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Abstract

This work is concerned with the adaption of an existing high order finite volume method (also referred
as discontinuous Galerkin method) for the numerical resolution of the system of two-dimensional Maxwell
equations, in order to simulate the propagation of electromagnetic waves generated by localized sources
in a complex scene involving different types of obstacles and objects. The numerical method considered
in this work assumes that the computational domain is discretized using a triangular mesh and that the
electromagnetic field components are approximated using a high order piecewise polynomial interpola-
tion. Further on this work consists of several simulations conducted for different configurations of mesh
resolution and approximation order aiming at assessing the numerical accuracy of the adapted discontin-
uous Galerkin method defined by the numerical treatment of the selected source models in the considered
application context which is based on the specification and construction of several triangulations of the
propagation scene developped with an appropriate mesh generation tool.
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1 Introduction
Partial differential equations are used to model physical problems involving functions of several variables,
such as the propagation of sound or heat, fluid flow, elasticity and electrodynamics. Seemingly distinct
physical phenomena may have identical mathematical formulations, and thus be governed by the same
underlying dynamics. Electromagnetic wave propagation can be simulated by partial differential equa-
tions called the Maxwell equations. In this study the involved physical quantities of these equations are
the magnetic and electric fields.

By aiming to solve the Maxwell equations computationally, one notices there are a lot different
methods for doing so. For instance there are finite difference, finite element and finite volume methods
which derive discrete representations of the spatial derivative operators. After that there are a number
of methods to solve the system of ordinary differential equations in time. All of these methods have
their advantages but also their drawbacks. A finite difference method cannot handle complex geometries.
While a finite volume method (FVM) has geometric flexibility, the main limitation is its difficulty to
extend to higher-order accuracy on general unstructed grids. And while a finite element method (FEM)
is able to have high-order accuracy on complex geometries it looses the locality of the scheme and fails
to have an explicit semi-discrete form. When combining the finite element and finite volume methods
in an intelligent way there is the discontinuous Galerkin time domain (DG) method having a variety of
advantages to the other schemes. The mass matrix is local, rather than global, and therefore can be
inverted at low cost, yielding to an explicit semidiscrete scheme. When designing the numerical flux,
there is more flexibility available than in the original FEM. That ensures stability of the wave dominated
problems. The DG method achieves a high-order accuracy having a local element-based basis while
maintaining local conservation. The main drawback is an increase in the total degrees of freedom.

The overall objective of this study is to develop a numerical methodology that will be used for the
design of a radar-based imaging system. We consider several simulation configurations of increasing
complexity involving a localized radiating source (emitting antenna) and a set of observation (receiving)
antennas. Therefore, in a first part, we begin introducing the theoretical background developping the DG
method for the Maxwell equations in two dimensions with a source term. In the main part we investigate
numerically the propagation patterns for different scenes.

3



2 Theoretical part

2.1 Maxwell equations
We shall consider the solution of the two-dimensional Maxwell equations for a z-transverse magnetic
(TM) polarization on a bounded domain Ω ⊂ R2 :

ε
∂Ez
∂t
− ∂Hy

∂x
+
∂Hx
∂y

= 0,

µ
∂Hx
∂t

+
∂Ez
∂y

= 0,

µ
∂Hy
∂t
− ∂Ez

∂x
= 0,

(1)

where the magnetic field H = t(Hx, Hy, 0) is transverse to the z-direction and the electric field E =
t(0, 0, Ez) has only one component along the z-direction. The parameters ε and µ refer to the electric
permittivity and magnetic permeability, respectively, of the propagation media. On the boundary Γ = ∂Ω
we use either a perfect electric conductor (PEC) condition i.e. Ez = 0, or a first order Silver-Müller
absorbing boundary condition i.e. Ez = cµ(nyHx − nxHy), or both of them, where c = 1/

√
εµ is the

speed of propagation and ~n = (nx, ny) denotes the unit normal vector pointing outward to Γ.

