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1 Introduction

Multiobjective optimization can be found in several fields; in product and
process design, finance, aircraft design, the oil and gas industry, automobile
design which there are many conflicting criteria. For example in product and
process design, we would like to maximize the profit while we have to keep
customers royalty.We may minimize the product cost to increase the profit
but it also affect the product’s performance which may course the customers
disappoint. Now we can see that those criteria are conflicting.While we are
increasing quality of one criterion, it may course the others be unacceptable.
So we would like to find the optimal solution to compromise those criteria.
Multiobjective optimization can give answers for these problems. This makes
it very useful in various fields.
For neuroscience, in the NeuroMathComp project team at INRIA Sophia An-
tipolis Mediteranee, we are researching to discover the principles that govern
the functioning of neurons and assemblies thereof. There are several regions
in brain working in different objects but they work together to control the
body. The situations in neuroscience seem similar to the other fields men-
tioned above. There are many criteria to be compromised. While researchers
in other fields have studied and been making use of multiobjective optimiza-
tion so far, the application of multiobjective optimization in neuroscience
is not well-studied yet. Hence my training work in the NeuroMathComp
project team is to study multiobjective optimization and try to apply to
some problems in neuroscience.

1



2 Multiobjective Optimization

This section is mainly about the idea of multiobjective optimization. We will
study the meaning of multiobjective optimization, basic definitions and the-
orems in multiobjecive optimization in finite dimensional spaces. Then we
will study some methods used in multiobjective optimization. Some defin-
ions and theorems are mentioned in general view to project on the nature
of multiobjective optimization, the precise definitions and theorems can be
found in [1].

Indeed, we are going to solve the multiobjective optimization of the form

minimize {f1(x), . . . , fk(x)}

subject to x ∈ S = {x ∈ Rn|g(x) = (g1(x), . . . , gm(x))T ≤ 0}

We call S ⊂ Rn a feasible region and Z = f(S) ⊂ Rk a feasible objective
region.

2.1 Multiobjective Optimization

Multiobjective optimization problem consists of vector of objective functions
f(x) = (f1(x), . . . , fk(x))T where fi : Rn → R, k ≥ 2. x = (x1, . . . , xn)T ∈ S
is called decision vector and gi : Rn → R, i = 1, . . . ,m are called constraint
functions forming S. Each multiobjective optimization problem has prop-
erties depending on objective functions and constraint functions. If the
objective functions and constraint functions are linear, then the multiob-
jective optimization problem is called linear. It at least one of the objective
or the constraint functions is nonlinear, the problem is called a nonlinear
multiobjective optimization problem. Moreover, multiobjective optimization
problem can be characterized by the convexity and differentability of the ob-
jective functions and the constraint functions. Multiobjective optimization
problem is convex(quasiconvex,pseudoconvex) if all the objective functions
and the feasible region are convex(quasiconvex, pseudoconvex).The pseudo-
convexity is defined only where the considered function is differentiable. We
also handle nondifferentiable multiobjective optimization problems. In our
case a nondifferentiable function is a function which is locally Lipschizian.

We will concentrate on cases where non-linear functions are included. If
we always deal with strong conditioning problems such as strictly convex
differentiable problem, it is easy to solve. But in practice, we cannot choose
the problem to solve.That is why we need to know weaker conditions such as
pseudoconvexity, quasiconvexity and nondifferentiability. The precise defini-
tions of these conditions can be seen in [1].
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2.2 Pareto Optimality

In a single objective optimization problem, there is one objective function.
When we solve the problem we obtain only one objective value but possibly
many solutions in decision space. Therefore we are interested in the decision
space. But in the case of multiobjective optimization problem, when the
objective functions are conflict, we will obtain several feasible objective values
which are vectors in Z ⊂ Rk. In this case we cannot choose the best solution
directly since Z is only partially ordered. Normally, we are more interested
in the objective space because of the lower dimension.

The objectives in multiobjective optimization problem cannot be ordered,
so we need a tool to extract the proper objectives from the whole feasible
objective region. The Pareto optimality is that tool. The Pareto optimal set
consists of objective vectors which none of the components can be improved
without deterioration to at least one of other components.

We define the locally Pareto optimal objective which is Pareto optimal
in some neighbourhood. This is useful in practice.

