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1 System of linear elasticity

Linear elasticity is a simplification of the more general nonlinear theory of elasticity and
is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear
elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relation-
ships between the components of stress and strain. In addition linear elasticity is only valid
for stress states that do not produce yielding. These assumptions are reasonable for many
engineering materials and engineering design scenarios. Linear elasticity is therefore used
extensively in structural analysis and engineering design, often through the aid of finite
element analysis.

In the following we recall some results concerning the system of linear elasticity, we will
apply the variational approach to the resolution of system of equation of linear elasticity.

We start with the description of the physical model
Figure : Beam fixed on one side
Displacement under the gravity force

Let Q be an open set of RV, f(x) a force which is a function from Q to RY and the
unknown u displacement which is a function of  in RY the mecanic modelisation involves
the tensor of deformation e(u) defined by

e(u) = 3(Vu+ (Vu)') = 3(§% + §2) i = j = 1..N,
This modelisation involves also the tensor of constraint o

o =2pe(u) + Mr(e(u))ld

where A, p are Lame coefficients of the material. For some thermodynamic reason A, u
satisfy

pw>0and 2u+ NX >0

Using the sum of all the forces in the solid we obtain :

—div(c) = f in Q

Using the fact that tr(u) = divu, we can deduce the following equation :

N
0 3uz Buj
; 6— (‘330] (%ci ) + A(divu)d;;) = fi in Q

With w;, f; the components of f and w in the canonical basis of RY. Adding Dirichlet
boundary condition we obtain the following boundary value problem :



{ —div(2pe(u) + Mr(e(u))Id) = finQ (1)
u = 00n 0N

The result below shows that the boundary value probleml is well posed by using varia-
tional approach.

Theorem

There exists a unique weak solution u in Hg ()" of equations (1). We will present the
main ingredients of the proof.

To find the variational formulation we multiply the equation by a smooth test function
which vanish on the border of €2, and we integrate by parts to obtain :

(9uZ ﬁ’uz ov; . Oy
dxr + | Adivu dx = svidx
/g.z Z ax] 8$J (%cj Q &Tl Q f

Using some summation properties we obtain the variational formulation : find u in
H}(Q)N such that

/2,ue(u).e(v)dx+/)\divudivvdx:/fvdx
Q Q Q

for all v in HZ(Q)N

In order to apply the Lax-Milgram theorem we need to verify the coercivity of the bilinear
functional a(u,v) = [, 2ue(u).e(v)dz + [, Adivudivodz

We can show that

/2u\e(u)|2dx+/ )\\dwu|2daj2a/ le(v)|2dx
Q Q )

with a= min(2u, (2 + NA)) >0 . Next we use Korn inequality which gives a constant

C>0 such that :
/ le(v)[2dz > C/ |Vo|2dx
Q Q
for all v in HZ(Q)N.

Thirdly we use Poincare inequality which gives C = 0 such that for all v in H(Q)" we

have,
/ lv|2dx < C’/ |Vo|2dz
Q Q

Combining these inequalities we obtain the coercivity of a mean

/2u\e(u)|2dx+/ Ndivu*dz > C|v|[H1(q)
Q Q

Applying Lax-Milgram theorem we obtain the existence and uniqueness of the solution
to the variational formulation

Lemma

Let() an open set of RY for all v in H}(Q)" we have :

IVl z20) <V2lle(v)l|zz0)-

Since we have used Dirichlet boundary condition in pratice a part of the border can
be free to move or some surface forces can be applied on the border these two cases are
modelised by Neumann boundary condition,on = g ondf)

Figure :Beam fixed on one side

Neumann condition on another



where g is a function in L?(Q)% (the force applied on the border).
Now we consider a system of linear elasticity with mixed boundary conditions, Dirichlet
and Neumann i.e

—div(2ue(u) + Mr(e(u))Id) = f in
u=00ndp (2)
on = gondfdy

where (0Qn,0€p) is a partition of 9 of non zero measure. Existence and uniqueness
can be proved using Korn Inequality.

Lemma (Korn Inequality)

Let Q be open bounded and regular set of class C! of RY. There exists a constant C> 0
such that for all function v€ H(Q)" we have

ol <C (ol -+ o)l Exoy)

The mecanic interpretation of Korn inequality is the following : the elastic energy pro-
portional to the norm of the tensor of deformation e(u) in L?(£2) controls the norm of the
displacement v in H'(2)"V up to the addition of the norm of u in L?(€2) .