2.2 Numerical scheme
We consider a partition Th of Ω into a set of triangles Ti of size hi with boundaries ∂Ti and characteristic
mesh size h = maxTi∈Th hi. In general, to each Ti ∈ Th we assign an integer pi ≥ 0 (the local interpolation
order) and we collect the pi in the vector p = {pi : Ti ∈ Th}. However, in the present study, pi is uniform
in all element Ti of the mesh, so we have p = pi. Each triangle Ti is assumed to be the image, under a
smooth bijective (diffeomorphic) mapping τi, of a fixed reference triangle T̂ = {x̂, ŷ| x̂, ŷ ≥ 0; x̂+ ŷ ≤ 1}.
Assuming that Ti is a straight sided triangle defined through the coordinates of the three vertices vi1, vi2
and vi3 (see Fig. 1), the correspondence between the two triangles T̂ and Ti is established through the use
of the barycentric coordinates (λ1, λ2, λ3). We recall that any point xi ∈ Ti can be expressed as a convex
combination of the vertices of Ti and the mapping is simply given by τi : (x̂, ŷ) ∈ T̂ → xi, such that
xi(x̂, ŷ) = λ1v

i
1+λ2v

i
2+λ3v

i
3, where λ1+λ2+λ3 = 1 and 0 ≤ (λ1, λ2, λ3) ≤ 1 with λ1 = 1−x̂− ŷ, λ2 = x̂

and λ3 = ŷ.

x

y

T

^

^

x+y=1^ ^

^

(0,0) (1,0)

(0,1)

Ti

x

y

v

v

v

i

i

i

1

2

3

i (x,y)(x,y)=τ ^ ^  

(x,y)=τ i
^ ^ −1

 (x,y)

Figure 1: Mapping between the physical triangle Ti and the master triangle T̂.

In the following, for a given partition Th, we seek for an approximate solution of (1) in the finite
dimensional subspace Vp(Th) := {v ∈ L2(Ω) : v|Ti

∈ Pp(Ti) , ∀Ti ∈ Th}, where Pp(Ti) denotes the
space of nodal polynomials {ϕij}dj=1 of total degree at most p in the element Ti. The space Vp(Th) has
the dimension d, the local number of degrees of freedom. Note that a function vph ∈ Vp(Th) might be
discontinuous across element interfaces. For each triangle Ti, εi and µi respectively denote the local
constant electric permittivity and magnetic permeability. For two neighboring triangles Ti and Tk in Th,
the (non-empty) intersection Ti ∩ Tk is an (oriented) edge sik which we will call interface, with oriented
normal vector ~nik and with unitary one ~̃nik. For the boundary interfaces, the index k corresponds to
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a fictitious element outside the domain. Finally, we denote by Vi the set of indices of the neighbors
elements of Ti.

2.2.1 Discontinuous Galerkin time domain method

We now derive the spatial discretization. Taking the product of system (1) by a given basis function
ϕij ∈ Pp(Ti), 1 ≤ j ≤ d, and integrating over Ti yields :

∫
Ti

εi
∂Ez
∂t

ϕij +

∫
Ti

Hy
∂ϕij
∂x
−
∫
Ti

Hx
∂ϕij
∂y

−
∫
∂Ti

Hyϕij ñikx +

∫
∂Ti

Hxϕij ñiky = 0,

∫
Ti

µi
∂Hx
∂t

ϕij −
∫
Ti

Ez
∂ϕij
∂y

+

∫
∂Ti

Ezϕij ñiky = 0,

∫
Ti

µi
∂Hy
∂t

ϕij +

∫
Ti

Ez
∂ϕij
∂y
−
∫
∂Ti

Ezϕij ñikx = 0.