2.3 Decision Maker

There are many (possible infinite) solutions in a Pareto optimal set. Those
solutions are equivalent in mathematical meaning, we can select any one of
them to be the final solution. But in real life, one who is responsible to
make the final decision so called ”decision maker” is not a mathematician.
He/she may have hidden reasons to select his/her preference. The decision
maker has right to decide whatever he/she thinks it is good enough. The
mathematician gives him/her only the information to decide. We usually
assume that decision maker is only interested in Pareto optimal points and
the rest can be excluded. This means that the decision maker will move from
one solution to another in the Pareto optimal set.

2.4 Ranges of the Pareto Optimal Set

Since we are dealing with the Pareto optimal set, we should know how big it
is. We can estimate the range of the Pareto optimal set is between the ideal
objective vector and the nadir objective vector. The ideal objective vector
is an objective vector minimizing each of the objective functions. The nadir
objective vector is the upper bound of the Pareto optimal set which can be
estimated from a payoff table.

3



2.5 Value Function

We assume that the decision maker makes decisions based on a function of
some kind. This function is called a value function. This function U : Rk → R
represents the preference of the decision maker among the objective vectors.
The value function is dependent on the decision maker only and it is difficult
to specify the value function explicitly. Generally, it is assumed to be strongly
decreasing and it is more important in the development of solution method
than in practice.

2.6 Efficiency and Weak Pareto Optimality

Other than the Pareto optimality, we define other optimalities which are more
general. Those are weak Pareto optimality and efficiency. The weak Pareto
optimal set consists of objective vectors such that cannot be improved all the
components in the same time. It is possible to improve some components.
While the efficiency consists of all the vectors in feasible objectives set which
there does not exist another vector dominating it with respect to a cone D.
The ordering cone D is used to induce ordering in Z. The Pareto optimality
is a spatial case of efficiency where D = Rk

+. Hence we can easily see that the
weak Pareto optimality and the efficiency are more general than the Pareto
optimality.

2.7 Trade-Offs and Marginal Rate of Substitution

We can move from one solution to another solution in multiobjective opti-
mization. We can compare changes in two objective functions fi, fj using
the trade-off. Trade-off is the ratio of changes between those two functions

denoted by Λi,j = Λi,j(x
1, x2) = fi(x

1)−fi(x
2)

fj(x1)−fj(x2)
. There are two types of trade-

offs which are total trade-off and partial trade-off. The partial trade-off
happens when there is only one pair of indexes i, j such that the function
values at x1 and x2 are different. Then we can define the trade-off rate as
λi,j = λi,j(x

∗, d∗) = lim∞→0+ λi,j(x
∗ + αd∗, x∗).

The marginal rate of substitution is defined on an indifference curve.
mi,j(x

∗) represents the preference of the decision maker at a decision vector
x∗ ∈ S. It is the amount of decrement in the value of the objective func-
tion fi that compensates the decision maker for the one-unit increment in
the value of the objective function fj, while the values of all the other ob-
jectives remain unaltered. It is actually the negative slope of the tangent
to the indifference curve at a curtain point. Hence the final solution of a
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multiobjective optimization problem is a Pareto optimal solution where the
indifference curve is tangent to the Pareto optimal set.

If the Parato optimal set is smooth, the trade-off rate of a point is in fact
the slope of the tangent of the Pareto optimal set at that point. We can
determine when a Pareto optimal solution is a final solution. That is the
tangent of the indifference curve and the Pareto optimal set coincide at it.
That means −mi,j = λi,j for all i, j = 1, . . . , k, i 6= j. In this case we say
that fi is a reference function since the trade-off and the marginal rate of
substitution are generated with respect to it.

2.8 Proper Pareto Optimality

Proper Pareto Optimality is another type of Pareto optimality. The idea
is that unbounded trade-offs between objectives are not allowed. ε -Proper
Pareto optimal is another type of Pareto optimal. It is stronger than Pareto
optimal since the larger convex cone Rk

ε is used instead of Rn
+. The trade-offs

are bounded by ε and 1
ε
.

2.9 Methods

In multiobjective optimization, generating Pareto optimal solutions play a
very important role. But whenever we have discovered the Pareto optimal
solutions, our task has not finished yet. Since the final solution is decided
by decision maker. So the representation of the obtained Pareto optimal so-
lutions to the decision maker is also important because he/she is not math-
ematician. We will classify methods to obtain the final solution into four
classes according to the interaction between the the analyst and the decision
maker.

