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Abstract

Computational studies of atomic and molecular systems help to give insight into the system’s col-
lective dynamics by modelling their inter-atomic and intra-molecular interactions. This allows the re-
searcher to simultaneously investigate microscopic and macroscopic system properties, isolate single
parameters, and to achieve control over the system that may otherwise be impossible in a laboratory
setting.

For a number of applications, all that is required from computer simulation is the determination
of the Hessian of the potential function for a system in equilibrium. This thesis concentrates on
taking the Hessian of the adaptive intermolecular reactive empirical bond-order (AIREBO) potential
for systems of Carbon atoms. The interaction radius of each term is then analyzed. The resulting
Hessian is then implemented into a C++ computational program that receives an atomic list as input
and outputs the corresponding Hessian matrix with respect to atomic position. In doing so, a number
of discrepancies between the analytical form of the AIREBO potential and its C++ implementation
were discovered.

The Hessian matrix can then be used directly to determine system quantities of interest in
some cases (i.e. configurational temperature). For other system properties, such as vibrational and
mechanical properties, a diagonalization of the Hessian is required in order to determine it’s spectrum.
This provides a number of interesting problems and opportunities for future work.
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Chapter 1

Introduction

For centuries, science has been partitioned and shaped to impose more structure to what was once
a very general concept. Certain areas of science could then be distinguished qualitatively from one
another — theory versus experiment, classical versus quantum regimes, et cetera. The advent of
computers marked a significant disruption by introducing both new fields of science, and investigation
methods.

In their 1957 seminal paper, Alder and Wainwright introduced computer simulations to study
the interactions of hard spheres [2] which led to what is now today the large, interdisciplinary field
of molecular dynamics (MD). This introduction will first characterize and discuss both the aim and
history of MD simulations. The importance of appropriate potential energy functions will be outlined
and the development of the adaptive intermolecular reactive bond-order (AIREBO) potential will then
be discussed. The concept of the Hessian of the potential function as well as insights derived from
this Hessian matrix will be outlined.

1.1. Motivation for MD Computer Simulations

Molecular dynamics considers the building blocks of materials and their interactions in hopes of gain-
ing valuable insight pertaining to the bulk properties. For this reason it can be thought of as a funda-
mental approach to modelling a system. As a direct consequence, MD is a rather unified study of the
general physical properties of a material.

The collective dynamics reached by an ensemble of many particles allows the scientist to
study many physical properties of the overall system. These include structural, mechanical, ther-
modynamic, and transport properties of a system of particles, valid for all states of matter (solid,
liquid, gas). Expanding on this, simulations can be considered as a bridge between microscopic and
macroscopic worlds. By assuming a suitable interaction potential, one can model these microscopic
interactions and dynamics to then obtain exact1 results for the macroscopic physical properties of

1exact in a deterministic sense. Here the output is limited by the quality / suitability of the potential function, spatial and
temporal resolution, and computational strength.
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the system in question. In doing so, the simulation delivers insights into the atomic and molecular
level processes. This type of resolution is often not possible in an experimental setting where intrinsic
limitations are inherent.

Another advantage of simulations rests in the fact that isolating single variables, such as
temperature or pressure, or driving these variables to extremes values can often be impossible or
extremely challenging to obtain in a laboratory setting. Simulations allow total control over these
variables which then enables effective simulations in extreme conditions (vacuum, extremely low tem-
peratures, etc...). Precise control over these variables can also be obtained via thermostating, baro-
stating, or other control techniques and in this way one can isolate specific variables and parameters
of interest.

Additionally, frequently in theoretical formulations of problems analytical solutions may be in-
tractable or may not exist at all (consider non-linear phenomena or the three body problem). This
leads to the necessity of numerical algorithms or simulations to gain approximate solutions and in-
sight. Molecular dynamics and Monte Carlo simulations help to solve these issues within the context
of material science, chemistry, and geology, among other fields.

1.2. Brief Overview of Molecular Dynamics

Together with Monte Carlo (MC) techniques, MD is a cornerstone for the theoretical studies of ma-
terials and chemical properties. In the most basic sense, the classical2 MD method is the solving of
Newton’s classical equations of motion for a collection of atoms in a step-by-step fashion. Newton’s
second law captures the dynamics of a classical system and can be expressed as

mir̈i = fi. (1.2.1)

The force, fi, acting on particle i with mass mi at Euclidean coordinates ri can be expressed
as the negative of the derivative of the potential energy function, V , defined for the system

fi = − ∂

∂ri
V (ri) = −∇iV (ri) (1.2.2)

In combining equations 1.2.1 and 1.2.2 one obtains

mir̈i = −∇iV (ri) (1.2.3)

Equation 1.2.3 can be seen as the governing equation of MD. The integration of this governing
equation then uncovers the position coordinates, ri, of the system. To accomplish this, the system
must be well posed which requires three specific elements. An appropriate potential function must
first be selected to describe the interaction between atoms. Potential functions can vary depending

2Quantum mechanical MD methods exist (so called ab initio methods) and these work with the Schödinger equation and
associated Hamiltionian, however they are not the focus of this thesis.

6



on the types of atomic systems and the type of simulations and its objectives. This idea will be
further explored in section 1.2.2. Secondly, appropriate initial conditions must be stated, and thirdly,
an appropriate numerical integration algorithm must be employed. When these three elements are
well defined and in place, a basic MD algorithm, as depicted in figure 1.1, is executed to obtain the
desired output.

The calculation and subsequent conversion of the microscopic data to macroscopic observ-
ables (temperature, pressure, stress, strain, etc...) requires the application of statistical mechanics.
This is outside the scope of this thesis, but it should be mentioned that the Ergodic hypothesis is the
mechanism for accomplishing this. The hypothesis states that over long periods of time the ensemble
average is equal to the time average, i.e.

〈A〉ensemble = 〈A〉time (1.2.4)

for some observable A.

The quality of a MD simulation largely relies on a suitably chosen potential function to model
the atomic interactions / chemical bonding within the system. Bonding is essentially the movement
and re-arrangement of the electronic structures in the system. Using this idea, atomic systems can
then be subdivided into general groups based on their bonding type.

Metallic systems are envisioned as a sea of free electrons not associated with any one par-
ticular host atom, embedded in a matrix of positively charged cores (nuclei). In ionic bonding, one
atom strongly attracts and effectively steals an electron from the other, and molecules with a structural
charge are created in the process. In covalent bonding, such as in Carbon-Carbon bonds, substan-
tial rearrangements of the electron cloud result in the amalgamation of electrons in between the two
bonding atoms. This results in an overall electrically neutral system. Different classes of potential
functions exist in an effort to properly describe the particular system and it’s bonding properties.

This is a very brief and coarse overview of the MD method but captures its essence. A
compact history of the MD method will be presented before returning to the MD method in more
detail.

1.2.1. History of the MD Method

Computers became available to the general public in the 1950s, and with them, new scientific hori-
zons. Computers allowed scientists to perform calculations much faster than what was possible be-
forehand. One particular scientific field to expose the strengths of computers was statistical mechan-
ics. The beginnings of MD were marked by publications by Alder and Wainwright [2] using computers
for the first time to simulate a system of particles. Since then, the field has expanded and is used in
the disciplines of physics, chemistry, biology, and geology, amongst others.

In its early days, MD was used to discern information about generic families of systems rather
than specific, realistic systems [22]. As most things do, MD grew in complexity with time. Specifically,
different interaction potentials were defined for varying classes of systems. These systems are typi-
cally defined by the bonding types inherent to them, as earlier outlined.
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Figure 1.1: Simplified flow chart for a general MD simulation.
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Certain potentials were defined for organic and biological systems, embedded atom potentials
were defined for metallic systems, and bond-order potentials were created for covalent systems.

Since the MD method involves the integration of the equations of motion of the particles of
the system, it was originally thought that the method could only be applied to systems characterized
by a constant number of particles, constant volume and constant energy — a microcanonical system.
While MD proved to be useful, its flexibility and robustness was a concern as most realistic systems
are not completely isolated.

This problem was addressed by Andersen [8] and Nosé [32] in 1980 and 1984, respectively,
and their development of the MD method for isoenthalpic-isobaric ensembles (constant enthalpy and
pressure — NPH), canonical ensembles (conserved NVT) and isothermal-isobaric ensembles (NPT).
This was made possible through the introduction of an Anderson thermostat and the Anderson baro-
stat. Andersen and Nosé essentially introduced additional degrees of freedom to the system which
was analogous to coupling the system to an external bath.

These advancements demonstrated that MD could achieve much more than the modelling
of fictitious, overidealized isolated systems. Car and Parrinello extended this by the introduction of
fictitious dynamical variables [16] which marked the commencement of ab-initio MD. Prior to this, MD
consisted of either empirical potential functions or semi-empirical potential functions.

Ab-initio methods mark the highest precision models, but come at the price of high compu-
tational cost. These methods use first principles and quantum mechanics to calculate the electronic-
structure of the system in question on the fly [28] and the system is then adapted accordingly. The
computational cost of ab initio simulations limit the size of the physical systems that can be consid-
ered.

In an empirical potential function, one assumes a functional form for the potential and then
the associated parameters are selected in an effort to reproduce sets of experimental data. Analytic,
semi-empirical functional potentials are derived from quantum-mechanics to produce different approx-
imations to electronic wave functions for systems of particles. In both empirical and semi-empirical
methods, the potential is predefined and is static over the simulation.

All three of these methods have since been advanced and remain prevalent in a number of
scientific fields today.

1.2.2. Molecular Interactions and Interatomic Potentials

The molecular interactions are captured in the potential energy function, V (rNi ), where rNi = (r1, r2, . . . , rN )

is an N-dimensional vector of the atomic positions.

In empirical and semi-empircal models, the importance of the potential function cannot be
overstated. Once this is prescribed, the dynamics of the system are totally deterministic and the
accuracy is directly dependent on the selected function. In this section we will construct a potential
function under an atomic description. A general potential function is composed of two terms, namely
a non-bonded interaction term and a bonded interaction term.
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V (rNi ) = Vnon−bonded(r
N
i ) + Vbonded(r

N
i ) (1.2.5)

Non-Bonded Interactions

The non-bonded interactions aim to model the interactions between non-bonded atoms. Generally,
this is expressed as an infinite sum with the terms modelling 1-body, 2-body, 3-body interactions and
so on.

Vnon−bonded(r
N ) =

∑
i

u(ri) +
∑
i

∑
j>i

v(ri, rj) +
∑
i

∑
j>i

∑
k 6=i,j

w(ri, rj , rk) + · · · (1.2.6)

The first term in equation 1.2.6 models external energies, either externally applied fields or
interactions with the boundaries. In most cases this term is dropped for periodic simulations of bulk
materials, i.e. u(ri) = 0. The three-body term and subsequent higher order terms are typically
neglected as well, and the non-bonded potential typically reduces to pair potentials

Vnon−bonded(r
N ) =

∑
i

∑
j>i

v(ri, rj) =
∑
i

∑
j>i

v(rij) (1.2.7)

where rij is the Euclidean distance between atoms i and j.

These two body, non-bonded potentials can be modelled empirically or theoretically [26] [36].
The proper modelling of non-bonded (long-range) potentials and thus forces in the molecular or atomic
system is of clear importance. An example where this type of bonding is sufficient to describe the
system’s dynamics is the modelling of nobel gases wherein bonding does not take place.

Bonded Interactions

The use of non-bonded potentials can successfully model physical processes, however it lacks in
properly capturing chemical reactions [37]. It is well understood that chemical reactions are a product
of bonding, and bonding is essentially the electronic interaction between atoms of interest. As such,
quantum mechanics is the proper formulation to go about modelling bonding interactions. This leads
to first principle methods that are computationally intensive and thus the applications are limited.
However, covalent bonding can effectively3 be modelled with classical potentials.

The most basic form of a potential describing intramolecular bonding interactions, Vim, has
the form [3]

3of course, approximations are made. The art is in making smart approximations.
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VIM =
1

2

∑
i

∑
j

λrij(rij − reqb)2

+
1

2

∑
i

∑
j

∑
k

λθijk(θijk − θeqb)2

+
1

2

∑
i

∑
j

∑
k

∑
l

∑
m

λω,mijkl (1 + cos(mωijkl − γm))2

(1.2.8)

where i, j, k, and l all represent atom indices, and rij is the Euclidean distance between
atoms i and j. The bond angle, θ, and the torsion angle, ω, are explicitly represented in equations
1.2.9 and 1.2.10, respectively and are illustrated in figure 1.2 4. The set of λ’s are scalars determining
the relative magnitude of each term.

cos(θijk) =
rij · rjk
|rij · rjk|

(1.2.9)

cos(ωijkl) =
rij · rjk
|rij · rjk|

· rjk · rkl
|rjk · rkl|

(1.2.10)

In the first term of equation 1.2.8 a harmonic form is assumed with given equilibrium distance
reqb. Additionally, the bond angles are taken to be quadratic with respect to the angular displacement
between the actual bond angle and the equilibrium bond angle, θeqb. In the general case, the potential
due to the torsion angle terms is expressed as an mth-order expansion of periodic functions.

Figure 1.2: An arbitrary molecule showing the bond length rij , the bond angle θjkl and the torsion
angle ωijkl.

Any given potential function will explicitly define the exact form of equation 1.2.8 and the rele-

4This figure was adapted from an image found in [3].
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vant constants. More modern, complex potentials will additionally include cross terms and potentially
weighting functions in an effort to capture the complete essence of the problem.

1.3. Popular Interaction Potentials

Over the years, many adjustments and improvements have been made to the general MD method
as presented in figure 1.1. Noteworthy among these are the Verlet algorithm and Verlet list [43]
to accelerate the process by only considering interactions with atoms on a specified list indicating
nearest neighbours. Additionally, the introduction of periodic boundary conditions and the minimum-
image convention to efficiently simulate infinite systems made large-scale simulations tractable.

Independent of the algorithm used, the success and accuracy of MD simulations is primarily
dependent on the choice of the interaction potential. A large number of potentials exist, all with their
respective strengths and weaknesses. As earlier outlined, many of these potentials can be partitioned
into bonding (inter-atomic) or non-bonding (intra-molecular) interaction potentials. A general hierarchy
of these potentials is shown in figure 1.3 [27]. A very brief overview of some popular interaction po-
tentials will be given, and then a more detailed introduction to both the REBO and AIREBO potentials
will be presented.

Figure 1.3: A general hierarchy and compartmentalization of potential energy functions used in MD.

1.3.1. Inter-atomic Potentials

Pair potentials model the van der Waals interactions between a pair of atoms. They contain a re-
pulsive element as a direct result from the Pauli exclusion principle, and an attractive element that
dominates at long distances due to London dispersion forces. An example of a pair potential is the
Lennard-Jones (LJ) potential (sometimes referred to as the 12-6 potential) which models the interac-
tions between a pair of neutral atoms or molecules. The LJ potential is controlled by two parameters
controlling the depth of the potential well and the finite distance at which the potential is zero. The
attractive term can be derived theoretically using physical arguments whereas the repulsive term has
no such rigorous backbone, but is used to approximate the repulsion and is computationally conve-
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nient due to it being the square of the attractive potential. For these three reasons, the LJ potential is
commonly used in MD simulations.

If electrostatic charges are present, then the Coulomb potential is typically used to model the
interactions. Finally, in the inter-atomic regime, embedded atom models (EAM) are used to model
metallic systems [17].