(2)

For any field X ∈ {Ez, Hx, Hy}, we denote by Xi the L2-projection on the linear space Span{ϕij , 1 ≤
j ≤ d} spanned by functions defined on Ti, and where {ϕij}j=1,...,d ∈ Pp(Ti) is a family of linearly
independent functions. In each triangle Ti we construct a polynomial representation of the magnetic
and electric fields and for simplicity and efficiency reasons we adopt a Lagrangian interpolation approach
based on a set of nodes defined on the master (reference) triangle T̂. Using this notation, we have the
following global discontinuous representation of the field:

X '
∑
i

Xi(t, x, y) =
∑
i

d∑
j=1

Xij(t)ϕij(x, y), (3)

where Xij is the jth degree of freedom of the field Xi. We denote by Xi the column vector (Xij)1≤j≤d.
The approximation field Xh ∈ {(Ez)h, (Hx)h, (Hy)h}, defined by (Xh|Ti

= Xi, ∀i) is allowed to be discon-
tinuous across element boundaries and, for such a discontinuous field Xh, we define its average {Xh}ik
on any internal face sik, as:

{Xh}ik =
Xi|sik

+ Xk|sik

2
. (4)

Note that for any internal face sik, {Xh}ik = {Xh}ki. For any integral over ∂Ti, a specific treatment
must be introduced since the approximate fields are discontinuous through element faces. We choose to
use a centered approximation:

∀i,∀k ∈ Vi, X|sik
' {Xh}ik. (5)

For what concerns time discretization, we propose to use a leap-frog time integration scheme which
has both the advantage to be explicit and free of time dissipation. In the sequel, superscripts refer to
time stations and ∆t is the fixed time-step. The unknowns related to the electric field are approximated
at integer time stations tn = n∆t and are denoted by Enzi

. The unknowns related to the magnetic field

are approximated at half-integer time stations tn+ 1
2 = (n+ 1

2
)∆t and are denoted by H

n+ 1
2

xi and H
n+ 1

2
yi .

The boundary conditions on Γ are treated in a weak sense by defining some values for the fields Ez, Hx
and Hy in the fictitious neighboring element Tk. The treatment of boundary conditions is weak in the

sense that the traces on sik ∈ Γ of fictitious fields Enzk
,H

n+ 1
2

xk and H
n+ 1

2
yk are used for the computation

of numerical fluxes for the boundary element Ti. More precisely, for a metallic boundary interface sik,
the fictitious values are chosen as :

∀(x, y) ∈ sik :

 H
n+ 1

2
xk (x, y) = H

n+ 1
2

xi (x, y), H
n+ 1

2
yk (x, y) = H

n+ 1
2

yi (x, y),

Enzk
(x, y) = −Enzi

(x, y),
(6)
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and for an absorbing boundary interface sik, the fictitious values are :

∀(x, y) ∈ sik : En+1
zk

(x, y) = ciµi(nikyH
n+ 1

2
xi (x, y)− nikxH

n+ 1
2

yi (x, y)). (7)

The discontinuous Galerkin DGTD-Pp method can be written in the following matrix form:

Mε
i

En+1
zi
−Enzi

∆t
= −Kx

iH
n+ 1

2
yi + Ky

iH
n+ 1

2
xi

+
∑
k∈Vi

(
Gn+ 1

2
xik −Gn+ 1

2
yik

)
,

Mµ
i

H
n+ 1

2
xi −H

n− 1
2

xi

∆t
= Ky

iE
n
zi
−
∑
k∈Vi

Fnyik
,

Mµ
i

H
n+ 1

2
yi −H

n− 1
2

yi

∆t
= −Kx

iE
n
zi

+
∑
k∈Vi

Fnxik
,

(8)

where the vector quantities Fnxik,Fnyik,G
n+ 1

2
xik and Gn+ 1

2
yik are defined as: Fnxik

= SxikEnzk
, Fnyik

= SyikE
n
zk
,

Gn+ 1
2

xik = SxikH
n+ 1

2
yk , Gn+ 1

2
yik = SyikH

n+ 1
2

xk ,
(9)

and the positive definite symmetric mass matrices Mε
i , Mµ

i , and the skew-symmetric stiffness matrix
Kx
i , x ∈ {x, y} (all of size di × di) are given by:

(Mε
i )jl =

∫
Ti

εiϕijϕil, (Mµ
i )jl =

∫
Ti

µiϕijϕil,

(Kx
i )jl =

1

2

∫
Ti

(∂ϕij
∂x

ϕil − ϕij
∂ϕil
∂x

)
.