Theorem

Let Q an open bounded connected regular set of class C' of RY. Let f €L?(Q)
g€L?(00N)N we define the space

V = {ve H' ()N such that v = 0 on dQp}

There exists a unique weak solution v € V of (2 ) which depends linearly on f and g

The solution of the variational problem can be interpreted as the minimization of an
energy

Proposition

Let j(v) the energy defined for all v € V by :
1
jlv)y == / (2ule(v)]* + N|divo|?)dx —/ fvdz —/ g.vds
2 Ja Q 00N

Let u be the unique solution of the variational formulation of (2), thenu is the unique
minimum point of the above energy in V. Reciprocally if u € V is the minimum point of the
energy j(v) then u is the unique solution of the variational formulation.



2 Smith factorization applied to the linear elasticity

Smith factorization is an algebraic tool which allows to treat matrices with polynomial
entries
We consider a matrix with polynomial entries in one variable

0,11()\) aln()\)

a,, (A . a, . (N

We recall the Smith factorization of a matrix with polynomial entries

Theorem Let n be an positive integer and A an invertible n X n matrix with polynomial
entries with respect to the variable A: A = (a;;(A))1<i j<n. Then, there exist matrices E,
D and F with polynomial entries satisfying the following properties:

A=

e det(E) and det(F') are constants,
e D is a diagonal matrix uniquely determined up to a multiplicative constant,
e A=FEDF.

Here F and F' are matrices, which operate on the rows resp. columns. The entries of the
diagonal matrix D = (d;;(\)) are given by d;; = ¢;/¢,—1, where ¢; is the greatest common
divisor of the determinants of all ¢ x ¢ sub matrices of A and ¢y = 1.

The Smith factorization is a classical tool in computer algebra and in control of ordinary
differential equations. Since its use in scientific computing is rather new, we give here a few
comments:

e Smith was an English mathematician of the end of the 19th century. He worked in
number theory and considered the problem of factorizing matrices with integer entries.
We gave here the polynomial version of his theorem in the special case where the matrix
A is square and invertible but the result is more general and applies as well when the
matrixA is rectangular.

e One of the interest of the theorem is the following. By Cramer’s formula, the inverse
of A isin general a matrix with rational entries. By the Smith factorization, we have
A=l = F71D71E~!. Since det(E) and det(F) are constants, the inverse of £ and F
are still matrices with polynomial entries in A\. The rational part of the inverse ofA is
thus in D~! which is an intrinsic diagonal matrix.

e The proof of the theorem is constructive and gives an algorithm for computing matrices
E, D and F. As stated in the theorem, matrix D is intrinsic but matrices £ and F
are not unique.

e In the sequel, we write the system of linear elasticity as a matrix with partial differ-
ential operators entries applied to the unknown displacement. The direction normal
to the interface of the subdomains is particularized and denoted byd,. Each partial
differential operator is then considered as a polynomial in the “variable 9,” (e.g. A is
related to 9, and A2 to 9,,). It is then possible to apply the Smith factorization, see
below.

We consider two elementary operations on the matrix : 1) permutation of rows (and
columns), 2)multiply a row (or column) by a scalar polynomial and add it to another row
(or column).

These transformations keep the matrix with polynomial entries and preserve (up to a
sign ) the determinant of the matrix.

For a matrix whose first entry is a non zero polynomial of minimal degree, we consider
three possibilities :

1) there exists at least one entry in the first line or the first column that a;1(\) does not
divide.

2) The first entry aj1(\) divides all the entries of the first line and of the first column
and in addition to the first entry a;1()\), one of the entries of the first line and of the first
column is not zero.



3) Except for the first entry a;1()), all the entries of the first line and of the first column
are zero and there exist at least one entry in the matrix that a;;(\) does not divide

4) Except for the firt entry aq1(\), all the entries of the first line and of the first column
are zero and a1 () divides all the entries of the matrix.

The above cases are exclusive and cover all possible situations. We shall show that by
elementary operations :

In case 1, it is possible to decrease the minimal degree of the matrix.

In case 3, it is possible to go to case 1.

In case 2, it is possible to go to case 3 or 4.

The generic situation is case 1. We propose that it is possible to decrease the minimal
degree of the matrix. Suppose a;1(A) does not divide an entry of the first line (the argument
would be similar for an entry of the first column), say a1;. Then, perform the Euclidean
division of a1; by a1 () :

a1;(N)= bj(A)a11(A) + rj(A) where the degree of r; is less than that of aq1(A). Then,
multiply the first column by —b; and add the result to the jth column of A, so that the
J — th element of the first line is r;. If r; is not zero, permute the first and the j — th
columns so that r; is the first coefficient of the matrix. Note that the minimal degree of
A has decreased. Since the minimal degree of A is not negative, after a finite number of
applications of this procedure, we are sure to leave case 1.

Suppose we are in case 3. Let a;;(\) be a polynomial that ai1()\) does not divide. By
adding the ¢ — th row to the first row, we go to case 1.

Suppose we are in case 2. For each 1< j< n, we multiply the first column by a scalar
polynomial —a;;(A)/a11(A) and add it to the j — th column. Then, all the coefficients of
the first line are zero except for the first one. The coefficients of the first column are left
unchanged by this operation.