1.3.2. Intra-molecular Potentials

As discussed in section 1.2.2 and shown in figure 1.3, intra-molecular interactions model the covalent
bonding of systems and can be broken down into bond, angle, and torsion terms. Bond stretching
models, such as the Morse bond potential [29] model the bonding interaction as an approximation to
a harmonic well. Most intra-molecular potentials used in MD simulations include all of these terms
(with the exception of the rarely used out-of-plane term) into one funcational form.

The MM3 and MM4 force-fields [6] [4] [5] [7] [30] [31] are used for modelling organic com-
pounds . The Assisted Model Building with Energy Refinement (AMBER) [44] force field is commonly
used for simulating the molecular dynamics of biomolecules. Additionally, the CHARMM [15] force
fields are used in simulations of proteins, DNA, RNA, and lipids, and polymers.

1.3.3. Reactive Potentials

At the interface of intra-molecular and inter-atomic potentials are the reactive potentials. These po-
tentials model chemical reactions via bond formation and disassociation. These potentials include the
Tersoff potential [39], as well as the REBO and AIREBO potentials, and are discussed in the following
subsections in more detail.

1.3.4. REBO Potential — A Qualitative Approach

Independent of the algorithm used, the success and accuracy of MD simulations is primarily depen-
dent on the choice of the interaction potential that best suits the specific requirements and demands
of the problem at hand. A large number of potentials exist, all with their strengths and weaknesses.

In 1990, Donald W. Brenner proposed an empirical potential for hydrocarbons [12] to effec-
tively model chemical vapour deposition of diamond films – a short ranged potential allowing for quick
numerical evaluations. The inspiration of this potential was to effectively model the essential features
of the intra-molecular energies and bonding in essential hydrocarbon materials, and to allow bond
breaking and forming (chemistry).

Brenner’s work was based on a number of works before it. Abell first characterized and
derived a general expression for the binding energy (Eb) of atoms i and j as

Eb =
∑
i

∑
j<i

(
VR(rij) + bijVA(rij)

)
. (1.3.1)

13



Qualitatively, the binding energy here is expressed simply as the sum of two-term repulsive
potentials, VR, and attractive potentials, VA. The complexity of Abell’s general expression is hidden
in the bond-order term, bij , which dictates how likely a bond between the two atoms in question is to
form. Abell showed that the bond was proportional to the inverse square root of the local coordination
number, Nij [1]. What Abell did was show that the binding energy could be effectively represented
as a sum over nearest neighbours which allowed other terms to be neglected resulting in a drastic
increase in computational speed.

Tersoff [38] [39] took this idea and developed an analytic, parametrized expression for the
bond-order term. This form successfully modelled systems with the formation and dissociation of
covalent chemical bonds, and in particular bonding of group IV elements in both ambient and high-
pressure phases, as well as solid-state and surface defect energies [40]. The general Tersoff bond-
order term5, bTij , is a many-body coupling between the bond from atom i to atom j and the local
environment of atom i. It is a decreasing function of coordination, Gij , assigned to that particular
bond — that is bTij = bTij(Gij) with Tersoff defining G to take the form

Gij =
∑
k

fc(rik)g(θjik)f(rij − rik) (1.3.2)

where the functions fc, g, and f are suitable functions to be fit to relevant data. The intuition
is that the i− j bond will be weakened in the presence of other bonds containing atom i. Notice that
Tersoff’s bond-order term is both a function of the local coordination number and the bond-angles. The
bond-angles are introduced to stabilize open lattices from distortion due to shearing effects, and also
helps to model elastic properties and defect energies [39]. Tersoff’s approach allows individual atoms
to not be constrained to be attached to particular neighbours or to stay in a specific hybridization
state or coordination number. This approach, albeit classical in nature, is quite effective in modelling
inherently quantum (binding) processes.

Although Tersoff’s efforts effectively described single, double, and triple bond energies in
Carbon structures, Brenner pointed out that this formulation introduces non-physical behaviour when
certain radical effects are introduced as well as when conjugated and non-conjugated double bonds
are examined [12] [13]. In an effort to account for these situations, Brenner expressed the bond-order
term as

bBij =
1

2

(
bTij + bTji

)
+

1

2
Fij

(
Ni, Nj , N

conj
ij

)
. (1.3.3)

The correcting function, Fij , is a third order spline and adjusts the bond-order term to better
model the overbinding of radicals for bonds between pairs of atoms that have different coordinations.
Additionally, non-local effects can also be incorporated to a first approximation into this correcting
function to account for conjugated versus non-conjugated bonding [12]. This reactive empirical bond-
order (REBO) potential is then given a large set of experimental data from intelligently designed
hydrocarbon reactions and is subsequently put through rigorous fitting procedures.

5Superscript T for Tersoff
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Although the REBO potential was initially created to model covalent bonding interactions in
hydrocarbon systems, and in particular to simulate the chemical vapour disposition of diamond, it has
since been extended for use in other areas. This robust potential is now used to model the energetic,
elastic, and vibrational properties of carbon and small hydrocarbon structures such as fullerenes [14]
and carbon nanotubes [21].

Empirical potentials are typically designed for specific sets of chemical groups and experi-
mental setups, and as a result fail to be general. The REBO potential is no exception, as it only has
bonded-interaction terms and therefore lacks modelling non-bonded interactions. As such, the REBO
potential fails to properly model dispersion and non-bonded repulsion in systems with non-negligible
intermolecular interactions. This is a large class of materials, namely graphene, graphite, fullerenes,
and interfacial systems [18] all of which benefit from terms modelling the non-bonded interactions.

Another factor limiting the application scope of the REBO potential is its lack of torsional term,
which is considered a basic component of bonded interactions (see equation 1.2.8) and provides a
penalty for rotation about single bonds.

1.3.5. AIREBO Potential — A Qualitative Approach

Stuart et al. proposed a new, adaptive intermolecular REBO potential (AIREBO) to overcome these
shortcomings of Brenner’s REBO potential [37]. The challenge is to allow this new potential to main-
tain the accuracy with regards to the reactive capabilities, while adding new functionality for non-
bonded interactions and torsional events in hyrdrocarbons. As stated in [37], “This new potential has
been developed for use in simulating reactivity in condensed-phase systems where the REBO poten-
tial cannot be used, and can in principle be used for arbitrary hydrocarbon systems. But the primary
goal is to make progress towards a fully reactive intermolecular potential, rather than to supplant the
many existing potentials for modelling nonreactive hydrocarbons.”.

The overall approach is to effectively combine three separate potential functions, namely
the REBO potential, the Lennard-Jones (LJ) potential, and a Torsional potential. The LJ potential
acts to incorporate non-bonded interactions while the torsional potential acts to incorporate torsional
effects in the system, both of which effects are not properly handled in the REBO formulation. Doing
so is not as simply as simply adding three potentials together. Stuart et al. implement a strategy
involving adaptively changing the relative weight of each term for each individual two-term interaction.
A complete, concise mathematical description of the AIREBO potential is postponed until chapter 3.

1.4. Aim of Thesis Work

The aim of this thesis is straightforward and can be summarized in two, separate sections:

• to derive an analytic expression for the second derivative (Hessian) of the AIREBO potential
with respect to its Euclidean coordinates, considering an atomic system composed entirely of
Carbon atoms;
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• to efficiently implement this analytic expression computationally using the C++ language.

1.5. Applications

A brief overview of intended applications of this work is now presented to give motivation of this
proposed work.

1.5.1. Probing Graphene Defects

There exist numerous ways to probe a material to gain insight relating to its structure and properties.
One general way to do this is to impinge a material with a monochromatic electromagnetic source and
observe the resulting measured spectrum. Like any light-matter interaction, this impingement leads
to scattering effects. Raman scattering occurs when the scattering is predominantly inelastic wherein
energy is exchanged between the two systems and occurs when the impinging light couples with the
vibrational, rotational, or other low-frequency modes in the material.

The direct interaction with the molecular vibrations, phonons, or other inherent material excita-
tions, leads to an energy exchange and thus a red or blue-shift in the resulting spectrum. Subtracting
the source spectrum from the resulting spectrum results in a series of peaks or troughs, correspond-
ing to frequencies / modes where the two systems interacted. Further analysis produces a fingerprint
of the molecule or material under consideration.

Graphene has recently been heralded for its novel properties and is currently an area of
high impact research. While the physical properties of an ideal sheet of graphene can be analytically
expressed, it is essentially impossible to produce such a pristine sheet in practice. Naturally, graphene
structures produced in laboratories will be host to many defects and impurities. These imperfections
can in theory alter the physical properties from those of an ideal sheet which can either make the
specimen better or worse suited for a particular application domain. By understanding the effects of
certain defects and impurities, graphene could be effectively probed to fully characterize its properties,
or could be engineered with a specific combination of defects to tune it for certain applications.

Raman spectroscopy has been used to probe disorder in graphene via defect-activated peaks
in its Raman Spectra [19]. In this same work, graphene samples are manipulated in a variety of
ways to introduce specific defects. For instance, sp3-defects were introduced by fluorination and mild
oxidation, and vancancy-like defects were introduced by Ar+ bombardment. The idea is to introduce
specific, predictable defects in the graphene sheet and measure the resulting Raman spectra. By
doing this, a catalogue of defects and their corresponding Raman spectral peaks can be created and
used in the future to probe an arbitrary sheet of graphene.

An unavoidable weakness in this approach is that it relies on the creation of the desired
defects. If the intended defect is defect A, and the result is defect B, a qualitatively and quantita-
tively different defect, then defect B’s spectral properties will be catalogued as defect A’s. This is
inherently unavoidable in this style of experimental set-up wherein you experimentally introduce the
phenomenon you are in turn measuring.
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This thesis proposes an alternate methodology. By computationally constructing a graphene
layer with specified and exact defects, one can then solve for the minimal energy configuration and
subsequently set up the corresponding eigenvalue problem (see section 2.1.3, specifically equation
2.1.5 for details). The system’s normal modes can then be computed and from this it is possible to
directly calculate its spectral properties. This methodology ensures you probed the intended defect.
The weakness, however, lies in the approximation of the underlying potential function. This results in
a quicker, cheaper path to probing graphene defects which can be made arbitrarily accurate given a
suitable potential. In addition, this can be done in theory for any types or combinations of defects so
long as a minimal energy configuration exists. This allows scientists to uncover spectral properties of
defects difficult to predictably produce in the laboratory.

1.5.2. Configurational Temperatures and Thermostats

As earlier discussed, the introduction of thermostating to MD simulations was a hallmark and turning
point for the field. In a classical equilibrium ensemble of particles, temperature is typically defined
as the particle’s mean kinetic energy, and is thus formulated through particle momenta. In fact,
kinetic thermostats are applied to center-of-mass momenta, but in dealing with molecules having
many degrees of freedom, thermostating three of them may be insufficient [11].

Until the past decade, thermostating was implemented to control the kinetic temperature.
However, alternatives to the kinetic temperature, and the ideal-gas thermometer controlling this kinetic
temperature, exist. A thermodynamic temperature can also be defined through the relation

1

T
=

(
∂S

∂E

)∣∣∣∣∣
V

(1.5.1)

where S is the entropy, E is the internal energy and V is the system volume. Rugh [35]
and Jepps et al. [23] have proved that at thermodynamic equilibrium several different versions of
the thermodynamic temperature were equivalent to the kinetic temperature. Some of these versions
express temperature as the configurational temperature — that is, the temperature depends exclu-
sively on the position coordinates of the atoms. Configurational temperatures and thermodynamic
temperatures are very useful in nonequilibrium statistical mechanics [11].

Several configurational temperature definitions exist and the derivations are quite involved.
One such configurational temperature is given as

kBTconf =

〈∑N
i=1

(
∂V
∂ri

)2
〉

〈∑N
i=1

∂2V
∂r2i

〉 (1.5.2)

where KB is the Boltzmann constant and Tconf is the configurational temperature. Notice
this term only depends on the first and second derivatives of the potential function with respect to
the position coordinates. Both terms can be pulled directly from the Hessian computation. In fact,
if the configurational temperature is all that is desired, the computation time for the Hessian can be
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drastically reduced owing to the fact that only the diagonal terms are required.

From this defintion of configurational temperature, Braga and Travis derive a Nosé-Hoover
thermostat. The code developed in this thesis could then be quickly adapted to output the required
variables and could then be supplemented with the thermostating to control the temperature of large
Carbon systems, both at and away from thermodynamic equilibrium.

1.5.3. Measuring Mechanical Properties

There have been several models of bulk melting proposed in the past, namely those of Lindemann
[42] and Born [10]. There have been no experimental results vallidating any one of these theories,
however [24]. MD simulations are used to gain further insight on the phenomena of melting. Kanigel
et al. showed that for NtT and NV T ensembles, the system’s elastic constants can be calculated
using fluctuation formulas derived by Ray and Rahman [34]. The computationally challenging aspect
of this approach involves the evaluation of the Born term. This Born term contains first and second
spatial derivatives of the potential energy function.

Thus the correct and efficient implementation of the first and second spatial derivatives of the
potential energy function could lead to calculation of elastic constants, and later to the evaluation and
simulation of phase transitions for Carbon structures.

1.5.4. Further Applications

Apart from the aforementioned applications, knowledge of the Hessian is of essential importance in
other, broad fields. In optimization and searching algorithms, the evaluation of the Hessian matrix is
essential for confirming the characteristics at or near a critical point. This is used two-fold,

1. For global search and energy minimization algorithms for geometrically optimized atomic net-
works. This, for example, is used within the context of finding new allotropes. Specific to Carbon,
these hypothetical allotropes are graphyne [9], supergraphene [20], and squarographite [25],
among others.

2. In determining the reaction paths and transition states of chemical reactions. Such a situation
can be thought of as chemicals existing on a high dimensional energy hypersurface. If a reaction
is to occur between molecules, it is energetically favourable for this to occur at the transition
state, or in mathematical terms, the saddle point of this hypersurface. The difference in energy
between the initial configuration and the saddle point configuration is the binding energy of
the reaction. When simulating such events, one method is the steepest descent, or conjugate
gradient method to locate the local energy minimum. Once the atomic system’s geometry is
in this specific configuration, the Hessian must be calculated and its eigenvalues investigated.
If the calculated geometry is in fact an energy minimum, then there should be one negative
eigenvalue representing the reaction coordinate. Thus again, the Hessian must be calculated
for these purposes.
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3. Second order optimization algorithms often require use of the Hessian matrix. This would allow
such algorithms, i.e. Newton’s algorithm, to be employed for systems modelled by the AIREBO
potential.
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Chapter 2

Preliminary Material and
Methodology

2.1. Preliminary Material

This section briefly outlines required preliminary material and nomenclature. It also serves to give a
more detailed description of normal modes and their importance in the domain of molecular dynamics.

2.1.1. The Hessian Matrix

Molecular systems are usually expressed in one of two coordinate systems. The first being the Eu-
clidean system where in a system of N atoms there are then 3N degrees of freedom. Molecular
systems are also often expressed in terms of internal coordinates (Z-Matrix is also used in the nomen-
clature) wherein coordinate descriptions are made relative to one another using interatomic distances,
bond angles and torsion angles as intrinsic coordinates.