1. no preference methods where the opinions of the decision maker are
not taken into consideration

2. a posteriori methods where the decision maker select the most pre-
ferred among the alternative after the Pareto optimal set has been
generated and presented to the decision maker

3. a priori methods where the decision maker must specify his/her pref-
erences,hopes and opinions before the solution process.

4. interactive methods where the final solution comes from co-operation
, interaction of the decision maker during the solution process. This is
the most developed of the four classes of methods presented here.
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Normally, the ideas of solving multiobjective optimization are based on
scalarization which tries to convert the problem into a single or a family of
single objective optimization problems with a real-valued objective function,
termed the scalarizing function, depending possibly on some parameters.

I will present here three methods in multiobjective optimization problems
which are posteriori methods since the others we need to know the value
functions which is difficult to define or we need to select our preferences
during the procedure which may cost the decision maker’s time. The object
of the following methods is to generate the Pareto optimal solutions to be
decided later by the decision maker.

2.9.1 Weighting Method

The idea is to associate each objective function with a weighting coefficient
and minimize the weithed sum of the objectives. In this way, the multiple
objective functions are transformed into a single objective function. We also
suppose that the weithing coefficients wi are real numbers such that wi ≥ 0
for all i = 1, . . . , k. It is usually supposed that the weights are normalized,
that is

∑k
i=1 = 1. To be more exact, the multiobjective optimization problem

is modified into the following problem, to be called a weithing problem.

minimize
k∑
i=1

wifi(x) (1)

subject to x ∈ S

where wi ≥ 0 for all i = 1, . . . , k and
∑k

i=1wi = 1.
Then the solution of weighting problem (1) is weakly Pareto optimal and

if wi > 0 for all i = 1, . . . , k then the solution of (1) is Pareto optimal.

2.9.2 ε-Constraint Method

One of the objective functions is selected to be optimized and all the other
objective functions are converted into constraints by setting an upper bound
to each of them. The problem will be called an ε-constraint problem.

minimize fl(x) (2)

subject to fj(x) ≤ εj for all j = 1, . . . , k, j 6= l,

x ∈ S

Then the solution of the ε-Constraint problem is weakly Pareto optimal. If a
point x∗ ∈ S is a unique solution of ε-constraint problem (2)for some l with
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εj = fj(x
∗) for j = 1, . . . , k, j 6= l, then x∗ is Pareto optimal. The following

theorem is very useful in this method.

Theorem 2.1 (Karus-Kuhn-Tucker necessary optimality condition)
Let the objective and the constraint functions be continuously differentiable
at x∗ which is regular point of the constraint problem of the ε-constraint prob-
lem.A necessary condition for x∗ to be a solution of the ε-constraint problem
is that there exist vector 0 ≤ λ ∈ Rk−1 and 0 ≤ µ ∈ R such that

1. ∇fl(x∗) +
∑n

j=1,j 6=l λj∇(fj(x
∗)− εj) +

∑m
i=1 µ∇g(x∗) = 0

2. λj(fj(x
∗)− εj) = 0 for all j 6= l, µigi(x

∗) = 0 for all i = 1, . . . ,m

2.9.3 Hybrid method

The idea is to combine the weighting method and the ε-constraint method.
The hybrid problem to be solved is

minimize
k∑
i=1

wifi(x) (3)

subject to fj(x) ≤ εj for all j = 1, . . . , k,

x ∈ S,

where wi > 0 for all i = 1, . . . , k.
Then the solution of hybrid problem (3) is Pareto optimal for any upper

bound vector ε ∈ Rk.On the other hand, if x∗ is Pareto optimal, then it is a
solution of problem (3) for ε = f(x∗).
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3 Case study

In our work, we would like to apply the methods in multiobjective optimiza-
tion into neuroscience problems. For this case study, we chose the Ambrosio-
Tortorelli segmentation functional to be minimized by ε-constraint method

3.1 Image segmentation

In computer vision, segmentation refers to the process of partitioning a digi-
tal image into multiple segments (sets of pixels) (also known as superpixels).
The goal of segmentation is to simplify and/or change the representation of
an image into something that is more meaningful and easier to analyze.Image
segmentation is typically used to locate objects and boundaries (lines, curves,
etc.) in images. More precisely, image segmentation is the process of assign-
ing a label to every pixel in an image such that pixels with the same label
share certain visual characteristics. The result of image segmentation is a
set of segments that collectively cover the entire image, or a set of contours
extracted from the image. Each of the pixels in a region are similar with
respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the
same characteristic(s).