Thus, for each 2< j< m multiplying the first line (which has only one non zero entry)
by —a;1(\)/a11(A) and adding it to the j-th line we cancel all the coefficients of the first
column except for the first one. We are now thus either in case 3 or in case 4.

It is thus possible after a finite number of steps to go to case 4 and then apply the same
procedure to submatrix A(2:n,2: n).

The first equation of the system (1) in two dimension is given by :

v Maa:y + /\ayz Nawz + (2M + A)ayy v fg
We transform this equations as follows :
we perform Fourier transform in the y-direction with the dual variable k,

we perform Laplace transform in the x-direction with dual variable A,
we obtain the following equation :

( (2p+ MA% — K2p (A + p)ikA > (
(1 + A)ikA pA? — (2u + A)k?

S 2
N———
Il
~

Let A be the following matrix

g [ @ut MNAZ — K2 (A + p)ikA
- (p+ N)ikA pA? — (2p + \)k?

The smith factorization of A is build as follows by :

Initially we are in case 1 we permutte the columns and reduce the degree of the first
entry

A A0 L) i(p+ NEA (2u+ NA? — k2
1= L0 ) 7 \ pA?—(2u+ N)k? (1 + N)ikA



1 i((ux))]i\ i+ NEA —pk?
A_ A 1 J— . 2 3—i 2 .2
2 1o 1 pA2 — (2p 4 NE2 Ltz )A(HJr)(iI]:)\“F?)H DAk

A A 0 1 — k2 i(p+ A)EA
Q — = : 2 3_ . 2 2
=81 o ATBO ISR A% — (2 + M)k

The above situation correspond to case 2

i(u+A)A —uk? 0
] icen " |
A=A 1" = Gurt2u®)A%—i(2pr+342)) Ak O 20) A — (A +4p) K A%+ (A2 kY
ESY k2

0 1

here we are in case 4

1 0 —pk? 0
As =\ Guatzed)N—ieus)aR? | Aa = 0 _Ofmn-k)?
pu(pt+A)k? k2
finally we obtain ;

The diagonal matrix given by :

b= ( 0 —(A20—k2)2 )

—pk? 0
E= | iua(Or200)A2—(20430)k2) 1

(A u)k
—(A+2p)A? —i(A+p)A
F= < Mkz“ +1 uk# )
- i(A+2p)% A A2p
A+p)k3 k2

such that A = EDF



3 An efficient(optimal) algorithm for the system of linear
elasticity

Our goal is to write for the equations of linear elasticity on the whole plane divided into
two half-planes an algorithm converging in two iterations. We have shown that the design
of an algorithm for the fourth order operator B := A? is a key ingredient for this task.
Therefore, we derive an algorithm for the operator B and then, via the Smith factorization,
we recast it in a new algorithm for the elasticity system.

We consider the following problem : Find ¢ : R? — R such that

-A2¢= f in R?, |¢p(T)| —0 for |x|— o

where f is given right hand side. The domain 2 is decomposed into two halfplanes
2 =R x Rand Qs = R™ x R. Let the interface {0} x R be denoted by I" and (n ;);=1 2
be the outward normal of (€2;);=1,2. The algorithm, we propose, is given as follows:

Algorithm3.1. We choose the initial values ¢{ and ¢9 such that ¢9= ¢3 and A¢? =A¢9
on I'. We obtain (gzﬁ"“)l 1,2 from (¢);=1,2 by the following

iterative procedure:

Correction step. We compute the corrections (qg?“)i:;l,g as the solution of the homoge-
neous local problems

— A2 = 0inQ;,
lzmjxlﬂoldjn—‘rl‘ = O

an =~tonl,
NG+
an; vy onl,
APT APy 1,900¢7 | 9L¢y
where 77 = _’(anll + an22) and7§:—§( on 11 * Tn 22 )-

Udapting step. We update (¢} H)Z 1,2 by solving the local problems

AgItt = finQ,
llm\x|—>0|¢n+1‘ =0,
¢ZL+1 _ ¢n 5n+1 onT
NG = Agr + 65 onT

where 67 T1=1(gn 4 gntY) and s =L (AT + AGETY).

Proposition

Algorithm 3.1. converges in two iterations

Proof.