In the absence of an external field, the molecular system’s energy does not depend on its
particular orientation in space, thus you lose the 3 translational degrees of freedom. Similarly, the
system does not depend on it’s center of mass which drops the 3 rotational degrees of freedom (2 for
linear molecules). This lack of an external field results in the total reduction of the degrees of freedom
from 3N to 3N − 6 (3N − 5 for linear molecules) which can be thought of as the system’s vibrational
degrees of freedom. This thesis exclusively uses Euclidean coordinates, although transformations to
and from coordinate systems exist.

The Hessian of such a system is defined to be the matrix of second derivatives of the potential
energy function with respect to the Euclidean coordinates. This is then the 3N × 3N matrix with
elements

∂2V

∂upi∂uqj
(2.1.1)
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where p and q are atom indices and i, j ∈ {x, y, z} are specific directions. With atomic
configurations such as graphene, the modelled systems may have on the order of 1000 atoms. In
such a system the Hessian matrix would have on the order of 10 million elements. This introduces
many problems, namely computational time and memory required to store such a system.

These problems, however, are mitigated for two main reasons. Firstly, if continuity of the
partial derivatives is assumed, Hessian matrices are inherently symmetric — removing the need to
compute and store nearly half the variables. Secondly, potential energy functions, and the AIREBO
potential in particular, are characterized by cutoff radii. As such, the Hessian will be highly sparse. If
proper methods and precautions are used in the numerical implementation one can forego calculating
and storing many of the elements.

2.1.2. Notational Remarks

The degrees of freedom for our system are represented by the Euclidean coordinates of the N atoms,
resulting in a set, A, with 3N elements

A = {u1x , u1y , u1z , u2x , u2y , u2z , . . . , uNx , uNy , uNz}. (2.1.2)

The above notation, albeit in some cases clear, is somewhat cumbersome. A more natural
notation is introduced here as

A′ = {u1, u2, u3, . . . , u3N}. (2.1.3)

In following sections, A′ will be indexed with the indices α = 3p + i ∈ {1, 2, 3, · · · , 3N} and
β = 3q + j ∈ {1, 2, 3, · · · , 3N}. Note that A and A′ are related via a trivial isomorphism and are thus
equivalent — all we have done is a relabelling of elements.

2.1.3. Normal Modes

In the context of molecular and atomic systems, the potential energy function represents an energy
hyper-surface directing the movement of atoms and thus charting possible chemical reaction paths.

Intuitively, this is done by Taylor expanding the potential energy function in terms of the mass-
weighted coordinates, uα =

√
mα∆xα. The systems handled in this thesis will strictly be composed

of Carbon atoms and thus the mass can be considered to be unity, and as a result the position
coordinates, uα will only be of interest.

If the atomic configuration is in an energy minimum the first order term is identically zero and
if the expansion is cut off at the quadratic term the Taylor expansion yields
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V =
1

2

N∑
p,q=1

3∑
i,j=1

∂2V

∂upi∂uqj

∣∣∣∣∣∣
E

upiuqj (2.1.4)

where the second derivative is evaluated at the equilibrium configuration, E .

The result is that the energy hypersurface is represented by a high-dimensional parabola
characterized by the second derivatives evaluated at the energy minimum. However, in a realistic
system at non-zero temperatures, the energy hypersurface is characterized by many local energy
minima with reaction paths traversing through saddle points of various heights from one minimum to
a neighbouring one.

If the second derivatives of equation 2.1.4 are expressed in terms of their Hessian, H, then
by casting it as an eigenvalue problem one can calculate the eigenvectors, wα, and associated eigen-
values, ω2

α.

Hwα = ω2
αwα (2.1.5)

Solving this system of 3N equations equates to solving its secular determinant

∣∣∣∣∣∣∣∣∣∣∣

H1,1 − ω2 H1,2 H1,3 . . . H1,3N

H2,1 H2,2 − ω2 H2,3 . . . H2,3N

...
...

...
. . .

...
H3N,1 H3N,2 H3N,3 . . . H3N,3N − ω2

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.1.6)

Solving equation 2.1.6 for each eigenvalue is akin to matrix diagonalization. This is a highly
non-trivial task, but the symmetric and sparse nature of the matrix H allows for certain numerical
packages and techniques to be implemented making the diagonalization more tractable. Once the
eigenvalues, ω2

β , are calculated, the corresponding eigenvectors, wβ , are easily calculated which then
allows the motion of atom α for the given eigenvalue to be evaluated as

uαβ = wαβ cos(ωβt+ φβ) (2.1.7)

due to the harmonic nature of the problem, where φβ is a phase term. We can now define a new set
of coordinates using these normal modes.

ξβ =

3N∑
α=1

wαβuα (2.1.8)

This gives the “Normal Coordinates” of the system. By the finite-dimensional spectral theo-
rem, a real and symmetric matrix H can be diagonalized by an orthogonal matrix. Furthermore, it is
characterized by an orthonormal basis (set of eigenvectors).

Physically, the eigenvectors are the normal modes of vibration vibrating at the frequency
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specified by its associated eigenvalue. Due to the orthonormality of the eigenvectors, the normal
mode coordinates oscillate harmonically and independently (as one would expect by the naming
convention) with angular frequency ωβ .

Equivalently, the entire movement of an atomic system can be expressed as a linear com-
bination of normal mode vibrations. That is, atomic systems vibrate in certain ways specified by
their eigenvectors at frequencies proportional to the corresponding eigenvalue. These normal mode
coordinates are linear combinations of the atom-based Cartesian coordinates and thus the entire
mechanical system can be thought of as complex vibrations of the Cartesian coordinates.

2.2. Thesis Methodology

2.2.1. Order of Operations

As briefly outlined in section 1.3.5, the AIREBO potential is a sum of the REBO potential, the LJ
potential, and a torsional potential.

E = EREBO + ELJ + Etors. (2.2.1)

This thesis will present the analytical form of the 2nd derivative of the AIREBO potential for
Carbon only systems. That is, symbolically:

∂2

∂up∂uq
E =

∂2

∂up∂uq
EREBO +

∂2

∂up∂uq
ELJ +

∂2

∂up∂uq
Etors. (2.2.2)

This can and will alternatively be represented in more compact notation as

E
′† = EREBO

′†
+ ELJ

′†
+ Etors

′†
. (2.2.3)

where both the ′ and † superscripts denote derivatives and will be explained in the following
subsection.

A detailed description of the all three involved potentials will be given, and their first and
second derivatives will all thoroughly be analytically calculated. Since the three potential functions
are independent, they will be handled completely separately. The order of such presentation is found
in table 2.1.

2.2.2. Mathematical Formulation and Notation

The derivation in later chapters is lengthy and as a result many abbreviations and notations will be
used. This subsection serves to provide these, as well as the mathematical framework.
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Table 2.1: The order of presentation

EREBO ELJ Etors

Energy Term 1 4 7
1st Derivative 2 5 8
2nd Derivative 3 6 9

We begin by considering a system of N Carbon atoms all interacting through the AIREBO
potential. Ths potential has two-term, three-term, and four-term interactions. As such, we must
define the atoms used in the notation. The atoms, indexed by i, j, k, l, will always be considered in
the order of

atom i→ atom j → atom k → atom l

That is, atom k is only considered in three and four term interactions, and atom l is only
considered in four term interactions.

Since we are interested in the Hessian of the AIREBO potential, this will of course involve
single and double derivatives. We must first get an intuitive understanding of what a derivative is
within this Euclidean framework.

Consider the interaction between atoms i and j, separated by the distance rij . In theory, this
interatomic distance can change if there is a small perturbation to the local position of any one of the
N atoms. Consider a small perturbation of atom q. Then the associated derivative is ∂

∂uq
rij .

This, however, must be refined even further. We will be working inside the Euclidean frame-
work, so the position of atom q, uq, actually has three components, namely uqα with α ∈ {x, y, z}. It
will be far too cumbersome and redundant to apply this notation throughout the entire text so for the
remaining sections the α notation will be suppressed. That is everything will be a three dimensional
vector with Euclidean components.

As mentioned, derivatives can be thought of the effect of perturbations of atomic positions.
The second derivative is taken by applying a second perturbation to any of the N atoms. This is
conceptually trivial.

The cornerstone of this paper will be taking the derivatives of the distance vector rij . As such,
a thorough derivation is now presented, beginning with the definition of rij .

rij :=
√

(ujx − uix)2 + (ujy − uiy )2 + (ujz − uiz )2 (2.2.4)

All derivatives will be with respect to the position coordinate of an atom, uq. As such, regard-
less of the variable in question, there will always be a ∂

∂uq
rij term present in single derivatives and a

∂2

∂up∂uq
rij term present in double derivatives.

These derivatives will be presented here in their complete form. We begin by noting
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∂

∂uq
rij = 0 ∀ q /∈ {i, j} (2.2.5)

We will now calculate ∂
∂uix

rij by coordinate.

∂

∂uix
rij =

1

2
√

(ujx − uix)2 + (ujy − uiy )2 + (ujz − uiz )2
· 2(ujx − uix) · (−1) =

−1

rij
(ujx − uix) (2.2.6)

Likewise,

∂

∂uiy
rij =

−1

rij
(ujy − uiy ) (2.2.7)

∂

∂uiz
rij =

−1

rij
(ujz − uiz ) (2.2.8)

Note that by symmetry we have ∂
∂uj

rij = − ∂
∂ui

rij . Generalizing, then, we find

∂

∂uq
rij = δjq

uj − ui
rij

− δiq
uj − ui
rij

(2.2.9)

where δ is the Kronecker delta function.

The double derivative is calculated as follows:

∂2

∂up∂uq
rij = δjq

[
∂

∂up

uj − ui
rij

]
− δiq

[
∂

∂up

uj − ui
rij

]
(2.2.10)

where

∂

∂up

uj − ui
rij

=

(
δjp − δip

)
· rij −

(
uj − ui

)
· ∂
∂up

(rip)

r2
ij

=

(
δjp − δip

)
· rij −

(
uj − ui

) [
δjp

uj−ui
rij
− δip uj−uirij

]
r2
ij

(2.2.11)

So
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∂2

∂up∂uq
rij =

(
δjq − δiq

)

(
δjp − δip

)
· rij −

(
uj − ui

) [(
δjp − δip

) (uj−ui
rij

)]
r2
ij

 (2.2.12)

∂2

∂up∂uq
rij =

(
δjq − δiq

)
·
(
δjp − δip

)
·

r2
ij −

(
uj − ui

)2
r3
ij

 (2.2.13)

Since ∂
∂uq

rij ,
∂
∂up

rij and ∂2

∂up∂uq
rij will appear in many terms, we introduce the following no-

tation that will be used throughout the entire document.

∂

∂uq
rij := r′ij

∂

∂up
rij := r†ij

∂2

∂up∂uq
rij := r

′†
ij

(2.2.14)

Of course, most functions do not depend explicitly on position variables. It is worthwhile to
now look at the following examples in to taking derivatives of functions that depend only implicitly on
position coordinates.

Consider taking the derivative of a general function f :

f ′
(
(g(rij), h(rij)

)
≡ ∂

∂uq
f(g(rij), h(rij)) =

∂

∂g(rij)
f(g(rij), h(rij)) ·

∂

∂uq
g(rij)

+
∂

∂h(rij)
f(g(rij), h(rij)) ·

∂

∂uq
h(rij)

(2.2.15)

One last thing that is very important to mention and easy to overlook is the following fact.
Consider taking the second derivative of the function f(g(rij)). Immediately, one may think the result
is

∂2

∂up∂uq
f(g(rij)) =

∂2f(g(rij))

∂2g(rij)
· ∂

2g(rij)

∂up∂uq

This is incorrect. Recall we do the first derivative in its entirety, and then take the second
derivative to that result.
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∂2

∂up∂uq
f(g(rij)) =

∂

∂up

[
∂f(g(rij))

∂g(rij)
· ∂g(rij)

∂uq

]

=
∂2f(g(rij))

∂2g(rij)
· ∂g(rij)

∂uq
· ∂g(rij)

∂up
+
∂f(g(rij))

∂g(rij)
· ∂

2g(rij)

∂up∂uq

=: f
′†(g(rij))

(2.2.16)

The derivatives taken in the remainder of the paper will be of this form. One may think it is
misleading to hide all this information inside the notation of f

′†(g(rij)). This would be understandable
if other operators were to operate on this, but since no higher derivatives are taken, it is safe to keep
the information in this compact form – mind you it is very important not to forget that this simple
notation has more complex information behind it.

The primary focus of chapter 3 is to present the derivation of the Hessian in a symbolic and
algebraic form. Due to the nature of the AIREBO potential having many terms, this will be presented
in many smaller parts. Once the second derivatives of all individual parts are calculated, chapter 4
provides an overall summary as well as analysis on the individual terms’ interaction radii.
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Chapter 3

Calculations

3.1. REBO Potential for Carbon Only Systems

This will be a detailed mathematical treatment of the REBO potential. For further descriptions and
motivation for the individual terms, consult [37]. We will present the REBO potential piece by piece.
Recall the AIREBO potential is constructed for hydrocarbons, whereas the aim of this thesis is to
present it’s Hessian for Carbon systems. As such, the original AIREBO potential will be presented,
but proper adjustments will immediately be made removing all Hydrogen dependencies.

In general, the REBO potential for interacting atoms i and j is given by

EREBOij = V Rij + bijV
A
ij (3.1.1)

We will investigate equation 3.1.1 in three separate parts, namely

• repulsive potential, V R;

• bond order term, bij ;

• attractive potential, V A.

3.1.1. Repulsive Term

The repulsive term is represented by

V Rij = wij(rij)

[
1 +

Qij
rij

]
Aije

−αijrij (3.1.2)

where the constants Q,A, and α depend on the atom types of atoms i and j, and w is the
bond weighting factor
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wij(rij) = Ss
(
tc(rij)

)
. (3.1.3)

This shuts off (i.e. is 0) when distances exceed typical bonding distances. This switching
function, Ss (with the subscript s representing sinusoidal), is described by

Ss(t) = Θ(−t) + Θ(t)Θ(1− t)1

2

[
1 + cos(πt)

]
(3.1.4)

where Θ(t) is the Heaviside function. In our case the variable within the switch function is

tc(rij) =
rij − rminij

rmaxij − rminij

(3.1.5)

where rmaxij and rminij are parameters defining the switching region. These parameters, along
with all future ones, will not be explicitly given as they do not pertain to this thesis. The interested
reader can consult [37] for numerical values.

The weight function presented in equation 3.1.3 are used ubiquitously in the AIREBO potential
to adaptively set the weights for a number of functions and so a thorough understanding of them is
essential. Equation 3.1.3 is plotted in figure 3.1 with parameters rmaxij = 1.0 and rminij = 4.0.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

wij(rij)

rij

Figure 3.1: Weight function with rminij = 1.0 and rmaxij = 4.0.

From further analysis we see that wij(rij) is nonzero only on the interval of rij ∈ [0, rmax].
This concludes the repulsive term definition for general hydrocarbon systems.

With respect to the respulsive term, not much needs to change in removing the Hydrogen
dependencies. The constants Q,A, and α from equation 3.1.2 no longer depend on bonding type and
can thus lose their subscripts. Equation 3.1.2 now becomes
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V Rij = wij(rij)

[
1 +

Q

r

]
Ae−αr (3.1.6)

Similarly, the subscripts in equation 3.1.5 represent the bonding types. They can thus be
removed and we will introduce the following notation

tc(rij) =
rij − rmin

rmax − rmin
=: rcij . (3.1.7)

Summarizing, we find for the Hydrogen-less repulsive term

VR(rij) = wij(rij)

[
1 +

Q

rij

]
Ae−αrij (3.1.8)

with
wij(rij) = Θ(−rcij) + Θ(rcij)Θ(1− rcij)

1

2

[
1 + cos(πrcij)

]
(3.1.9)

3.1.2. Bond-Order Term

The bond order models the likeliness and strength of bonding between between atoms i and j and is
given by

bij =
1

2

[
pπθij + pπθji

]
+ πrcij + πdhij (3.1.10)

Where the principal (p) terms are the covalent bond interaction terms outlined in the introduc-
tion, πrcij models radical and conjugation effects, and πdhij incorporates a penalty for rotation around
multiple bonds.