(10)

For any interface sik, the di × dk rectangular interface matrix Sx
ik, x ∈ {x, y} is given by:

(Sx
ik)jl =

1

2
ñikx

∫
sik

ϕijϕkl. (11)

For any interface matrix Sx
ik, we have the following properties:

• if sik is an internal interface of the mesh then tSx
ik = −Sx

ki,

• if sik is a metallic boundary interface of the mesh then tSx
ik = Sx

ik.

For energy analysis we define the discrete electromagnetic energy:

En =
1

2

∑
i

(tEnzi
Mε
iE

n
zi

+ tH
n− 1

2
xi Mµ

i H
n+ 1

2
xi + tH

n− 1
2

yi Mµ
i H

n+ 1
2

yi ). (12)

The convergence order in apce and time is:

O(Thmin(s,p)) +O(∆t2). (13)

2.3 Source term
So far, we have presented a numerical scheme to solve the source free Maxwell equations. For the
propagation problems considered in the present study, we have to take into account a source terme
corresponding to a current field generated by a localized source. More precisely, we consider a source
term along the z-direction J = t(0, 0, Jz):

ε
∂Ez
∂t
− ∂Hy

∂x
+
∂Hx
∂y

= −Jz(x, y, t), (14)

where the current Jz(x, y, t) can take one of the two forms discussed below.
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2.3.1 Delta function

The source term writes Jz(x, y, t) = f(t)δ(x− x0, y − y0) where f(t) is a given function in time and:

δ(x− x0, y − y0) =

 1 if x = x0, y = y0,

0 elsewhere.
(15)

For the spatial discretization, integrating (14) over Ti with a given basis function ϕij ∈ Pp(Ti), we
obtain:

−
∫
Ti

εi
∂Ez
∂t

ϕij +

∫
Ti

Hy
∂ϕij
∂x
−
∫
Ti

Hx
∂ϕij
∂y
−
∫
∂Ti

Hyϕij ñikx +

∫
∂Ti

Hxϕij ñiky = −
∫
Ti

Jzϕij , (16)

and with the properties of the Dirac Delta function we find that:∫
Ti

Jzϕij = f(t)

∫
Ti

δ(x− x0, y − y0)ϕij = f(t)ϕij(x0, y0). (17)

The discrete equation for Ez becomes:

Mε
i

En+1
zi
−Enzi

∆t
= −Kx

iH
n+ 1

2
yi + Ky

iH
n+ 1

2
xi +

∑
k∈Vi

(
Gn+ 1

2
xik −Gn+ 1

2
yik

)
− f(t)ϕij(x0, y0). (18)

Then, the numerical treatement of a source term of this type is such that the right-hand side in (18)
is non-zero only for the degrees of freedom of the element T ∈ Th enclosing the point (x0, y0).

2.3.2 Gaussian function

In this case, the source term writes Jz(x, y, t) = f(t)g(x, y) where g is defined by:

g(x, y) = Ae−((x−xo)2+(y−yo)2) (19)

where A is the amplitude. For the spatial discretization, integrating (14) over Ti with a given basis
function ϕij ∈ Pp(Ti), we obtain:∫

Ti

Jzϕij = f(t)

∫
Ti

∑
j

g(xj , yj)ϕij(x, y), (20)

which leads to:

Mε
i

En+1
zi
−Enzi

∆t
= −Kx

iH
n+ 1

2
yi + Ky

iH
n+ 1

2
xi +

∑
k∈Vi

(
Gn+ 1

2
xik −Gn+ 1

2
yik

)
−MiG

n
zi
, (21)

where the discretized source term Gn
zi

and the positive definite symmetric mass matrix Mi are defined
by: 

(Mi)jl =

∫
Ti

ϕijϕil,

Gn
zi

=
∑
j

g(xj − x0, yj − y0)
(22)

Then, the numerical treatement of a source term of this type is such that the right-hand side in (21)
is non-zero for the degrees of freedom of the elements T ∈ Th belonging to the support of the Gaussian
function.
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3 Numerical study