The equations and the algorithm are linear. it suffices to prove convergence to zero of
the above algorithm when f= 0. We make use of the Fourier transform in the y direction.
First of all, as ¢? = ¢9 and A¢Y= A¢) on T, we obtain the same properties for ¢1 and ¢i.
Then note that at each step of the algorithm ¢} satisfies the homogeneous equation in each
subdomaln

'A¢z — ( xm_kz) (bz =0

For each k € R, is a fourth order ordinary differential equation in x. The solution in
each domain tends to 0 as |x| tends to co. We get

o1 (k) = o (R)el* + 67 (k)zelFl”

¢2 (z, k) = af(k)e IFlz 4 proe—Ikle

From ¢} (0, k)=¢5(0, k) we have af (k) =aj(k)

From A¢l(0, k)= ApL(0,k) we obtain 8} (k) = - (k)

Therefore we can omit, the subscript indicating the number of the subdomain in « and
3. Then , we can compute ~; and 74 used by the correction step

%1: —(|kla' (k) + 5 (k)

2 =2k2p (k)



A direct computation shows that the solutions of the correction step qBZQ, i = 1,2, are
given by :

OR (@, k) = —al (R)el” = 5 (k)zeltl”

d3(2, k) = —al (k)e~Fle — g1 (k)zeIFl»

Inserting this into algorithm 2.1. shows that the right hand side of the boundary condi-
tions are zero. Since we assumed f=0, this shows that ¢7 = 0 for i = 1, 2.

From the fourth order operator -A? to the linear elasticity system.

After having found an optimal algorithm which convergers in two steps for the fourth
order operator -A? problem, we focus on the linear elasticity system . It suffices to replace
the operator -A2 by the linear elasticity system in matrix form and ¢ by the last component
(F(u,v)T)s of the vector F(u,v)? in the boundary conditions. algorithm reads :

Algorithm3.2. We choose the initial values (u},vY)and (u3,v9) such that

(F(uf,00)7)2 = (F(u, v)7)s and A(F(uf,v0)7); = A(F(ud, 08)7) on T. We compute
((uftt w1210 from ((ul',v))i=12 by the following iterative procedure :

Corrrection step. We compute the corrections (@} +!,5/"!));—1 2 as the solution of the

K]
homogeneous local problems

Syt oty = 0in Q;

LGﬂﬂf‘|—>$?|ﬁ n+1| _ 0
F(am® ~n
((a—m')) =47 onT,
~n+1 ~n+1\T

PN — o onT,
where
ni_l(O(F(ul,'ul) )2 8(F(u2,'u2) )2)
=3 om, on2
73:_%(3A(F(g;1;’1ﬂ?) )2+3A(F(g£;v§')T)z)

Updating step. We update ((u; nl 9P +1)),—1 2 by solving the local problems:

[

So(uft vty = fin Q.
Lzm‘x|ﬁoo|u =,
(F(uf o )y = (F(uf, vf) )2 + 67 on T

AF T o™y = AF (ul, v)T)g + 65T onT

K2 ? ’L 1 Y1

o = (PG 5T + (P o))
55t = AP 5 T), + A 5T

This algorithm seems quite complex since it involves third order derivatives of the un-
knowns in the boundary conditions on (F(;, 9;)7)2. Writing (F(1;, 9;)T ) =, it is possible
to simplify it. By using the linear elasicity system in the subdomains, we can lower the de-
gree of the derivatives in the boundary conditions. In order to ease the presentation in
Algorithm3.3. we do not mention that the solutions tend to zero as |T'|— oc.

Algorithm3.3. We choose the initial values (u,v?) and (u3,v9) such that v? = v9 and

Oup _ OU on T Wi te ((ulttprt? f by the followi
o = ang on I We compute (W™ 01 "))i=1,2 from ((ul',v]))i=1,2 by the following
iterative procedure :

Correction step. We compute the corrections (a7, o/

homogeneous local problems :

))i=1,2 as the solution of the

So(a T, o0 = 0in So(un ™, 55T = 0in Qo,
~n+1 n n ~n+4+1 n
T R ST wa ¢ S G G,
ng + U(';y :’Yg’lOnF _%_%:Wllonr
where . .
B=—3% + 5 - 5% - 52)



n+1
4

n+1
)

Updating step. We update ((u] ", v]"""));=1,2 by solving the local problems

So(ultt oty = Fin €y,
uftt =l + (@t + ast)onT

ourtt aurtt gur owp
i _ i — i i n
Oy oz Oy oz + 62»1 onT’
where

~n+1 ~n+1 ~n+1 ~n+1
1 ouy o] Oty - 09,

n
21 = 35y oz dy Dz

Schwarz Overlap Scheme applied to the linear elasticity system

We want to solve
SQ(W) = ?’Lan UQQ

where w = (u,v).
The schwarz algorithm runs like this :
Start from (uf,vY), (u9,v)) we compute w’
So(with) = finy
{ W?Jrl = onaﬂl ﬂQg
and
So(with) = finQy
{ witl = wl, ondQ, N
Here we take 1 and 2 to be rectangle, we apply the algorithm starting from zero.
Figure : The 2 overlapping mesh TH and th

1wt from wi, whas follows
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Figure :Displacement fields during the iterations
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Figure : Final configuration of the beam after convergence
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