Covalent Bond Interaction Terms

These terms, pπθij and pπθji , are given by

pπθij =

1 +
∑
k 6=i,j

wik(rik)gi(cos(θjik))eλjik + Pij

− 1
2

(3.1.11)

Some things to note:

• pπθij does not necessarilly equal pπθji ;

• although their numerical value may not be equal, their analytical form is one and the same once
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the indices are switched. Therefore, we will only present the analytical form for pπθij .

We immediately notice that the covalent bond interaction terms depend on the neighbouring
atoms. The relative strength of their interactions are again governed by a weighting function, wik(rik),
as defined in equation 3.1.3.

Additionally, gi
(
cos(θjik)

)
is a penalty function that imposes a cost on bonds that are too close

to one another. Specifically, it is a fifth order spline in the variable cos(θjik) where θjik are the bond
angles between the rji vector and the rki vectors to any other neighbouring atoms1.

cos(θjik) =
rji · rki√
r 2
jir

2
ki

(3.1.12)

We will typically leave spline functions untouched, i.e. keep them in their concise, general
form. This is because taking their derivatives later is simple and we know how to do this. But for com-
pleteness, when they are introduced we will provide their definitions2. We begin with gi

(
cos(θjik)

)
,

where the subscript i on g refers to the atom type under consideration, which in the Carbon-only case
reduce to gc

(
cos(θjik)

)
.

gc
(
cos(θjik)

)
= g(1)

c (cos(θjik)) + Ss(tN (Nij))
[
g(2)
c (cos(θjik))− g(1)

c (cos(θjik))
]

(3.1.13)

where g(1)
c and g(2)

c are predefined functions fit to relevant experimental data. The switching
function is as described before in equation 3.1.4, but this time the variable is defined as

tN (Nij) =
Nij −Nmin

ij

Nmax
ij −Nmin

ij

(3.1.14)

In this context, the i, j subscript on the min and max terms refers to the atom types and can thus be
ignored. Explicitly, and introducing the following notation, we have

tN (Nij) =
Nij −Nmin

Nmax −Nmin
=: N c

ij (3.1.15)

where Nmax and Nmin are given parameters and Nij is the coordination number of atom i

in the context of the i− j bond (excludes the neighbour j from the count). It is defined by the sum of
coordination numbers with respect to Hydrogen and Carbon.

1Note that rij is the vector connecting atoms i and j, and has length rij
2A total description of the spline functions and their derivatives is given in Appendix A
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Nij = NH
ij +NC

ij (3.1.16)

Clearly in the Carbon only context NH
ij = 0. Further, we have

Nij = NC
ij =

∑
k 6=i

δkCwik(rik)

− δjCwij(rij) (3.1.17)

where δ is the Kronecker delta function. Clearly, in the absence of Hydrogen atoms, equation 3.1.17
reduces to

Nij =

∑
k 6=i

wik(rik)

− wij(rij) (3.1.18)

which can then further be reduced to

Nij =
∑
k 6=i,j

wik(rik) (3.1.19)

The above simplifications can all concisely be represented as

Ss(tN (Nij)) ≡ wij(Nij) (3.1.20)

So in total, gc
(
cos(θjik)

)
has the following functional form:

gc
(
cos(θjik)

)
= g(1)

c (cos(θjik)) + wij(Nij)
[
g(2)
c (cos(θjik))− g(1)

c (cos(θjik))
]

(3.1.21)

As section 5.2 will outline, equation 3.1.21 was deemed an error by Stuart et al. in their
paper, and the correct form is represented in equation 3.1.22. Again, section 5.2 will give a detailed
explanation as to the reasoning and consequences of this. For a consistency between the C++
implementation of the Hessian and the analytical form presented herein, equation 3.1.22 is assumed
to be correct for the remainder of the thesis.

gc
(
cos(θjik)

)
= g(2)

c (cos(θjik)) + wij(Nij)
[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]

(3.1.22)

Continuing with the presentation of the AIREBO potential, the λ term in equation 3.1.11 is
defined to be
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λjik = 4δiHJ (3.1.23)

where J represents a series of further functions. This notation is used because clearly λjik ≡ 0 in a
Carbon only system and thus eλjik = 1.

Pij is definied to be a 2D cubic spline in the variables NC
ij and NH

ij , and thus for the Carbon-
only setting reduces to a 1D cubic spline in NC

ij . As such, it will be left as is and only mentioned in
Appendix A.

We will now look at the π terms of equation 3.1.10.

π terms

The term πrcij represents the radical and conjugation effects. This is a 3D cubic spline in the variables
Nij , Nji and N conj

ij . The 3D cubic spline will be left out here and presented in Appendix A. The
coordination numbers Nij and Nji are as defined in equation 3.1.19 and N conj

ij is a local measure of
the conjugation of the i− j bond.

N conj
ij = 1 +

∑
k 6=i,j

δkCwik(rik)Ss(tconj(Nki))

2

+

∑
l 6=i,j

δlCwjl(rjl)Ss(tconj(Nlj))

2

(3.1.24)

For the Carbon only systems this becomes

N conj
ij = 1 +

∑
k 6=i,j

wik(rik)Ss(tconj(Nki))

2

+

∑
l 6=i,j

wjl(rjl)Ss(tconj(Nlj))

2

(3.1.25)

where the switching function variable, due to the absence of Hydrogen, is the same as before.

tconj(Nij) =
Nij −Nmin

ij

Nmax
ij −Nmin

ij

=: N c
ij (3.1.26)

where N conj
ij ∈ [1, 9]. Note that this can all be written more compactly as

N conj
ij = 1 +

∑
k 6=i,j

wik(rik)wki(Nki)

2

+

∑
l 6=i,j

wjl(rjl)wlj(Nlj)

2

(3.1.27)

The final contribution to the bond-order is πdhij .
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πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wTik(rik)wTjl(rjl)Θ(sin(θjik)− smin)Θ(sin(θijl)− smin)

(3.1.28)

This term imposes a penalty for rotation around multiple bonds. Equation 3.1.28 is another
instance of the analytical form not being equivalent to the form found in the C++ implementation. As
section 5.2 will explain, it was deemed that the implementation version, as presented in equation
3.1.29, is the correct function. For now the explanation will not be given and the derivation will be
continued.

πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wTik(rik)wTjl(rjl)

(
1− Ss

(
t
(

cos
(
θjik

))))
·

(
1− Ss

(
t
(

cos
(
θijl
)))) (3.1.29)

where

t
(

cos
(
θijl
))

=
cos
(
θijl
)
− cos

(
θijl
)min

cos
(
θijl
)max − cos

(
θijl
)min (3.1.30)

Equation 3.1.29 is equivalently rewritten as

πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wTik(rik)wTjl(rjl)

(
1− w

(
cos
(
θjik

)))
·
(

1− w
(

cos
(
θijl
))) (3.1.31)

The function Tij is another 3D cubic spline in the same variables and ωkijl is the typical
torsion angle defined by

cos(ωkijl) =
rji × rik∣∣rji × rik

∣∣ · rij × rjl∣∣rij × rjl
∣∣ . (3.1.32)

The weight function is defined by

wTij(rij) = Ss

(
tTc (rij)

)
(3.1.33)

where

tTc (rij) =
rij − rminij

rmaxTij − rminij

. (3.1.34)
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For Carbon only systems, rmaxTij = rmaxij and thus wTij(rij) = wij(rij). Therefore this entire
term can be rewritten as

πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wik(rik)wjl(rjl)

(
1− w

(
cos
(
θjik

)))
·
(

1− w
(

cos
(
θijl
))) (3.1.35)

That concludes the bond-order term.

3.1.3. Attractive Potential

The final part of the REBO potential is the attractive potential, V Aij .

V Aij = −wij(rij)
3∑

n=1

B
(n)
ij e

−β(n)
ij rij (3.1.36)

The n does not represent the bonding type (i.e. C-C, C-H, H-H) but the i− j subscripts on B
and β do. As such we remove this dependency on the relevant terms to find

V Aij = −wij(rij)
3∑

n=1

B(n)e−β
(n)rij (3.1.37)

3.1.4. Summary of REBO Potential for Carbon only Systems

The REBO potential for a system composed only of Carbon atoms can then concisely be represented
as

EREBOij =

wij(rij)[1 +
Q

rij

]
Ae−αrij

+

[
1

2

[
pπθij + pπθji

]
+ πrcij + πdhij

]
·

−wij(rij) 3∑
n=1

B(n)e−β
(n)rij


(3.1.38)

3.2. Derivative of the REBO energy

Recall the expression for the REBO energy:

EREBOij = V Rij + bijV
A
ij . (3.2.1)
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In general, the derivative takes the form

EREBO
′

ij = V R
′

ij + b′ijV
A
ij + bijV

A′

ij . (3.2.2)

The individual terms in equation 3.2.2 will be presented separately in the subsequent sub-
sections.

3.2.1. Derivative of REBO Repulsive Term

Recall

VR = w(rij)

[
1 +

Q

rij

]
Ae−αrij (3.2.3)

with
wij(rij) = Θ(−rcij) + Θ(rcij)Θ(1− rcij)

1

2

[
1 + cos(πrcij)

]
(3.2.4)

where

tc(r) =
rij − rmin

rmax − rmin
=: rcij (3.2.5)

and Θ is the Heaviside function.

Taking the derivative we find

V ′R(rij) = w′ij(rij)

[
1 +

Q

rij

]
Ae−αrij − wij(rij)

[
Q

r2
ij

]
r′ijAe

−αrij − wij(rij)

[
1 +

Q

rij

]
r′ijAαe

−αrij

(3.2.6)

The only non-trivial derivative term present is w′ij(rij), which will now be presented.

Begin by taking the derivative of rc:

rc
′

ij =
1

rmax − rmin
· r′ij =: ξr · r′ij (3.2.7)

Then

w′ij(rij) =− δrmin · ξr · r′ij + δrmin · ξij ·Θ(1− rcij) ·
1

2
(1 + cos(πrcij))

− δrmax · ξr · r′ij ·Θ(rcij) ·
1

2
(1 + cos(πrcij))

− 1

2
Θ(rcij)Θ(1− rcij) · (sin(πrcij)) · πξr · r′ij

(3.2.8)
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where δ is the Dirac delta function. Notice we can further simplify equation 3.2.8 by using properties
of the delta-functions. Equation 3.2.8 then reduces to

w′ij(rij) = −1

2
Θ(rcij)Θ(1− rcij) · (sin(πrcij)) · πξr · r′ij (3.2.9)

So, exhaustively, the derivative of the repulsive term is

V ′R(rij) =

{
−1

2
Θ(rcij)Θ(1− rcij) · (sin(πrcij)) · πξr · r′ij

}
·

[
1 +

Q

rij

]
Ae−αrij︸ ︷︷ ︸

A

+ wij(rij)

[
− Q

r2
ij

]
r′ijAe

−αrij

︸ ︷︷ ︸
B

−wij(rij)

[
1 +

Q

rij

]
r′ijAαe

−αrij

︸ ︷︷ ︸
C

(3.2.10)

The dimension of the systems in question are on the order of 106, thus the range of inter-
actions for each term must be kept in mind in an effort to improve computational memory and time
constraints. The interaction radius for equation 3.2.10 will be presented below. However, to perform
this type of analysis after introducing each term in derivation of the Hessian would be extremely te-
dious and repetitive. As such, further analysis is left for chapter 4 — this example is solely meant to
stress the importance and outline the procedure in determining interaction radii.

From inspection we see that in equation 3.2.10 the support3 of each component is dictated
by the support of the weighting function or its derivative. This is explicitly given by

supp(A) = [rmin, rmax]

supp(B) = [0, rmax]

supp(C) = [0, rmax]

(3.2.11)

where supp(i) is the support for component i ∈ {A,B,C} in equation 3.2.10.

The function and w′ij(rij) is plotted with the parameters of rmin = 1.0 and rmax = 4.0 in figure
3.2.

3Let f : X → R be a real valued function. Then the support of f is defined as supp(f) := {x ∈ X|f(x) 6= 0}.
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Figure 3.2: Weight function derivative with rminij = 1.0 and rmaxij = 4.0.

3.2.2. Derivative of the REBO Attractive term

The term V A
′

ij is very similar to the repulsive term derivative. It is given by

V A
′

ij = −w′ij(rij)
3∑

n=1

B(n)e−β(n)rij + wij(rij)r
′
ij

3∑
n=1

B(n)β(n)e−β
(n)rij (3.2.12)

3.2.3. Derivative of the REBO Bond-Order term

Recall the definition of the bond order term:

bij =
1

2

[
pπθij + pπθji

]
+ πrcij + πdhij . (3.2.13)

The derivative is given by

b′ij =
1

2

[
pπθ

′

ij + pπθ
′

ji

]
+ πrc

′

ij + πdh
′

ij (3.2.14)

The four separate terms in equation 3.2.14 will now be expressed, starting with pπθ
′

ij . Recall
the definition of
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pπθij =

1 +
∑
k 6=i,j

wik(rik)gc(cos(θjik)) + Pcc

− 1
2

. (3.2.15)

Using this notation,

pπθ
′

ij = −1

2

1 +
∑
k 6=i,j

wik(rik)gc(cos(θjik)) + Pcc

− 3
2

·

∑
k 6=i,j

w′ik(rik)gc
(
cos(θjik)

)
+
∑
k 6=i,j

wik(rik)g′c
(
cos(θjik)

)
+ P ′cc


(3.2.16)

First notice that both the wik(rik) and gc
(
cos(θjik)

)
terms are within a summation. This is

a finite sum, and the derivative of a finite sum is just the sum of the derivatives. The derivative of
wik(rik) is presented in equation 3.2.9 as

w′ik(rik) = −1

2
Θ(rcik)Θ(1− rcik) · (sin(πrcik)) · πξr · r′ik (3.2.17)

Now consider g′c
(
cos(θjik)

)
. Recall the definition of gc

(
cos(θjik)

)
:

gc
(
cos(θjik)

)
= g(2)

c (cos(θjik)) + wij(Nij)
[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]

(3.2.18)

It is important to realize here that cos(θjik) can be treated as the sole variable. That means
when taking the derivative of a general function f

(
cos(θjik)

)
one obtains

∂

∂uq
f
(
cos(θjik)

)
=
∂f
(
cos(θjik)

)
∂ cos(θjik)

· ∂

∂uq
cos
(
θjik

)
(3.2.19)

The function f is generic, but the derivative of cos(θjik) is not and is thus presented in Ap-
pendix B due to its involved and lengthy calculation. Since cos

(
θjik

)
is being treated as the sole

variable, the derivative is straight forward.
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∂

∂uq
gc
(
cos(θjik)

)
=

∂g(2)
c (cos(θjik))

∂ cos(θjik)
+ wij(Nij)

[
∂g

(1)
c (cos(θjik))

∂ cos(θjik)
− ∂g

(2)
c (cos(θjik))

∂ cos(θjik)

] ∂

∂uq
cos(θjik)

+
∂wij(Nij)

∂Nij

∂Nij
∂uq

[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]

=:g′c
(
cos(θjik)

)
(3.2.20)

The last derivative of interest in the pπθ
′

ij expression is the P ′cc term. We leave this in symbolic
notation as it is a spline function which are generally not of particular interest and are dealt with in
Appendix A.

