Wound Healing



The healing process

Healing in mammals is a complex process
where a series of biomechanical and
biochemical responses occur to close a wound
by cell migration and contraction.

A greater comprehension of the biological
mechanics behind the healing could represent

a benefit for the clinical management of
normal and abnormal wounds.



For our present work we will use the
equations presented by Oster, Murray et al,
and we will expand the work done by Maini et
al for the two dimensional case with a finite
difference approach.



Some definitions

Collagen
Main protein of connective tissue in animals

Extracellular matrix
Part of animal tissue that provides structural support

Fibroblast
Cell that synthesizes ECM matrix and collagen

Growth Factor

Substance capable of stimulating cellular growth, proliferation and
differentiation.
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Healing process

nflammation
Proliferation

Remodeling



Inflammation

A cloth is formed to stop the bleeding and
growth factors are released to attract
inflammatory cells to eliminate debris,
bacteria and damaged tissue.

It usually last 2-3 days after the injury, if its last
too long it can cause tissue damage leading to
a chronic wound.



Proliferation

Fibroblasts start entering the wound site,
endothelial cells from non injured blood vessels
go through the ECM matrix into the wound site

Before they start to migrate they must destroy
the desmosomes, the attachments to other cells
and the ECM matrix.

As the cell front advance new cells are produced
at the wound edge, until the cells meet at the
center of the wound and then stop their
movement



Remodeling

This stage can take up to a year or more, its
purpose is to convert the provisional ECM
matrix into something more like the original
ECM matrix, rearranging collagen fibers.






The equations
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Where,
* p(x,t) is the ECM density
* nis the cell density

* uisthe displacement



* Body forces

F measures the strength of the ECM matrix to the
underlying tissues. Generally the ECM matrix is
attached elastically to the epithelial layer

 Traction forces

Depends on the adhesion between cell surface and
collagen fibers.
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Basal Lamina

* thin mat of extracellular matrix
that separates all epithelial cell
sheets and glands, and many
other cell types (muscle, fat,
Schwann cells), from the
connective tissue.

m

* basement membrane refers to
the light microscopic appearance
of the BL / reticular lamina
beneath epithelia or the 2 fused
BL in glomeruli / alveoli.

BL

E = Epithelial cells
BL = Basal lamina
C = Collagen fibrils
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Assumptions

 For normal tissue we set the cell and the ECM
density to one.

* Fibroelastic cells prolifarate according to a
logistic growth law,

P =rn(l —n)
where r is the linear growth rate and r>0
* Set D>0 a constant.



 The rate of collagen biosynthesis and
degradation are assumed to be proportional

to n and -np.
B =en(1—p)

e Where €is very small in order to introduce
the fact that the ECM remodeling takes more
time than the proliferation of cells.



* The positive parameters g and E quantify the
viscous and elastic contributions.

* We neglect haptotactic contributions



First step

To prove that we have understood the problem
and its details the first thing to do is to
reproduce the results obtained by Maini et al.

We will take the same values of the
parameters used in the article, and recall their
assumptions.



Our Domain




Boundary conditions
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Initial conditions

n(x,0) = H(x — 1),
p(z,0) = pi + (1 — pi)H(z — 1),
u(x,0) = 0.

Where H is the Heaviside functions



To solve the partial differential equations that
describe our problem we will use a finite
difference approximation.

We discretize the system using Euler explicit in
time and central difference for the second
derivative.



We use forward or backward Euler depending
on the direction of the flow.
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Discretized Equations
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From the last equation we get the following
system
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Implementation

For getting the results we will use tha aid of the
Scilab software, and make a program that
succesfully solves the problem.

In this part we first need to construct the matrix
for our linear system, that in this case has the
shape of a tridiagonal matrix. Also we note that
we are dealing with a definite positive matrix.



Our Matrix

/ 2 -1 0 - 0 \
-1 2 -1 :
0 . o 0
-1 2 -1




Once we have the values of the displacement
for the next time step we proceed with the
cell and ECM matrix values.



Results: cell density

n(x.t)
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Results: ECM density

p(x.t)
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Results: Displacement

u(x,t)




Internship conclusions

Luis:

* Scilab

* Programming

* Finite difference



Second step

Now that we have seen that our approach is
good we can proceed to model the two
dimensional case.

The first thing to do in these part is to transform
the equations into 2d equations, thus getting.



2d equations
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We divide the displacement in “¥1and “2for the movement in x
and y direction respectively
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Boundary conditions

n(x,0,t) =n(z,o00,t) = p(x,0,t) = p(x,00,t) =1

872. on _Op _Op,

u(z,0,t) = u(x,00,t) = u(0,y,t) = u(co,y,t) =0



Domain

We assume that the walls of our domain are
normal healthy tissue, so the density of the
ECM matrix and the cells are equal to one. We
neglect the flow coming from the boundary

x=1 to x=NX,

y=1 to y=Ny




For the discretization we will use the same as
for the 1d case. We also need to add one
condition for the flow in the y direction



Flow: x direction
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Flow: y direction
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Discretized Equations
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From the last equation we get the following
systems
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Implementation

Again for these case we will use Scilab to get
the results for our equation, we will only make
some changes to the 1d code to adapt it to the
new conditions.



2d Matrix
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Results

The parameters we use are:
R=0.2
s=1,
p:=0.1
u=1
€=0.01
E=0.01
1=0.1



Cell density




ECM matrix density




Displacement in x

displacement (ul)

0.0770.0
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Colormaps: Change of cell density in time
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M=40, Displacement in x
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E=10, Displacement in x
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