3.1 Problem statement
The overall objective of this study is to develop a numerical methodology that will be used for the design
of a radar-based imaging system. We consider several simulation configurations of increasing complexity
involving a localized radiating source (emitting antenna) and a set of observation (receiving) antennas.
The objective is to record the propagation patterns for different scenes involving a room and objects
within the room. In a complementary study, signal processing tools are developed for anlyzing the
transmitted/reflected signals. The temporal variation f(t) of the source terms considered in this study
is shown on Fig. 2.
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Figure 2: Temporal variation f(t) of the source term.

In theory, the problems that we have to consider are defined in an unbounded space. In practice,
the computational domain is truncated artificially and a first order Silver-Müller absorbing boundary
condition, Ez = cµ(nyHx − nxHy), is imposed on the associated artificial boundary. Therefore, a first
series of numerical experiments aim at assessing numerically the accuracy of this approximation and
in particular, if artificial reflections appear that pollute the numerical solution. For that purpose, we
consider three parameters that may influence the discretization process: the position of the artificial
boundary, the discretization step (i.e. the parameter h) and the interpolation order (i.e. the parameter
p in the DGTD-Pp method). So the investigating procedure is to pick one of the above variables, fix
the others and analyse the numerical solution in terms of reflection and convergence. For the analysis
of reflection we mainly use the Dirac type source and for the analysis of the numerical convergence of
the solution we also consider the Gaussian type source. In a second series of numerical experiments the
above mentioned scenes involving a room and objects within the room are implemented for exemplary
settings and analysed for the following parameters: the electricial permittivity and coductivity (i.e. the
parameters ε and σ), the position of the artificial boundary, the position of the radiating source and the
type of object within the room (i.e. either a metallic object or an meshed object having a specific ε and
σ).

3.2 Propagation in free space
The simulation setting is shown in Fig. 3. The radiating source is located at the center of the domain and
the signal is observed at two visualization points. For this series of numerical experiments, the triangular
meshes are uniform and deduced from a finite difference grid with N×N points (i.e with N discretization
points along the x- and y-axis). Each square element of this finite difference grid yields two identical
triangles.
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Figure 3: Problem setting for propagation in free space

3.2.1 Influence of the discretization step

We first investigate the influence of the discretization parameter h. Given the size of the square domain
(see Fig. 3) in terms of the length L of its sides, the discretization parameter h can be related to the
ratio L/N . We have considered the following configurations:

L =


1m if Ω = [−0.5 m,+0.5 m]2,

2m if Ω = [−1 m,+1 m]2,

4m if Ω = [−2 m,+2 m]2,

(23)

and four uniform triangular meshes referred as:

• Small with N = 6,

• Medium with N = 11,

• High with N = 21,

• Very High with N = 41.

Generally we will expect that the mesh resolution will have an emphasizing effect if there is a reflection.
The finer the mesh the more accurate the solution should be. A possible reflection should be more visible
when using a finer mesh.

In the plots of Fig. 4 and Fig. 5 we see a very similar picture at both visualization points. Of course
the mesh resolution increases when the size of the computational domain decreases. So when looking at
the subplots we should take in account that the mesh resolution is dependent on the dimension of the
size of the computational domain which can be seen in Tab. 1. The highlighted figures are an example
of a comparable setting.

Number of discretization points N 6 11 21 41
Size of the computational domain L 1m 6 11 21 41

2m 3 5.5 10.5 20.5
4m 1.5 2.75 5.25 10.25

Table 1: Mesh resolution in #points/meter

In general we do not see any reflection on these plots. In fact for the smaller domains the mesh
resolution has not even an effect on the first two peaks. The only plots where we can see a development
due to the mesh resolution are the corresponding to the largest computational domain (L = 4m). We
can see that the peaks have a lower amplitude with a small resolution than with a higher one, so the
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Figure 4: Time evolution for the numerical solution at the top center visualization point (Dirac source type)
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emphasizing effect is observed. But in any case, although it seems that there might be a reflection
looking at the small mesh resolution in the large domain this is not confirmed observing the higher mesh
resolutions. In the next plots (Fig. 6 and Fig. 7) we look at the particular case of a large domain
(L = 4 m) and zoom in the end of the simulation time window. These plots show more precisely the
influence of the mesh resolution on the artificial reflections at the absorbing boundary. We observe that
for a low resolution (mesh Small), the amplitude of the reflection is about 1% at t = 50 and further
decreases with the simulation time.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