This concludes the pπθ term derivatives. The final terms of the bond-weighting term derivative
must now be investigated.

The πrcij term is a symmetric tricubic spline in the variables Nij , Nji and N conj
ij and will thus

be left symbolically. We must, however, differentiate the πdhij term.

Recall

πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)︸ ︷︷ ︸
d

·

wTik(rik)wTjl(rjl)︸ ︷︷ ︸
e

(
1− w

(
cos
(
θjik

)))
·
(

1− w
(

cos
(
θijl
)))

︸ ︷︷ ︸
f

(3.2.21)

Tij is another tricubic spline4 in the variablesNij , Nji andN conj
ij and ωkijl is the typical torsion

angle defined by

cos(ωkijl) =
~rji × ~rik∣∣ ~rji × ~rik

∣∣ · ~rij × ~rjl∣∣ ~rij × ~rjl
∣∣ (3.2.22)

.

These angles are always provided via trigonometric function arguments. It is mathematically
convenient to treat the entire trigonometric function as the variable when taking their derivatives. This
is still mathematically sound and is presented in detail in Appendix B. For now, it must be understood
that we are treating the entire trigonometric function as the variable, and not the (bonding / torsion)
angle alone.

The derivative of πdhij is then

4The tricubic cubic splines are characterized by their variables and their interpolation points.
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πdh
′

ij =

T ′ij · ∑
k 6=i,j

∑
l 6=i,j

(d · e · f)

+

Tij · ∑
k 6=i,j

∑
l 6=i,j

(
d′ · e · f

)
+

Tij · ∑
k 6=i,j

∑
l 6=i,j

(
d · e′ · f

)+

Tij · ∑
k 6=i,j

∑
l 6=i,j

(
d · e · f ′

) (3.2.23)

Simplifying, we find

πdh
′

ij =

T ′ij · ∑
k 6=i,j

∑
l 6=i,j

(d · e · f)


+Tij ·

∑
k 6=i,j

∑
l 6=i,j

[(
d′ · e · f

)
+
(
d · e′ · f

)
+
(
d · ef ′

)] (3.2.24)

with

d′ = −2 cos(ωkijl) ·
∂

∂uq
cos(ωkijl) = −2 cos(ωkijl) · (cos(ωkijl))

′ (3.2.25)

e′ =w
′

ik(rik)wjl(rjl) +

wik(rik)w
′

jl(rjl)
(3.2.26)

f ′ =

(
−w′

(
cos
(
θjik

)))
·
(

1− w
(

cos
(
θijl
)))

+

(
1− w

(
cos
(
θjik

)))
·
(
−w′

(
cos
(
θijl
)))

(3.2.27)

where

w′
(

cos
(
θjik

))
=
∂ w

(
cos
(
θjik

))
∂ cos

(
θjik

) ·
∂ cos

(
θjik

)
∂uq

(3.2.28)

This concludes the derivative of πdhij and thus the bond-order term. The entire first derivative
of the REBO potential has now been presented.

3.3. Second Derivative of the REBO Potential

Recall EREBO
′

ij = V R
′

ij + b′ijV
A
ij + bijV

A′

ij . Then

EREBO
′†

ij = V R
′†

ij + b′†ijV
A
ij + b′ijV

A†

ij + b†ijV
A′

ij + bijV
A′†

ij (3.3.1)
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The only terms in equation 3.3.1 that have yet to be defined are the double derivative terms.
These terms will again be provided in separate parts.

3.3.1. 2nd Derivative of REBO Repulsive term

V
′†

R (rij) =w
′†

ij(rij)

[
1 +

Q

rij

]
Ae−αrij

−w
′

ij(rij)

[
Q

r2
ij

]
r†ijAe

−αrij

−w
†

ij(rij)

[
Q

r2
ij

]
r′ijAe

−αrij

−w
′

ij(rij)

[
1 +

Q

rij

]
r†ijAαe

−αrij

−w
†

ij(rij)

[
1 +

Q

rij

]
r′ijAαe

−αrij

+wij(rij)

[
Q

r3
ij

]
r′ijr

†
ijAe

−αrij

+2wij(rij)

[
Q

r2
ij

]
r′ijr

†
ijAαe

−αrij

−wij(rij)

[
Q

r2
ij

]
r′†ijAe

−αrij

−wij(rij)

[
1 +

Q

rij

]
r′†ijAαe

−αrij

+wij(rij)

[
1 +

Q

rij

]
r′ijr

†
ijAα

2e−αrij

(3.3.2)

And from this, the only term left to define is w
′†
ij(rij).

w
′†
ij(rij) = −1

2
δrminξrr

†
ijΘ(1− rcij)(sin(πrcij))πξr · r′ij

+
1

2
δrmaxξrr

†
ijΘ(rcij)(sin(πrcij))πξr · r′ij

−1

2
Θ(rcij)Θ(1− rcij)

[
cos(πrcij)π

2ξ2
r · r′ij · r

†
ij + sin(πrcij)πξr · r

′†
ij

] (3.3.3)

This can be simplified by implementing the properties of the Kronecker delta function to

w
′†
ij(rij) = −1

2
Θ(rcij)Θ(1− rcij)

[
cos(πrcij)π

2ξ2
r · r′ij · r

†
ij + sin(πrcij)πξr · r

′†
ij

]
(3.3.4)
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The second derivative of the weighting function with respect to rij is presented in figure 3.3
with parameters rmin = 1.0 and rmax = 4.0. It should be noted that this second derivative is not
continuous5.

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5

∂2wij(rij)
∂2rij

rij

Figure 3.3: Weight function second derivative with rminij = 1.0 and rmaxij = 4.0.

3.3.2. 2nd Derivative of the REBO Attractive Term

The second derivative of the REBO attractive term is

V A
′†

ij = −w
′†
ij(rij)

3∑
n=1

B(n)e−β(n)rij

+w′ij(rij) · r
†
ij

3∑
n=1

B(n)β(n)e−β
(n)rij

+w†ij(rij) · r
′
ij

3∑
n=1

B(n)β(n)e−β
(n)rij

+wij(rij) · r
′†
ij

3∑
n=1

B(n)β(n)e−β(n)rij

−wij(rij) · r′ij · r
†
ij

3∑
n=1

B(n)β(n)2e−β
(n)rij

(3.3.5)

where all relevant terms have been defined earlier.

5This will be discussed in chapter 6
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3.3.3. 2nd Derivative of the REBO Bond-Order Term

The second derivative of the REBO bond-order term is represented as

b
′†
ij =

1

2

[
pπθ

′†

ij + pπθ
′†

ji

]
+ πrc

′†

ij + πdh
′†

ij . (3.3.6)

The expressions for the four terms will be tackled individually.

pπθ
′†

ij =
3

4

1 +
∑
k 6=i,j

wik(rik)gc(cos(θjik)) + Pcc

− 5
2

·

∑
k 6=i,j

[
w′ik(rik)gc

(
cos(θjik)

)
+ wik(rik)g′c

(
cos(θjik)

)]
+ P ′cc

 ·
∑
k 6=i,j

[
w†ik(rik)gc

(
cos(θjik)

)
+ wik(rik)g†c

(
cos(θjik)

)]
+ P †cc

−
1

2

1 +
∑
k 6=i,j

wik(rik)gc
(
cos(θjik)

)
+ Pcc

− 3
2

·

∑
k 6=i,j

[
w

′†
ik(rik)gc

(
cos(θjik)

)
+ w′ik(rik)g†c

(
cos(θjik)

)
+

w†ik(rik)g′c
(
cos(θjik)

)
+ wik(rik)g

′†
c

(
cos(θjik)

)]
+ P

′†
cc

]

(3.3.7)

All that remains to do is to find the double derivative terms in equation 3.3.7.

The weight function second derivative, w
′†
ik(rik), has already been defined in equation 3.2.9

keeping in mind the slight differences due to the different indices.

Recall

∂

∂uq
gc
(
cos(θjik)

)
=

∂g(2)
c (cos(θjik))

∂ cos(θjik)
+ wij(Nij)

[
∂g

(1)
c (cos(θjik))

∂ cos(θjik)
− ∂g

(2)
c (cos(θjik))

∂ cos(θjik)

] ∂

∂uq
cos(θjik)

+
∂wij(Nij)

∂Nij

∂Nij
∂uq

[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]

=:g′c
(
cos(θjik)

)
(3.3.8)

Taking the second derivative we find
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∂2

∂up∂uq
gc
(
cos(θjik)

)
=

∂2g
(2)
c (cos(θjik))

∂2 cos(θjik)
+ wij(Nij)

[
∂2g

(1)
c (cos(θjik))

∂2 cos(θjik)
− ∂2g

(2)
c (cos(θjik))

∂2 cos(θjik)

] ·
∂

∂uq
cos(θjik)

∂

∂up
cos(θjik)

+

∂g(2)
c (cos(θjik))

∂ cos(θjik)
+ wij(Nij)

[
∂g

(1)
c (cos(θjik))

∂ cos(θjik)
− ∂g

(2)
c (cos(θjik))

∂ cos(θjik)

] · ∂2

∂up∂uq
cos(θjik)

+
∂2wij
∂2Nij

∂2Nij
∂uq∂up

[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]

+
∂wij
∂Nij

∂Nij
∂uq

[
∂g

(1)
c (cos(θjik))

∂ cos(θjik)
− ∂g

(2)
c (cos(θjik))

∂ cos(θjik)

]
· ∂

∂up
cos(θjik)

=: g
′†
c

(
cos(θjik)

)
(3.3.9)

Again, we leave P
′†
cc as is, symbolically. That concludes the pπθ terms. We now investigate

the π terms.

πdh
′†

ij =

T ′†
ij

∑
k 6=i,j

∑
l 6=i,j

(d · e · f)


+T †ij

∑
k 6=i,j

∑
l 6=i,j

((
d′ · e · f

)
+
(
d · e′ · f

)
+
(
d · e · f ′

))
+T ′ij

∑
k 6=i,j

∑
l 6=i,j

((
d† · e · f

)
+
(
d · e† · f

)
+
(
d · e · f†

))
+Tij

∑
k 6=i,j

∑
l 6=i,j

(
(d

′† · e · f) + (d · e
′† · f) + (d · e · f

′†)

+ (d′ · e† · f) + (d′ · e · f†) + (d · e′ · f†)

+(d† · e′ · f) + (d† · e · f ′) + (d · e† · f ′)
)

(3.3.10)

First recall that Tij = Tij(Nij , Nji, N
conj
ij ) and so its derivatives will also involve the derivatives

of its arguments. The derivatives of spline functions are presented in Appendix A. The d
′†, e

′† and f
′†

terms must now be evaluated.

d
′† = −2

[
cos(ωkijl)

† · (cos(ωkijl))
′ + cos(ωkijl)

′†
]

(3.3.11)
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e
′† =w

′†
ik(rik)wjl(rjl) + w

′

ik(rik)w†jl(rjl)

+ w†ik(rik)w
′

jl(rjl) + wik(rik)w
′†
jl(rjl)

(3.3.12)

f
′† =− w

′†
(

cos
(
θjik

))(
1− w

(
cos
(
θijl
)))

+ w′
(

cos
(
θjik

))
w†
(

cos
(
θijl
))

+ w†
(

cos
(
θjik

))
w′
(

cos
(
θijl
))

+

(
1− w

(
cos
(
θjik

)))(
−w

′†
(

cos
(
θijl
))) (3.3.13)

where

w
′†
(

cos
(
θjik

))
=
∂2 w

(
cos
(
θjik

))
∂ cos

(
θjik

)2 ·
∂ cos

(
θjik

)
∂uq

·
∂ cos

(
θjik

)
∂up

+
∂ w

(
cos
(
θjik

))
∂ cos

(
θjik

) ·
∂2 cos

(
θjik

)
∂uq∂up

(3.3.14)

In the scope of simulations, we should take into account the support of all functions. In this
case, it is particularly important because the dirac-delta functions are defined on a set of measure
zero, as are their derivatives. So in a numerics scope, terms 3, 6, 7, 8, 9, and 10 from equation 3.3.12
and f

′† would all be zero. This would then greatly reduce and simplify equation 3.3.10. Again, the
entire Hessian of the AIREBO potential and the support of each term is presented in chapter 4.

This concludes the second derivative of πdhij and thus the bond-order term. The entire seo-
cond derivative of the REBO potential has now been presented.

3.4. Lennard-Jones Potential

The Lennard-Jones potential is a widely used potential and there are vast quantities of information
available. This paper aims to provide a concise treatment of it within the context of the AIREBO
potential.

The Lennard-Jones potential is given by

V LJij (rij) = 4εij

(σij
rij

)12

−

(
σij
rij

)6
 (3.4.1)

In Carbon only systems we can represent this equivalently as
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V LJij (rij) = 4ε

( σ

rij

)12

−

(
σ

rij

)6
 (3.4.2)

The total energy contribution from this Lennard Jones potential to the AIREBO potential is expressed
as

ELJij =Sp(tr(rij)) · Sp(tb(b∗ij)) · CijV LJij (rij)+[
1− Sp(tr(rij))

]
· CijV LJij (rij)

(3.4.3)

with Sp representing the polynomial switching function (slightly different than Ss).

Sp(t) = Θ(−t) + Θ(t)Θ(1− t)
[
1− t2(3− 2t)

]
(3.4.4)

where

tr(rij) =
rij − rLJmin

rLJmax − rLJmin
=: rLJcij (3.4.5)

is used to rescale the switching function domain. This switching function (Equation 3.4.4) is
used to determine the overall strength of the LJ interactions at play. It will be zero when rij > rLJmaxij

and will be non-zero otherwise. Equation 3.4.4 is plotted in Figure 3.46 to give an idea to the shape
of the switching functions. For notational simplicity, we make the the following declaration

wpij(rij) = Sp(tr(rij) (3.4.6)

Within the context of the AIREBO potential, the parameters are chosen to be rLJminij = σ and
rLJmaxij = 2

1
6σ so that the second derivative of the potential is continuous at is continuous at rLJmin.

Equation 3.4.3 also has a switching function taking a bond-order term as an argument,
Sp(tb(b

∗
ij)), and it shall be referred to as the bonding switch. It has the scaling variable

tb(bij) =
bij − bminij

bmaxij − bminij

=
bij − bmin

bmax − bmin
(3.4.7)

where

b∗ij = bij
∣∣
rij=rmin

(3.4.8)

6The first and second derivatives of the polynomial switch function will not be plotted due to their qualitative resemblance to
the sinusoidal switch functions.
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Figure 3.4: Polynomial weight function with rLJminij = 1.0 and rLJmaxij = 4.0.

converts the REBO bond-order term to a range suitable for the use in the switching function.
It is clear that when the bond-order term is large, indicating covalent bonding is present, the repulsive
LJ interactions become negligible, as they should. Likewise, for very low values of the bond-order
term, indicating no covalent bonding is present, the LJ interaction will be unperturbed. so in total one
has

tb(b
∗
ij) =

b∗ij − bmin

bmax − bmin
=: b∗cij (3.4.9)

Further, the connectivity switch, Cij , is defined as

Cij = 1−max

wij(rij)︸ ︷︷ ︸
Ω1

, wik(rik) · wkj(rkj)︸ ︷︷ ︸
Ω2

, wik(rik) · wkl(rkl) · wlj(rlj)︸ ︷︷ ︸
Ω3

 ∀k, l (3.4.10)

where, as before, wij(rij) = Ss(tc(rij)) = Ss(r
c
ij).