3.2 The Mumford-Shah functional

The Mumford-Shah functional for image segmentation was introduced by
Mumford and Shah in 1989. It is a famous approach for image segmentation
but there is a difficulty since we have to calculate gradient with respect to
curve segmenting set.

EMS(u,B) = α

∫ ∫
R\B
‖∇u‖2dxdy + β

∫ ∫
R

(u− g)2dxdy + |B|

where
R is connected, bounded, open set of R2

B is a curve segmenting R
|B| is the length of B
g is the feature intensity
u is the smoothed image ⊂ R2 \B
α, β are the weights.

The minimizer u of this functional is a smooth approximation of g in each
sub-domain segmented by B.
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3.3 The Ambrosio-Tortorelli functional

Because of the difficulty of Mumford-Shah functional, Ambrosio and Tor-
torelli replaced B by a continuous variable v and obtained the Ambrosio-
Tortorelli edge-strength function as

EAT (u, v) =

∫ ∫
R

{α(1− v)2‖∇u‖2 + β(u− g)2 +
ρ

2
‖∇v‖2 +

v2

2ρ
}dxdy

where
R is connected, bounded, open set of R2

g is the feature intensity
u is the smoothed image
v is a continuous variable
α, β, ρ are the weights.

We are going to solve this variational optimization problem by ε-constraint
method. First of all, let us review the standard approach which based of the
gradient descent equations;

∂u

∂t
= −2∇v · ∇u+ (1− v)∇2u− β(u− g)

α(1− v)
(4)

∂v

∂t
= ∇2v − v

ρ2
+

2α

ρ
(1− v)‖∇u‖2 (5)

∂u

∂n
|∂R = 0,

∂v

∂n
|∂R = 0 (6)

After we obtain the gradient descent equation, we implement into computer
using finite difference with diffusion equation by center scheme [2].

3.4 Alternative Approach

To solve the optimization problem of the Ambrosio-Tortorelli functional by ε-
constraint method we split the Ambrosio-Tortorelli functional into two functi-
nals.

E1(u, v) =

∫ ∫
R

α(1− v)2‖∇u‖2dxdy (7)

E2(u, v) =

∫ ∫
R

β(u− g)2 +
ρ

2
‖∇v‖2 +

v2

2ρ
dxdy (8)

(9)
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Then solve

minimize {E1(u, v), E2(u, v)}

subject to (u, v) ∈ (W 1,2(R))2

The ε-constraint problem corresponding to this multiobjective optimization
problem is

minimize E1(u, v)

subject to E2(u, v) ≤ ε

This problem is variational minimization problem with inequality constraint
which is different from what we have learned before. Since we have studied
only multiobjective optimization in finite dimensional spaces, but this prob-
lem lies in infinite dimensional spaces. To overcome this difficulty, we have to
spend some more time on multiobjective optimization in infinite dimensional
spaces. Nevertheless, I try to solve this problem roughly with some basic
procedures. Therefore, please note that this step has not been verified yet.
From the ε-constraint problem,the Lagrange function is

L(u, v, λ) = E1(u, v) + λ(E2(u, v)− ε)

Keep u and v fixed respectively, the Euler equations are

div(E1(u, v) + λE2(u, v))∇u = (E1(u, v) + λE2(u, v))u (10)

div(E1(u, v) + λE2(u, v))∇v = (E1(u, v) + λE2(u, v))v (11)

We now obtain the gradient descent equations correspond (10) and (11)

∂u

∂t
= div(α(1− v)2∇u)− λβ(u− g) (12)

∂v

∂t
= ∇2v +

2α

λρ
(1− v)‖∇u‖2 − v

ρ2
(13)

∂u

∂n
|∂R = 0,

∂v

∂n
|∂R = 0 (14)

Then impose the condition on λ from the Karush-Kuhn-Tucker condition

λ(E2(u, v)− ε) = 0 and λ ≥ 0.

That is∫ ∫
R

λβ(u− g)2 +
λρ

2
‖∇v‖2 +

λv2

2ρ
dxdy − λε = 0 and λ ≥ 0. (15)
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To find evolution of λ corresponds the evolution of u and v. Multiply (12)
by (u − g) and integrate over R. If steady state has been reached, ∂u

∂t
= 0.

So we have

0 =

∫ ∫
R

(u− g)div(α(1− v)2∇u)− λβ(u− g)2dxdy.