50 55 60 65

E
z 

in
 V

/m

Z
oo

m

Time in ns

Time evolution of the numerical solution

in a [-2 m , +2 m] x [-2 m , +2 m] space at (0.0, 1.9) using DGTD-P1

Mesh resolution
Small (N=6)

Medium (N=11)
High (N=21)

Very High (N=41)
-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

50 55 60 65

E
z 

in
 V

/m

Z
oo

m

Time in ns

Time evolution of the numerical solution

in a [-2 m , +2 m] x [-2 m , +2 m] space at (0.0, 1.9) using DGTD-P1

Mesh resolution
deleted

Medium (N=11)
High (N=21)

Very High (N=41)

Figure 6: Time evolution for the numerical solution at the top center visualization points with zoom (Dirac
source type)
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Figure 7: Time evolution for the numerical solution at the bottom left visualization point with zoom (Dirac
source type)

3.2.2 Influence of the interpolation order in the DGTD-Pp method

We now analyze the influence of the interpolation order p in the DGTD-Pp method. The expectation is
that the numerical solutions increase accuracy when the interpolation order is increased.

In the plots of Fig. 8 we again do not see any reflection at the absorbing boundary. In order to
observe the accuracy of the numerical solution we compare the soulutions for the different source types
(see Fig. 9). For the Gaussian source type, we investigate the convergence of the solution. This means,
that for p = 1 the DGTD-Pp method tends to have larger amplitudes in absolute values than for p > 1.
After that the plots for p = 2, 3, 4 seem to converge. Comparing the Gaussian and Dirac source types we
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see as well a convergence, but only towards the second peak. The first peak of the the Dirac source type
does not converge. For the larger computational domains we can observe that for the Dirac source type
we have basically the same solution for any order of the DGTD-Pp method. For the Gaussian source type,
the solutions of the different orders seem to coincide totally for the smaller domains. We can conclude
that a higher order of the DGTD-Pp method leads to a more accurate solution.

3.2.3 Influence of the size of the computational domain

Here we analyze the influence of the size of the computational domain on the time evolution of the
numerical solution. All the simulations reported here have been performed using the DGTD-P2 method.
On the plots of Fig. 10 we see that there is time shift and different absolute values of the amplitudes for
both source types. We observe for the first time that the Dirac source type seems to be more consistent
than the Gaussian source type source. When zooming (see Fig. 11) we see that the Gaussian source type
is smoother towards the end of the simulation. We also observe that for a comparable mesh resolution
we have a lot more noise (higher amplitude) in the larger domain than in the smaller ones.

3.2.4 Analysis of the time evolution of the energy

We finally analyze the time evolution of the discrete energy of the whole system. We expect that in all
cases the energy of the system converges to zero very quickly since we have not observed any reflections
at the abosrbing boundary.

From the plots of Fig. 12 we see that in a smaller domain we have a faster convergence of the energy
of the system for the case of a Dirac source type. We also observe that for the Dirac source type the
energy converges the fastest for the DGTD-P2 method. The plots of Fig. 13 confirm that for a smaller
domain there is a faster convergence as well as for the higher mesh resolution. But although we sometimes
confirm that with a higher DGTD-Pp method the energy converges faster, we also see that the plots for
p = 2 and p = 3 change so that the DGTD-P2 method converges faster than the DGTD-P3 method.
Comparing Fig. 12 and Fig. 13 we see that the energy converges faster in the case of a Gaussian source
type than in the case of Dirac source type.
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Figure 12: Time evolution for the discrete energy in terms of the interpolation order in log scale (Dirac
source type)
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Figure 13: Time evolution for the energy in terms of the interpolation ordre in log scale (Gaussian source
type)
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3.3 Propagation involving a room
The meshes of the simulation settings are shown on Fig. 14. The radiating source is still located at
the center of the domain. For this series of numerical experiments, the triangular meshes are generated
with the FreeFem software. A square room is modeled inside the domain having walls of 20 cm depth.
Unlike the first series of numerical experiments the data plotted in each figure exclusivly refers to the
interpolation order p in the DGTD-Pp method for p ε {1, 2, 3, 4}.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Le
ng