3.5. Derivative of the LJ Energy

We now wish to take the derivative of expression 3.4.3.
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ELJ
′

ij =wp
′

ij (r
LJ
ij ) · wpij(b

∗
ij) · CijV LJij (rij) +

wpij(r
LJ
ij ) · wp

′

ij (b
∗
ij) · CijV LJij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · C ′ijV LJij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · CijV LJ

′

ij (rij) −[
wp

′

ij (r
LJ
ij )
]
· CijV LJij (rij) +[

1− wpij(r
LJ
ij )
]
· C ′ijV LJij (rij) +[

1− wpij(r
LJ
ij )
]
· CijV LJ

′

ij (rij)

(3.5.1)

where the single derivative terms are left to define. We must now take the derivative of the
connectivity switch found in equation 3.4.10. The derivative of a max function is done in parts. One
must first evaluate the piecewise definition of the function and then take the derivative of the respective
parts. We can represent this as

C ′ij =



w′ij(rij) if Ω1 ≥ max{Ω2,Ω3}

w′ik(rik)wkj(rkj)+

wik(rik)w′kj(rkj) if Ω2 ≥ max{Ω1,Ω3}

w′ik(rik)wkl(rkl)wlj(rlj)+

wik(rik)w′kl(rkl)wlj(rlj)+ if Ω3 ≥ max{Ω1,Ω2}

wik(rik)wkl(rkl)w
′
lj(rlj)

(3.5.2)

Recall we already have an expression for w′ij(rij) found in equation 3.2.9. We now define the
variables within the switching functions.

Taking the derivatives of the polynomial switching functions, one gets

S′p(tr(rij)) = S′p(r
c
LJ) = wp

′

ij (r
LJ
ij ) = Θ(rLJcij )Θ(1− rLJcij )

[
6rLJcij (rLJcij − 1)

]
· ξLJ · r′ij (3.5.3)

and
S′p(tb(b

∗
ij)) = S′p(b

∗c
ij ) = wp

′

ij (b
∗
ij) = Θ(b∗cij )Θ(1− b∗cij )

[
6b∗cij (b∗cij − 1)

]
· ξb · b∗

′

ij (3.5.4)

where
ξLJ =

1

rLJmax − rLJmin
(3.5.5)

and
ξb =

1

bmax − bmin
(3.5.6)

Please note that b∗
′

ij will be considered in subsection 3.6.
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The only other derivative term we need is that of the Lennard Jones Potential.

V LJ
′

ij (rij) = 24ε

(σ6

r7
ij

)
− 2

(
σ12

r13
ij

) · r′ij (3.5.7)

3.6. Second Derivative of the LJ Energy

Taking the derivative of equation 3.5.1 we find
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ELJ
′†

ij =wp
′†

ij (rLJ) · wpij(b
∗
ij) · CijV LJij (rij) +

wp
†

ij (rLJij ) · wp
′

ij (b
∗
ij) · CijV LJij (rij) +

wp
′

ij (r
LJ
ij ) · wp

†

ij (b∗ij) · CijV LJij (rij) +

wp
†

ij (rLJij ) · wpij(b
∗
ij) · C ′ijV LJij (rij) +

wp
′

ij (r
LJ
ij ) · wpij(b

∗
ij) · C

†
ijV

LJ
ij (rij) +

wp
†

ij (rLJij ) · wpij(b
∗
ij) · CijV LJ

′

ij (rij) +

wp
′

ij (r
LJ
ij ) · wpij(b

∗
ij) · CijV LJ

†

ij (rij) +

wpij(r
LJ
ij ) · wp

′†

ij (b∗ij) · CijV LJij (rij) +

wpij(r
LJ
ij ) · wp

′

ij (b
∗
ij) · C

†
ijV

LJ
ij (rij) +

wpij(r
LJ
ij ) · wp

†

ij (b∗ij) · C ′ijV LJij (rij) +

wpij(r
LJ
ij ) · wp

′

ij (b
∗
ij) · CijV LJ

†

ij (rij) +

wpij(r
LJ
ij ) · wp

†

ij (b∗ij) · CijV LJ
′

ij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · C

′†
ijV

LJ
ij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · C ′ijV LJ

†

ij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · C

†
ijV

LJ′

ij (rij) +

wpij(r
LJ
ij ) · wpij(b

∗
ij) · CijV LJ

′†

ij (rij) −[
wp

′†

ij (rLJ)
]
· CijV LJij (rij) −[

wp
′

ij (r
LJ
ij )
]
· C†ijV

LJ
ij (rij) −[

wp
†

ij (rLJij )
]
· C ′ijV LJij (rij) −[

wp
′

ij (r
LJ
ij )
]
· CijV LJ

†

ij (rij) +[
wp

†

ij (rLJij )
]
· CijV LJ

′

ij (rij) +[
1− wpij(r

LJ
ij )
]
· C ′†ijV

LJ
ij (rij) +[

1− wpij(r
LJ
ij )
]
· C ′ijV LJ

†

ij (rij) +[
1− wpij(r

LJ
ij )
]
· C†ijV

LJ ′

ij (rij) +[
1− wpij(r

LJ
ij )
]
· CijV LJ

′′

ij (rij)

(3.6.1)

.

Of course we must now define all the individual second derivative terms within equation
3.6.1.Beginning with the polynomial weighting functions,

wp
′†

ij (rLJcij ) =Θ(rLJcij )Θ(1− rLJcij )
[
6(2rLJcij − 1)

]
· ξ2
LJ · r′ij · r

†
ij+

Θ(rLJcij )Θ(1− rLJcij )
[
6rLJcij (rLJcij − 1)

]
· ξLJ · r

′†
ij ,

(3.6.2)
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wp
′†

ij (b∗ij) =Θ(b∗ij)Θ(1− b∗ij)
[
6(2b∗ij − 1)

]
· ξ2
b · b∗

′

ij · b∗
†

ij +

Θ(b∗ij)Θ(1− b∗ij)
[
6b∗ij(b

∗
ij − 1)

]
· ξb · b∗

′†

ij

(3.6.3)

where these have already been simplified by implementing properties of the Kronecker delta
function. Please note that b∗

′†
ij will be considered in subsection 3.6. For the second derivative of the

connectivity switch we have

C
′†
ij =



w′†ij(rij) if Ω1 ≥ max{Ω2,Ω3}

w′†ik(rik)wkj(rkj)+

w′ik(rik)w†kj(rkj)+

w†ik(rik)w′kj(rkj)+

wik(rik)w′†kj(rkj) if Ω2 ≥ max{Ω1,Ω3}

w′†ik(rik)wkl(rkl)wlj(rlj)+

w′ik(rik)w†kl(rkl)wlj(rlj)+

w†ik(rik)w′kl(rkl)wlj(rlj)+

w′ik(rik)wkl(rkl)w
†
lj(rlj)+

w†ik(rik)wkl(rkl)w
′
lj(rlj)+

wik(rik)w′†kl(rkl)wlj(rlj)+ if Ω3 ≥ max{Ω1,Ω2}

wik(rik)w′kl(rkl)w
†
lj(rlj)+

wik(rik)w†kl(rkl)w
′
lj(rlj)+

wik(rik)wkl(rkl)w
′†
lj(rlj)

(3.6.4)

and lastly, the second derivative of the LJ potential,

V LJ
′†

ij (rij) = 24ε

26

(
σ12

r14
ij

)
− 7

(
σ6

r8
ij

) · r′

ij · r
†
ij + 24ε

(σ6

r7
ij

)
− 2

(
σ12

r13
ij

) · r′†ij (3.6.5)

Bond-Order Switch Function Derivatives

Equations 3.5.4 and 3.6.3 both included terms taking the derivative of b∗ij . These first and second
derivatives (b∗

′

ij and b∗
′†
ij ) were not explicitly given. However, these must be defined. Recall
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b∗ij = bij
∣∣
rij=rmin

. (3.6.6)

As a result, the first and second derivatives follow the exact outline as provided in taking the
first and second derivatives of the normal bond-order term found in the REBO potential (b

′

ij and b
′†
ij).

Since the process is nearly the exact same, it will not be presented herein.

The changes that must be made when calculating b∗
′

ij and b∗
′†
ij is that rij must be treated as

a constant. As a result, any term with a derivative of rij is identically zero. This simplifies things a
considerable amount.

3.7. Torsional Interaction Potential

The final contribution to the AIREBO potential is the torsional term, which takes dihedral angles
as arguments. Recall that this term was added to impose penalties for rotations around bonds.
This introduction to the torsional potential will be kept brief as we are interested in the mathematical
treatment. Consult [37] for further information.

The contribution to the AIREBO energy from the torsional potential is given by

Etors =
1

2

∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

wij(rij) · wjk(rjk) · wkl(rkl)× V tors(ωijkl) (3.7.1)

where

V tors(ω) = ε

[
256

405
cos10

(
ω

2

)
− 1

10

]
(3.7.2)

and ωkijl is the torsion angle defined by

cos(ωkijl) =
~rji × ~rik
|~rji × ~rik|

· ~rij × ~rjl
|~rij × ~rjl|

. (3.7.3)

This angle will always be presented as an argument to a trigonometric function, so we treat
the entire trigonometric function as the variable. Further definitions and the torsional derivatives are
carefully presented in Appendix B.

3.8. Derivative of Torsional Energy

The derivative of equation 3.7.1 is then
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Etors
′

=
1

2

∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

[(
w′ij(rij) · wjk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+

(
wij(rij) · w′jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+(

wij(rij) · wjk(rjk) · w′kl(rkl)× V tors(ωijkl)
)

+(
wij(rij) · wjk(rjk) · wkl(rkl)× V tors

′
(ωijkl)

)]
(3.8.1)

where w′ has been defined in equation 3.2.9 and

V tors
′
(ω) = 10ε

256

405
cos9

(
ω

2

)(
cos

(
ω

2

))′ (3.8.2)

Refer to Appendix B for the cos(ω) derivatives.

3.9. Second Derivative of the Torsional Energy

Evaluating the second derivative of 3.7.1 we find
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Etors
′†

=
1

2

∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

[(
w′†ij(rij) · wjk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+

(
w′ij(rij) · w

†
jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+(

w†ij(rij) · w
′
jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+(

w′ij(rij) · wjk(rjk) · w†kl(rkl)× V
tors(ωijkl)

)
+(

w†ij(rij) · wjk(rjk) · w′kl(rkl)× V tors(ωijkl)
)

+(
w′ij(rij) · wjk(rjk) · wkl(rkl)× V tors

†
(ωijkl)

)
+(

w†ij(rij) · wjk(rjk) · wkl(rkl)× V tors
′
(ωijkl)

)
+(

wij(rij) · w′†jk(rjk) · wkl(rkl)× V tors(ωijkl)
)

+(
wij(rij) · w′jk(rjk) · w†kl(rkl)× V

tors(ωijkl)
)

+(
wij(rij) · w†jk(rjk) · w′kl(rkl)× V tors(ωijkl)

)
+(

wij(rij) · w′jk(rjk) · wkl(rkl)× V tors
†
(ωijkl)

)
+(

wij(rij) · w†jk(rjk) · wkl(rkl)× V tors
′
(ωijkl)

)
+(

wij(rij) · wjk(rjk) · w′†kl(rkl)× V
tors(ωijkl)

)
+(

wij(rij) · wjk(rjk) · w′kl(rkl)× V tors
†
(ωijkl)

)
+(

wij(rij) · wjk(rjk) · w†kl(rkl)× V
tors′(ωijkl)

)
+(

wij(rij) · wjk(rjk) · wkl(rkl)× V tors
′†

(ωijkl)
)]

(3.9.1)

with

V tors
′†

(ω) =
2560

405
ε

9 · cos8

(
ω

2

)(
cos

(
ω

2

))′(
cos

(
ω

2

))†
+

cos9

(
ω

2

)(
cos

(
ω

2

))′†


(3.9.2)

Where, again, the torsional derivatives are found in Appendix B.
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Chapter 4

Summary of the Second Derivative of
the AIREBO Potential Including
Interaction Radii

4.1. Definition of Atomic Sets

Recall the definition of the AIREBO potential:

E
′† = EREBO

′†
+ ELJ

′†
+ Etors

′†
(4.1.1)

We will first define different sets of atoms, and then we will break down 4.1.1 into its subse-
quent parts.

In general, we define
Snq

as the set of atoms within the neighbourhood n ∈ {0, 1, . . . , 7} of atom q.

where the associated neighbourhoods are presented in 4.1.

As an example, k ∈ S0
i would refer to all atoms k such that 0 ≤ rik ≤ rmax.

4.2. Exhaustive Tables of the AIREBO Potential

Chapter 3 provided a mathematical derivation for the second derivatives of the three terms in equation
4.1.1. Due to the length of derivation, it was not a clear presentation of the total Hession. This
section aims to summarize the entire Hessian of the AIREBO potential and provide interaction radii
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Table 4.1: The mapping from the superscript n to its associated neighbourhood

n range
0 [0, rmax]
1 [rmin, rmax]
2 [0, Nmax]
3 [Nmin, Nmax]
4 [0, rmaxLJ ]
5 [rminLJ , rmaxLJ ]
6 [0, bmax]
7 [bmin, bmax]
8 [θmin, θmax]
9 [θmin, θmax]
∞ R

for separate terms.

Again, owing to the sizeable nature of the AIREBO Hessian, this will be presented in table
form. Three tables will be presented in total to define the entire AIREBO Hessian, one for each term
in equation 4.1.1. Each table will have a different size, but will follow the same outline. In general, a
table will have N columns and M rows, but only the columns are important in discussing the outline.
A general table is presented in table 4.2.

Table 4.2: General table layout

0 1 2 . . . N-2 N-1 N
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

Column 0 will simply be an enumeration of rows. This will help to later reference row numbers.
In general, columns 1− (N− 2) will contain elements of the Hessian. The high-level terms appear in
the left-most columns, and are expanded when needed towards the right. The idea is that the entire
term the table is representing can be achieved by summing a given column. The second last column,
column (N− 1) is always left blank, and the final column, column N contains the support (interaction
radii) of the term in its row. This is best described through an example.

Imagine the function in question is

Φ(x) = f(x) · g(x) · h(x) + k(x) (4.2.1)

where h(x) is a more complicated function and is represented as

h(x) = l(x) + t(x). (4.2.2)

The equation 4.2.1 would be represented in table form as is shown in table 4.3.
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Table 4.3: Table representation of equation 4.2.1

A B C D E
1 Φ(x)
2 f(x) supp(f(x))
3 g(x) supp(g(x))
4 h(x)+
5 l(x)+ supp(l(x))
6 t(x) supp(t(x))
7 k(x) supp(k(x))
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4.2.1. Table for the Hessian of the REBO term

The second derivative for EREBO
′†

is presented in table 4.4.

