AW1) = −1
2

(
H1 +H2

E1 + E2

)

The discretization is σjεjE
n+1
j +Hn+1

j−1 −H
n+1
j+1 = σjεjE

n
j +Hn

j+1 −Hn
j−1

σjµjH
n+1
j + En+1

j−1 − E
n+1
j+1 = σjµjH

n
j + Enj+1 − Enj−1

For j = 1 the discretization is σ1ε1E
n+1
1 +Hn+1

0 −Hn+1
2 = σ1ε1E

n
1 +Hn

2 −Hn
0

σ1µ1H
n+1
1 + En+1

0 − En+1
2 = σ1µ1H

n
1 + En2 − En0

Substituting the expressions for H0 and E0 into the above discretization results in (σ1 + c) ε1E
n+1
1 −Hn+1

2 = (σ1 − c) ε1E
n
1 +Hn

2

(σ1 + c)µ1H
n+1
1 − En+1

2 = (σ1 − c)µ1H
n
1 + En2

Performing very similar calculations for the total �ux for j = N , it is easy to get (σN + c) εNEn+1
N −Hn+1

N−1 = (σN − c) εNEnN +Hn
N−1

(σN + c)µNHn+1
N − En+1

N−1 = (σN − c)µNHn
N + EnN−1

6.4. Numerical results for one domain.

We consider a test problem in the open space of the form
∂E

∂t
− ∂H

∂y
= 0

∂H

∂t
− ∂E

∂y
= 0
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E(0, y) = cosy + siny

H(0, y) = cosy − siny

Assume that we solve it on [0, π2 ].
Then the solution to this problem, which satis�es absorbing boundary conditions

(E −H)(t, 0) = 0
(E +H)(t, π2 ) = 0

is the following:

E(t, y) = (cosy + siny) (cost− sint)
H(t, y) = (cosy − siny) (cost+ sint)

Below on the picture the comparison between approximate and exact solution is given.

The approximate solution is given in the �rst case using 11 nodes for the space discretization(9
internal). The solution is calculated at the time T = 0.01.
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In the second example the time T = 0.05. We can see that the approximation gets worse

as the time interval gets larger.
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7. Numerical results for domain decomposition.

Below the domain is divided into two equal domains. For the space discretization in each

domain 6 nodes are taken. The approximate solution is calculated for the time T = 0.01.

19



8. Conclusions.

� It is possible in some cases to write down the conditions to restrict the problem on the

whole space to the problem on some interval.

� In 1D the Steklov-Poincare operator in the case of Maxwell's equations is local, unlike

in 2D where it is non-local (because it is not a polynomial in Fourier space). Therefore in

2D, one needs to approximate the exact operator in order to implement boundary conditions

on the computer.

� An alternative way for numerically solving PDE's using domain decomposition is to

implememnt �nite element method which requires the weak formulation.
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