th
 in

 m

Length in m

Mesh of [-2 m , +2 m] x [-2 m , +2 m] domain with wall (about 1000 vertices)

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Le
ng

th
 in

 m

Length in m

Mesh of [-3 m , +3 m] x [-3 m , +3 m] domain with wall (about 1700 vertices)

Figure 14: Problem setting for propagation involving a room

3.3.1 Influence of the electricial permittivity ε and conductivity σ of the wall

In this section we analyse the change of the signal, observed at the same visualization point outside of
the room, when the physical properties of the walls change. The values for the electricial permittivity
ε and the conductivity σ are chosen arbitrarily and may not coincide with the real physical values of a
wall. We expect for an increase of ε that a reflection at the wall occurs so that the measured electric
field E will have lower amplitudes and the discrete energy of the system will last longer inside the room.
When increasing the conductivity we expect the discrete energy to decrease.

The plots in Fig. 15 and Fig. 16 show the observed signal for different values of ε and σ and the
discrete energy of the system in those cases. We see for both source types there are very similar plots. As
well we observe that there is a convergence when increasing the DGTD-Pp method. These patterns are
due to a high resoluted mesh, based on about 1000 points in a [−2m,+2m]2 domain. When analysing
further on we use the Dirac source type only, knowing that exceptional plots of the lowest interpolation
order might occur. By exceptional plots we mean the plots of interpolation order p = 1 for the DGTD-Pp
method in Fig. 15 and Fig. 16 for the Dirac source type (i.e. the red-colored lines).

We in fact observe reflecting patterns when increasing the permittivity, so that the amplitudes of the
electric field decrease but the number of peaks increase during the investigation. Also the discrete energy
remains longer in the system than for the free space setting. It is about 0.1% at t = 100 (instead of
0.00001% at t = 50). We also observe a decreasing discrete energy when the conductivity is increased.
Moreover the amplitude of the electric field decreases as well.
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Figure 15: Time evolution for the numerical solution in a [−2m,+2m]2 domain with wall, meshed with
about 1000 points
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(b) Gaussian source type
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(f) Gaussian source type

Figure 16: Time evolution for the discrete energy in terms of the interpolation order in log scale
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3.3.2 Influence of the size of the computational domain

Now we analyse the influence of the size of the domain. In Fig. 17 we observe again (see subsection 3.2.3)
a time shift and a decrease of the absolute values of the amplitudes comparing Fig. 17 (b) and (c). On
the other hand we analyse the observed signal at the same visualization point, changing the position of
the absorbing boundary condition (Fig. 17 (a) and (b)). We see that these plots are very similar, so that
at this point of the study we can focus on just one dimension of the domain (i.e. [−2m,+2m]2).
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(a) meshed with about 1000 points
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(b) meshed with about 1700 points
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(c) meshed with about 1700 points

Figure 17: Time evolution for the numerical solution in a domain with wall (Dirac source type)

3.3.3 Influence of the position of the source

The radiating source so far was located at the center of the domain. Now it is moved outside the room
and three visualization points are located behind the opposite wall so that the signal has to propagate
through two walls. In Fig. 18 we observe two similar plots for the top left and top right visualization
point with very low amplitudes while the top center visualization point has relativly high amplitudes.
This propagation patterns might have the following two reasons. On the one hand the distance from
the source to the top center visualization point less than the distance to the top left/right visualization
point. On the other hand if we draw straight trajectories from the source to the visualization points we
see that the part of the trajectories in the walls have different lengths which might have an impact on
the amplitudes.
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(a) top left
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(b) top center
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(c) top right