Table 4.4: Table representation of EREBO
′†

A B C D E F G

1 EREBO
′†

2 V R
′†

+

3 w
′†

ij(rij)
[
1 + Q

rij

]
Ae−αrij− j ∈ S1

i ∧ p, q ∈ {i, j}

4 w
′

ij(rij)

[
Q
r2ij

]
r†ijAe

−αrij− j ∈ S1
i ∧ p, q ∈ {i, j}

5 w
†

ij(rij)

[
Q
r2ij

]
r′ijAe

−αrij− j ∈ S1
i ∧ p, q ∈ {i, j}

6 w
′

ij(rij)
[
1 + Q

rij

]
r†ijAαe

−αrij− j ∈ S1
i ∧ p, q ∈ {i, j}

7 w
†

ij(rij)
[
1 + Q

rij

]
r′ijAαe

−αrij+ j ∈ S1
i ∧ p, q ∈ {i, j}

8 wij(rij)

[
Q
r3ij

]
r′ijr

†
ijAe

−αrij+ j ∈ S0
i ∧ p, q ∈ {i, j}

9 2wij(rij)

[
Q
r2ij

]
r′ijr

†
ijAαe

−αrij− j ∈ S0
i ∧ p, q ∈ {i, j}

10 wij(rij)

[
Q
r2ij

]
r′†ijAe

−αrij− j ∈ S0
i ∧ p, q ∈ {i, j}

11 wij(rij)
[
1 + Q

rij

]
r′†ijAαe

−αrij+ j ∈ S0
i ∧ p, q ∈ {i, j}

12 wij(rij)
[
1 + Q

rij

]
r′ijr

†
ijAα

2e−αrij j ∈ S0
i ∧ p, q ∈ {i, j}

13 wij j ∈ S0
i

14 w′ij table 4.10

15 w
′†
ij table 4.11

16 r′ij table 4.7

17 r
′†
ij table 4.8
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18 b
′†
ij×

19 1
2p
πθ

′†

ij +

20 3
4

[
1 +

∑
k 6=i,j wik(rik)gc(cos(θjik)) + Pcc

]− 5
2 · k ∈ S∞

21
[∑

k 6=i,j

[
w′ik(rik)gc

(
cos(θjik)

)
+ k ∈ S1

i \ {j} ∧ q ∈ {i, j}

22 wik(rik)g′c
(
cos(θjik)

)]
+ P ′cc

]
· k ∈ S1

i \ {j}

23
[∑

k 6=i,j

[
w†ik(rik)gc

(
cos(θjik)

)
+ k ∈ S1

i \ {j} ∧ p ∈ {i, j}

24 wik(rik)g†c
(
cos(θjik)

)]
+ P †cc

]
− k ∈ S1

i \ {j}

25 1
2

[
1 +

∑
k 6=i,j wik(rik)gc

(
cos(θjik)

)
+ Pcc

]− 1
2 · k ∈ S∞

26
[∑

k 6=i,j

[
w

′†
ik(rik)gc

(
cos(θjik)

)
+ k ∈ S1

i \ {j} ∧ q, p ∈ {i, j}

27 w′ik(rik)g†c
(
cos(θjik)

)
+ k ∈ S1

i \ {j} ∧ p ∈ {i, j}
28 w†ik(rik)g′c

(
cos(θjik)

)
+ k ∈ S1

i \ {j} ∧ q ∈ {i, j}

29 wik(rik)g
′†
c

(
cos(θjik)

)]
+ P

′†
cc

]
k ∈ S1

i \ {j}

30 wik(rik) k ∈ S0
i \ {j}

31 w′ik(rik) k ∈ S1
i \ {j}

32 w
′†
ik(rik) k ∈ S1

i \ {j}
33 gc S∞

34 g′c S∞

35 g
′†
c S∞

36 1
2p
πθ

′†

ji + switch indices ↑
37 πrc

′†

ij + table A.3

38 πdh
′†

ij

39 T
′†
ij (Nij , Nji, N

conj
ij )·

40 T table A.1
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41 T ′ table A.2
42 T

′† table A.3

43
(∑

k,l 6=i,j (def)
)

+

44 T ′ij
∑
k,l 6=i,j

((
d†ef

)
+
(
de†f

)
+
(
def†

))
+

45 T †ij
∑
k,l 6=i,j

((
d′ef

)
+
(
de′f

)
+
(
def ′

))
+

46 d table 4.12
47 d’ table 4.13
48 e table 4.15
49 e’ table 4.16
50 f table 4.18
51 f’ table 4.19

52 Tij
∑
k,l 6=i,j

(
(d

′†ef) + (de
′†f) + (def

′†) +

53 (d′e†f) + (d′ef†) + (de′f†)+

54 (d†e′f) + (d†ef ′) + (de†f ′)
)

55 d
′† table 4.14

56 e
′† table 4.17

57 f
′† table 4.20

58 V Aij +

59 −wij(rij)
∑3
n=1B

(n)
ij e

−β(n)
ij rij j ∈ S0

i

60 b′ij×
61 1

2p
πθ′

ij + S∞

62 − 1
2

[
1 +

∑
k 6=i,j wik(rik)gc

(
cos(θjik)

)
+ Pcc

]− 3
2 · k ∈ S1

i \ {j} ∧ q ∈ {i, j}

63
[∑

k 6=i,j

(
w′ik(rik)gc

(
cos(θjik)

)
+ k ∈ S0

i \ {j}

64 wik(rik)g′c
(
cos(θjik)

))
+ P ′cc

]
65 1

2p
πθ′

ji + switch indices ↑
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66 πrc
′

ij + spline
67 πdh

′

ij +

68
(
T ′ij
∑
k,l 6=i,j (def)

)
+

69 Tij
∑
k,l 6=i,j

[(
d′ef

)
+
(
de′f

)
+
(
def ′

)]
70 V A

†

ij +

71 −w′ij(rij)
∑3
n=1B

(n)e−β
(n)rij+ table 4.10

72 wij(rij)r
′
ij

∑3
n=1B

(n)β(n)e−β
(n)rij j ∈ S0

i

73 b†ij×
74 V A

′

ij +

75 bij×
76 1

2p
πθ
ij +

77 [1 + Pcc+ S∞

78 +
∑
k 6=i,j wik(rik) · gc(cos(θjik))

]− 1
2

k ∈ S0
i \ {j}

79 1
2p
πθ
ji + ↑ switch indices

80 πrcij + table A.1
81 πdhij +

82 Tij(Nij , Nji, N
conj
ij )· table A.1

83
∑
k,l 6=i,j(1− cos2 ωkijl)· S∞

84 wjl(rjl)wik(rik)· l ∈ S0
j \ {i}, k ∈ S0

i \ {j}
85

(
1− w

(
cos(θjik)

))(
1− w

(
cos(θijl)

))
j, i, k or i, j, l co-planar

86 V A
′†

ij

87 −w
′†
ij(rij)

∑3
n=1B

(n)e−β(n)rij+ j ∈ S0
i ∧ q ∈ {i, j}

88 w′ij(rij)r
†
ij

∑3
n=1B

(n)β(n)e−β
(n)rij+ j ∈ S1

i ∧ q ∈ {i, j}
89 w†ij(rij)r

′
ij

∑3
n=1B

(n)β(n)e−β
(n)rij+ j ∈ S1

i ∧ p ∈ {i, j}
90 wij(rij)r

′†
ij

∑3
n=1B

(n)β(n)e−β(n)rij− j ∈ S0
i ∧ q, p ∈ {i, j}

91 wij(rij)r
†
ijr
′
ij

∑3
n=1B

(n)β(n)2e−β
(n)rij j ∈ S0

i ∧ q, p ∈ {i, j}
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4.2.2. Table for the Hessian of the Lennard-Jones term

The second derivative for ELJ
′†

is presented in table 4.5.

Table 4.5: Table representation of ELJ
′†

A B C D E F

1 ELJ
′†

2 wp
′†

ij (rLJ) · wpij(b∗ij) · CijV LJij (rij)+

3 wp
′

ij (r
LJ
ij ) · wp

†

ij (b∗ij) · CijV LJij (rij)+

4 wp
†

ij (rLJij ) · wp
′

ij (b
∗
ij) · CijV LJij (rij)+

5 wp
′

ij (r
LJ
ij ) · wpij(b∗ij) · C

†
ijV

LJ
ij (rij)+

6 wp
†

ij (rLJij ) · wpij(b∗ij) · C ′ijV LJij (rij)+

7 wp
′

ij (r
LJ
ij ) · wpij(b∗ij) · CijV LJ

†

ij (rij)+

8 wp
†

ij (rLJij ) · wpij(b∗ij) · CijV LJ
′

ij (rij)+

9 wpij(r
LJ
ij ) · wp

′†

ij (b∗ij) · CijV LJij (rij)+

10 wpij(r
LJ
ij ) · wp

′

ij (b
∗
ij) · C

†
ijV

LJ
ij (rij)+

11 wpij(r
LJ
ij ) · wp

†

ij (b∗ij) · C ′ijV LJij (rij)+

12 wpij(r
LJ
ij ) · wp

′

ij (b
∗
ij) · CijV LJ

†

ij (rij)+

13 wpij(r
LJ
ij ) · wp

†

ij (b∗ij) · CijV LJ
′

ij (rij)+

14 wpij(r
LJ
ij ) · wpij(b∗ij) · C

′†
ijV

LJ
ij (rij)+

15 wpij(r
LJ
ij ) · wpij(b∗ij) · C ′ijV LJ

†

ij (rij)+

16 wpij(r
LJ
ij ) · wpij(b∗ij) · C

†
ijV

LJ ′

ij (rij)+

17 wpij(r
LJ
ij ) · wpij(b∗ij) · CijV LJ

′†

ij (rij)−

18
[
wp

′†

ij (rLJ)

]
· CijV LJij (rij)−

19
[
wp

′

ij (r
LJ
ij )
]
· C†ijV LJij (rij)−
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20
[
wp

†

ij (rLJij )
]
· C ′ijV LJij (rij)−

21
[
wp

′

ij (r
LJ
ij )
]
· CijV LJ

†

ij (rij)+

22
[
wp

†

ij (rLJij )
]
· CijV LJ

′

ij (rij)+

23
[
1− wpij(rLJij )

]
· C

′†
ijV

LJ
ij (rij)+

24
[
1− wpij(rLJij )

]
· C ′ijV LJ

†

ij (rij)+

25
[
1− wpij(rLJij )

]
· C†ijV LJ

′

ij (rij)+

26
[
1− wpij(rLJij )

]
· CijV LJ

′†

ij (rij)

27 wpij(r
LJ
ij ) j ∈ S4

i

28 wp
′

ij (r
LJ
ij ) table 4.10

29 wp
′†

ij (rLJ) table 4.11
30 wpij(b

∗
ij) j ∈ S6

i

31 wp
′

ij (b
∗
ij) table 4.10

32 wp
′†

ij (b∗ij) table 4.11
33 Cij

34 1−max

35

wij(rij)︸ ︷︷ ︸
Ω1

, j ∈ S0
i

36 wik(rik) · wkj(rkj)︸ ︷︷ ︸
Ω2

, (k ∈ S0
i ) ∧ (j ∈ S0

k)

37 wik(rik) · wkl(rkl) · wlj(rlj)︸ ︷︷ ︸
Ω3

 (k ∈ S0
i ) ∧ (l ∈ S0

k) ∧ (j ∈ S0
l )

38 C ′ij
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39



w′ij(rij) if Ω1 ≥ max{Ω2,Ω3}

w′ik(rik)wkj(rkj)+

wik(rik)w′kj(rkj) if Ω2 ≥ max{Ω1,Ω3}

w′ik(rik)wkl(rkl)wlj(rlj)+

wik(rik)w′kl(rkl)wlj(rlj)+ if Ω3 ≥ max{Ω1,Ω2}

wik(rik)wkl(rkl)w
′
lj(rlj)



j ∈ S1
i ∧ q ∈ {i, j}

tables 4.9 and 4.10

tables 4.9 and 4.10

40 C
′†
ij

41



w
′†
ij(rij) if Ω1 ≥ max{Ω2,Ω3}

w
′†
ik(rik)wkj(rkj)+

w′ik(rik)w†kj(rkj)+ if Ω2 ≥ max{Ω1,Ω3}

w†ik(rik)w′kj(rkj)+

wik(rik)w
′†
kj(rkj)

w′ik(rik)wkl(rkl)wlj(rlj)+

w′ik(rik)w†kl(rkl)wlj(rlj)+

w†ik(rik)w′kl(rkl)wlj(rlj)+

w′ik(rik)wkl(rkl)w
†
lj(rlj)+

w†ik(rik)wkl(rkl)w
′
lj(rlj)+ if Ω3 ≥ max{Ω1,Ω2}

wik(rik)w
′†
kl(rkl)wlj(rlj)+

wik(rik)w′kl(rkl)w
†
lj(rlj)+

wik(rik)w†kl(rkl)w
′
lj(rlj)+

wik(rik)wkl(rkl)w
′†
lj (rlj)



j ∈ S1
i ∧ p, q ∈ {i, j}

tables 4.9, 4.10 and 4.11

tables 4.9, 4.10 and 4.11

42 V LJij (rij)
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43 4ε

[(
σ
rij

)12

−
(
σ
rij

)6
]

S∞

44 V LJ
′

ij (rij)

45 24ε

[(
σ6

r7ij

)
− 2

(
σ12

r13ij

)]
· ∂
∂uq

rij q ∈ {i, j}

46 V LJ
′†

ij (rij)

47 24ε

[
26

(
σ12

r14ij

)
− 7

(
σ6

r8ij

)]
· ∂
∂uq

rij · ∂
∂up

rij+ p, q ∈ {i, j}

48 24ε

[(
σ6

r7ij

)
− 2

(
σ12

r13ij

)]
· ∂2

∂up∂uq
rij p, q ∈ {i, j}

67



4.2.3. Table for the Hessian of the torsional term

The second derivative for Etors
′†

is presented in table 4.6.

Table 4.6: Table representation of Etors
′†

A B C D E F

1 Etors
′†

2 1
2

∑
i

∑
j 6=i
∑
k 6=i,j

∑
l 6=i,j,k [

3
(
w

′†
ij(rij) · wjk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

4
(
w′ij(rij) · w

†
jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

5
(
w†ij(rij) · w′jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

6
(
w′ij(rij) · wjk(rjk) · w†kl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

7
(
w†ij(rij) · wjk(rjk) · w′kl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

8
(
w′ij(rij) · wjk(rjk) · wkl(rkl)× V tors

†
(ωijkl)

)
+ tables 4.9-4.11

9
(
w†ij(rij) · wjk(rjk) · wkl(rkl)× V tors

′
(ωijkl)

)
+ tables 4.9-4.11

10
(
wij(rij) · w

′†
jk(rjk) · wkl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

11
(
wij(rij) · w′jk(rjk) · w†kl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

12
(
wij(rij) · w†jk(rjk) · w′kl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

13
(
wij(rij) · w′jk(rjk) · wkl(rkl)× V tors

†
(ωijkl)

)
+ tables 4.9-4.11

14
(
wij(rij) · w†jk(rjk) · wkl(rkl)× V tors

′
(ωijkl)

)
+ tables 4.9-4.11

15
(
wij(rij) · wjk(rjk) · w

′†
kl(rkl)× V tors(ωijkl)

)
+ tables 4.9-4.11

16
(
wij(rij) · wjk(rjk) · w′kl(rkl)× V tors

†
(ωijkl)

)
+ tables 4.9-4.11

17
(
wij(rij) · wjk(rjk) · w†kl(rkl)× V tors

′
(ωijkl)

)
+ tables 4.9-4.11
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18
(
wij(rij) · wjk(rjk) · wkl(rkl)× V tors

′†
(ωijkl)

)]
tables 4.9-4.11

19 V tors(ωijkl)

20 ε
[

256
405 cos10

(
ω
2

)
− 1

10

]
S∞

21 V tors
′
(ωijkl)

22 10ε

[
256
405 cos9

(
ω
2

) (
cos
(
ω
2

))′]
S∞

23 V tors
′†

(ωijkl)

24 2560
405 ε

[
9 · cos8

(
ω
2

) (
cos
(
ω
2

))′ (
cos
(
ω
2

))†
+ S∞

25 cos9
(
ω
2

) (
cos
(
ω
2

))′†
]

S∞
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4.2.4. Additional Tables

Not all information could be fit in tables 4.4, 4.5, and 4.6. As such, these additional tables are pre-
sented within this subsection.