That is∫ ∫
R

λβ(u− g)2dxdy =

∫ ∫
R

(u− g)div(α(1− v)2∇u)dxdy. (16)

Replace (16) in (15), we finally obtain

λ =

∫ ∫
R

(u− g)div(α(1− v)2∇u)dxdy

ε−
∫ ∫

R
ρ
2
‖∇v‖2 + v2

2ρ
dxdy

(17)

From now on, we are able to implement (12),(13) and (17) into computer
by the association of finite difference(see [2]). By varying ε and keep other
parameters fixed, we obtain the results.
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4 Results

4.1 The Experiments

We do experiments on two images, one is an image with simple detail and
another is more complicating. The parameters are fixed except for ε as the
following.

α β ρ ε Time step for u Time step for v
0.01 0.001 1.0 0.05 0.1 0.005
0.01 0.001 1.0 0.10 0.1 0.005
0.01 0.001 1.0 0.15 0.1 0.005
0.01 0.001 1.0 0.20 0.1 0.005

The numbers of iterations for image (1) and image (2) are 10 and 300 re-
spectively.

Figure 1: Sample 1

Figure 2: Sample 2
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4.2 Results

Figure 3: Original image Figure 4: Standard approach

Figure 5: Alternative ε = 0.05 Figure 6: Alternative ε = 0.10
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Figure 7: Alternative ε = 0.15 Figure 8: Alternative ε = 0.20

Figure 9: Original image Figure 10: Standard approach
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Figure 11: Alternative ε = 0.05 Figure 12: Alternative ε = 0.10

Figure 13: Alternative ε = 0.15 Figure 14: Alternative ε = 0.20
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Then try to compare the results from the standard approach and the al-
ternative approach. Since the alternative approach differs from the standard
approach by varying λ (see (15) and (16)) which is a coefficient of E2(u, v).
We may compare the results from two approaches by putting average value
of λ in alternative approach as coefficient of E2(u, v) terms in standard ap-
proach.
For the alternative approach, we calculate the average value of λ for each ε
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Figure 15: Evolution of λ for image
(1) where ε = 0.10
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Figure 16: Evolution of λ for image
(2) where ε = 0.10

and obtain the following.

ε
Average λ

Image (1) Image (2)
0.05 19.1875 13.7491
0.10 2.3358 5.9559
0.15 0.0358 3.0393
0.20 0.0232 1.5955

We then apply those average values of λ into standard approach.
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Figure 17: Standard λ = 19.1875 Figure 18: Alternative ε = 0.20

Figure 19: Standard λ = 2.3358 Figure 20: Alternative ε = 0.20

Figure 21: Standard λ = 0.0358 Figure 22: Alternative ε = 0.20
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Figure 23: Standard λ = 0.0232 Figure 24: Alternative ε = 0.20

Figure 25: Standard λ = 19.1875 Figure 26: Alternative ε = 0.20
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Figure 27: Standard λ = 2.3358 Figure 28: Alternative ε = 0.20

Figure 29: Standard λ = 0.0358 Figure 30: Alternative ε = 0.20
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Figure 31: Standard λ = 0.0232 Figure 32: Alternative ε = 0.20

We also compare the running time between both approaches.

Approach
Running time (sec.)

Image (1) Image (2)
Standard 0.11 25.78

Alternative ε = 0.05 0.14 33.10
Alternative ε = 0.10 0.11 33.07
Alternative ε = 0.15 0.09 33.19
Alternative ε = 0.20 0.09 31.05
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5 Discussion and Future Work

5.1 Discussion on the results

• The results from both approaches are not significantly different. Both
approaches converge to some acceptable solutions with very little dif-
ferences on running time.

• We don’t have a measurement to decide which solution is better than
the others. But we know that the Ambrosio-Tortorelli funcional is not
strictly convex, the solutions we obtain from the standard approach are
local solutions. That means by the standard approach, we obtain one
solution which may not be the best solution. But by the association of
multiobjective optimization, the solutions from the ε-constraint method
are weak Pareto optimal. And we obtain various solutions depended on
the choices of ε. This means that we have more candidates for the final
solution even now we don’t have a method to select the final solution.

• We have some reformations from continuous domains to vector domains
which have not been checked the availability well. The results are
calculated approximately.

5.2 Future work

• Try to apply other methods and problems.

• We have to study multiobjective optimization in infinite dimensional
domains. Where most neuroscience problems locate in.

• The evolutionary algorithm for multiobjective optimization is also promis-
ing to be apply in this field [6],[7].
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