Figure 18: Time evolution for the numerical solution in a [−2m,+2m]2 domain with wall, meshed with
about 1000 points (moved Dirac source type)
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3.4 Propagation involving objects inside the room
The meshes of the simulation settings are shown on Fig. 19. The radiating source is at first located at
the center of the domain. Inside the room a circular object (r = 20 cm) is modeled in the top right
corner. In more detail there is either a metallic object or a meshed object with the parameters ε = 8.0
and σ = 4.0.

In Fig. 20 we have visualized the recieved signal at the top right visualization point, so the waves
while propagating through the domain will pass the object. The metallic object has a purely reflecting
effect while the meshed object has also transparent properties. In the zoomed plots we observe again
that the solution converge very well for the DGTD-Pp with p ≥ 2. We also observe higher amplitudes in
the case of the meshed object.
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Figure 19: Problem setting for propagation involving objects inside the room

In Fig. 21 we have moved the source at the bottom center of the domain outside the room and
observed behind the opposite walls (see subsection 3.3.3). We see very similar plots for the top left
and top center visualization points, but observing the top right visualization point we do not have the
symmetric pattern as in subsection 3.3.3 because of the objects inside.
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(a) metallic object
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(b) metallic object
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(c) meshed object
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(d) meshed object

Figure 20: Time evolution for the numerical solution in a [−2m,+2m]2 domain with wall and circular object
inside the room, meshed with about 1000 points (Dirac source type)

26



-60

-40

-20

 0

 20

 40

 60

0 10 20 30 40 50 60 70 80 90 100

E
z 

in
 V

/m

Time in ns

Time evolution of the numerical solution

[-2 m , +2 m]2 domain with wall (eps=4.0, sigma=2.0) and met. obj., visu at (-1.4, 1.6)

Interpolation method
DGTD-P1
DGTD-P2
DGTD-P3
DGTD-P4

(a) metallic object
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(b) meshed object
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(c) metallic object
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(d) meshed object
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(e) metallic object
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(f) meshed object

Figure 21: Time evolution for the numerical solution in a [−2m,+2m]2 domain with wall and circular object
inside the room, meshed with about 1000 points (moved Dirac source type)
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4 Conclusions
In this study we have introduced the discontinuous Galerkin time domain method for the two-dimensional
Maxwell equations with a radiating source term. Further on we used the implemented method and
analysed the propagation patterns for different scenarios with increasing complexity numerically.

This study is a start for further numerical investigations of electromagnetic wave propagation gener-
ated by localized sources using a high order discontinuous Galerkin time domain method which will be
continued by Jean-Yves Dauvignac from the Laboratoire d’Electronique, Antennes et Télécommunica-
tions, Stéphane Lanteri from the NACHOS project-team in INRIA and a PhD-Student. Because of the
limited time we did not intend to have a very deep and detailed understanding of neither the discontin-
uous Galerkin time domain method, nor the Maxwell equations, nor the radiated signal analysis. We
rather aimed to established a basis to work on for the PhD-Student. This included to test the existing
code extensively on an easy grid in order to analyse the propagation pattern. Further tests on more
difficult scenarios have been done with figures that might not be real physical quantities in order to see
how the code works with numerical changes. We also established an efficient way to change the physical
quantities and the configurations of the scenes as well as visualize the developped data after running a
simulation and save it in a structured way.

The next steps are to analyse and interpret the plots in a more detailed way with a specialist for
signal processing analysis. With those result there will be simulations using the real physical quantities
(i.e. electric permittivity ε and and conductivity σ). Also there will be a number of simulations in order
to assemble the weaknesses of the code as well as a profound understanding of the DGTD-Pp method.
Then more complex configurations and meshes can be established and simulations can be runned in order
to have a more detailed analysis of the propagation patern. I recall the overalll objective of this research
is the development of a radar-based imaging system.
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