Table 4.7: Table representation of r′ij

A B C D E
1 r′ij q ∈ {i, j}
2 ∂

∂uq
rij

3 δjq
uj−ui
rij
− q = j

4 δiq
uj−ui
rij

q = i

Table 4.8: Table representation of r
′†
ij

A B C D E

1 r
′†
ij p, q ∈ {i, j}

2 ∂2

∂up∂uq
rij

3
(
δjq − δiq

)
·
(
δjp − δip

)
·
[
r2ij−(uj−ui)

2

r3ij

]
p, q ∈ {i, j}

Table 4.9: Table representation of wij

A B C

1 wij(γ)



j ∈ S0
i γ = rcij

k ∈ S2
i \ {j} γ = N c

ij

j ∈ S4
i γ = rLJ

c

ij

j ∈ S6
i γ = b∗cij

Table 4.10: Table representation of w′ij

A B C D E

1 w′ij(γ)



j ∈ S1
i ∧ q ∈ {i, j} γ = rcij

k ∈ S1
i \ {j} ∧ q ∈ {i, k} γ = N c

ij

j ∈ S5
i ∧ q ∈ {i, j} γ = rLJ

c

ij

j ∈ S7
i ∧ q /∈ {i, j} γ = b∗cij

2 ∂
∂uq

(wij(γ))

3 ∂
∂γwij(γ)·



j ∈ S1
i γ = rcij

k ∈ S1
i \ {j} γ = N c

ij

j ∈ S5
i γ = rLJ

c

ij

j ∈ S7
i γ = b∗cij
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4 ∂
∂uq

γ


q ∈ {i, j} γ ∈ {rcij , rLJ

c

ij }

q ∈ {i, k} γ = N c
ij

q /∈ {i, j} γ = b∗cij

Table 4.11: Table representation of w
′†
ij

A B C D E

1 w
′†
ij(γ)



j ∈ S1
i ∧ p, q ∈ {i, j} γ = rcij

k ∈ S1
i \ {j} ∧ p, q ∈ {i, k} γ = N c

ij

j ∈ S5
i ∧ p, q ∈ {i, j} γ = rLJ

c

ij

j ∈ S7
i ∧ p, q /∈ {i, j} γ = b∗cij

2 ∂2

∂up∂uq
(wij(γ))

3 ∂2

∂γ2 (wij(γ))·



j ∈ S1
i γ = rcij

j ∈ S1
i \ {j} γ = N c

ij

j ∈ S5
i γ = rLJ

c

ij

j ∈ S7
i γ = b∗cij

4 ∂
∂up

γ · ∂
∂uq

γ+


p, q ∈ {i, j} γ ∈ {rcij , rLJ

c

ij }

p, q ∈ {i, k} γ = N c
ij

p, q /∈ {i, j} γ = b∗cij

5 ∂
∂γ (wij(γ))·



j ∈ S1
i γ = rcij

j ∈ S1
i \ {j} γ = N c

ij

j ∈ S5
i γ = rLJ

c

ij

j ∈ S7
i γ = b∗cij

6 ∂2

∂up∂uq
γ


p, q ∈ {i, j} γ ∈ {rcij , rLJ

c

ij }

p, q ∈ {i, k} γ = N c
ij

p, q /∈ {i, j} γ = b∗cij

Table 4.12: Table representation of d from equation 3.2.21

A B C D
1 d

2 (1− cos2 ωkijl) S∞

Table 4.13: Table representation of d′ from equation 3.2.25

A B C D
1 d′
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2 −2 cos(ωkijl) · (cos(ωkijl))
′ S∞

Table 4.14: Table representation of d
′† from equation 3.3.11

A B C D
1 d

′†

2 −2
[
cos(ωkijl)

† · (cos(ωkijl))
′+ S∞

3 cos(ωkijl)
′†
]

S∞

Table 4.15: Table representation of e from equation 3.2.21

A B C D
1 e

2 wik(rik)· k ∈ S0
i \ {j}

3 wjl(rjl)· l ∈ S0
i \ {j}

Table 4.16: Table representation of e′ from equation 3.2.26

A B C D
1 e′

2 w′ik(rik)· k ∈ S1
i \ {j} ∧ q ∈ {i, k}

3 wjl(rjl)+ l ∈ S0
j \ {i}

4 wik(rik)· k ∈ S0
i \ {j}

5 w′jl(rjl)· l ∈ S1
j \ {i} ∧ q ∈ {j, l}

Table 4.17: Table representation of e
′† from equation 3.3.12

A B C D
1 e

′†

2 w
′†
ik(rik)· k ∈ S1

i \ {j} ∧ q, p ∈ {i, k}
3 wjl(rjl)+ l ∈ S0

j \ {i}
4 w′ik(rik)· k ∈ S0

i \ {j} ∧ q ∈ {i, k}
5 w†jl(rjl)+ l ∈ S1

j \ {i} ∧ p ∈ {j, l}
6 w†ik(rik)· k ∈ S1

i \ {j} ∧ p ∈ {i, k}
7 w′jl(rjl)+ l ∈ S0

j \ {i} ∧ q ∈ {j, l}
8 wik(rik)· k ∈ S0

i \ {j}
9 w

′†
jl(rjl)· l ∈ S1

j \ {i} ∧ q, p ∈ {j, l}
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Table 4.18: Table representation of f from equation 3.2.21

A B C D
1 f

2
(

1− w
(

cos
(
θjik

)))
θjik /∈ S8

3
(

1− w
(

cos
(
θijl
)))

θijl /∈ S8

Table 4.19: Table representation of f ′ from equation 3.2.27

A B C D
1 f ′

2
(
−w′

(
cos
(
θjik

)))
·
(

1− w
(

cos
(
θijl
)))

+ θjik ∈ S9 ∧ θijl /∈ S8, q ∈ {j, i, k}

3
(

1− w
(

cos
(
θjik

)))
·
(
−w′

(
cos
(
θijl
)))

θjik /∈ S8 ∧ θijl ∈ S9, q ∈ {j, i, l}

Table 4.20: Table representation of f
′† from equation 3.3.13

A B C D
1 f

′†

2 −w′†
(

cos
(
θjik

))(
1− w

(
cos
(
θijl
)))

+ θjik ∈ S9 ∧ θijl /∈ S8 ∧ q, p ∈ {j, i, k}

3 w′
(

cos
(
θjik

))
w†
(

cos
(
θijl
))

+ θjik ∈ S9 ∧ θijl ∈ S9 ∧ q ∈ {j, i, k} ∧ p ∈ {j, i, l}

3 w†
(

cos
(
θjik

))
w′
(

cos
(
θijl
))

+ θjik ∈ S9 ∧ θijl ∈ S9 ∧ q ∈ {j, i, k} ∧ p ∈ {j, i, l}

3
(

1− w
(

cos
(
θjik

)))(
−w′†

(
cos
(
θijl
)))

θjik /∈ S8 ∧ θijl ∈ S9 ∧ q, p ∈ {j, i, l}
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Chapter 5

C++ Implementation

Stuart et al. made the C++ implementation of their AIREBO potential for the LAMMPS [33] software
program publicly available for researchers to use. More recently, Szymon Winczewski reduced this to
the Carbon only case, as presented in this work.

This code was adapted and built upon in this thesis to calculate the Hessian of the AIREBO
potential for systems of Carbon atoms, derived in chapter 3.

5.1. C++ Program Architecture

The program architecture can be divided into four main parts, namely

1. structure and parameter initialization;

2. toolbox functions;

3. Hessian calculation;

4. clean up.

5.1.1. Structure and Parameter Initialization

Before any functions specific to the numerical calculation of the AIREBO Hessian are implemented,
a number of preliminary classes and methods need to be clearly defined to give the overall program
a coherent structure.

Two classes are designed to impose a high level structure on the overall program, these are
the AIREBOForceField class and the Hessian class.
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AIREBOForceField Class

The purpose of the AIREBOForceField class is to exhaustively contain all functions and parameters
used in the calculation of the total AIREBO energy of a system of Carbon atoms. Naturally, this class
contains much of the information needed for the entire calculation of the Hessian matrix. In total, the
AIREBOForceField class has five main parts.

1. The class first reads in the CH.airebo file which contains all parameter information for the
AIREBO force field numerical calculations. Specifically, this includes cutoff radii, spline knots,
and other numerical parameters as presented in chapter 3. This class also defines other con-
stants derived from these low-level parameters, and also defines data structures that will help to
simplify later calculations. One important structure defined is the vec3d structure. This structure
is meant to completely characterize an atomic position by describing it as a vector, v ∈ R3. The
members of this class are the x,y, and z-components of the vector, as well as it’s magnitude, r,
and squared magnitude, r2.

2. To read in a data file1 describing the location and type of each atom in the system being mod-
elled. For each atom, this class will create an instance of a vec3d structure, storing relevant
positional information.

3. To create data types able to effectively describe the neighbours of each atom, and ultimately
read in neighbour information from an input file. The data types are as follows, assuming N is
the number of atoms in the system.

neighbours num = new i n t [N ] ;
n e i g h b o u r s l i s t = new i n t ∗ [N ] ;
neighbours bonds = new vec3d ∗ [N ] ;

That is, a pointer to an array of integers is first created, where element neighbours num[i]

for 0 ≤ i < N is the number of neighbours of atom i. Afterwards, a pointer to a pointer is
created to describe the neighbour list of each atom. Illustrating again, neighbours list[i] is an
array of atom identifiers for each atom neighbouring atom i. For instance, neighbours list[i][j]
for 0 ≤ j < neighbours num[i] is the atom identifier for the jth neighbour of atom i. Lastly,
neighbours bonds is a pointer to a pointer of vec3d’s describing the vector between the two
bonding atoms in question. It should be noted that the word bonding here is used loosely
because in the typical sense chemical bonding is not necessarily occurring — it is just that
these two atoms are within the defined cut-off distance and thus interact within the AIREBO
potential. Explicitly, neighbours bonds[i][j] is a vec3d instance describing the vector between
atoms i and j, as outlined above.

4. To dynamically allocate memory for all of the required data structures. This can be seen in the
C++ snippet above using the new command.

5. To declare all relevant functions involved with the calculation of the total energy of a system
characterized by an AIREBO potential. These functions will be further explored in the following
subsection.

1Typically in a .xyz file type format.

76



Hessian Class

The Hessian class characterizes the relevant information for the Hessian of the AIREBO potential.
Since most of the relevant AIREBO information is contained within the AIREBOForceField class, the
Hessian class is much simpler — containing two main parts.

1. The first part dynamically allocate memory. This involves creating elements for all values within
the Hessian matrix. Symmetry is assumed and thus only

3N∑
α

3N∑
β≤α

1 =
3N(3N + 1)

2
(5.1.1)

elements are required.

2. To define all relevant functions involved with the calculation of the Hessian elements for the
AIREBO potential. This will be further explored in subsections 5.1.2 and 5.1.3.

The constructors of each of these classes are defined which act to initialize all of the param-
eters and variables needed for further computations. Furthermore, it should be noted that only one
instance of each class needs to be created.

5.1.2. Toolbox Functions

A number of the functions implemented serve one specific purpose and are repeatedly called from
other, higher-level functions. These functions are low-level functions, and due to their specific tasks,
are referred to herein as toolbox functions. When implementing the AIREBO potential, the problem
was well defined and an overall top-down abstraction was created by virtue of mathematically deriving
the Hessian before its implementation. For the implementation itself, a bottom-up approach was used
and thus the toolbox functions were the first to be defined.

These toolbox functions include functions like the weighting (switching) functions, spline func-
tions, the cosine of the torsional and bond angles, coordination number functions, and others. Addi-
tionally, all the first and second derivatives of these functions are also considered toolbox functions.
Most of these functions all intrinsically depend on the lowest level function, which is the first and
second derivatives of the position vector, i.e. r′, r† and r

′† derived in section 2.2.2.

The explicit mathematical definitions for these toolbox functions have been given in chapter
3 and thus the C++ code will not be included herein. These toolbox functions allow higher level
functions, which depend on toolbox functions, to then be implemented.

5.1.3. Hessian Calculation

This section of the implementation deals with the high-level functions that provide an overall structure
and readability to the program. Generally, these C++ functions represent the functions appearing in
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the left most columns of tables 4.4, 4.5 and 4.6, whereas the low level functions are represented of
the right-most columns, and subsequent tables in chapter 4.

The highest level functions appear in the main function, shown below2

for ( i n t p = 0; p < number of atoms ; p++)
for ( i n t d1 = 0; d1 < 2; d1++)

for ( i n t q = p ; q < number of atoms ; q++ )
for ( i n t d2 = 0; d2 < 2; d2++)

my hessian−>setElement ( p , d1 , q , d2 , my airebo−>calculateHessianElement ( p , d1 , q , d2 ) ) ;

Here, p and q are atom numbers and d1 and d2 are Cartesian components where x 7→ 0, y 7→ 1

and z 7→ 2. Clearly this is once the my hessian instance of the Hessian class has been created. The
setElement method simply writes a double to a Hessian element, and the calculateHessianElement
method is expanded below.

double Hessian : : ca lculateHessianElement ( i n t p , i n t d1 , i n t q , i n t d2 )
{

return Hessian : : REBO Hessian ( p , d1 ,q , d2 ) +
Hessian : : LJ Hessian ( p , d1 ,q , d2 ) +
Hessian : : TORS Hessian ( p , d1 ,q , d2 ) ) ;

}

The three functions, REBO Hessian, LJ Hessian and TORS Hessian, then all depend and
subsequently make calls to the toolbox functions. Careful care and consideration was made in de-
signing these functions to both ensure correct implementation, and to take into account the interaction
radii of terms in order not to calculate needless terms, and to reduce redundancy.

5.1.4. Clean Up

Any time a variable is dynamically allocated to the computer’s memory, it must be freed (equivalently
called deleted). Once the Hessian is calculated and output into a file, the dynamically allocated
memory is then deleted and the program is complete.

5.2. Discrepancies between analytical and computational forms

A number of discrepancies between the analytical form presented in Stuart’s paper [37] and their C++
implementation were discovered. In all cases, the Hessian implementation assumed Stuart’s C++
implementation was correct, and thus adjustments were made. These discrepancies will be outlined
herein for completeness.

5.2.1. The g function

Recall that within the bond-order term, the following function appears

2The brackets have been omitted for readability purposes.
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gc
(
cos(θjik)

)
= g(1)

c (cos(θjik)) + Ss(tN (Nij))
[
g(2)
c (cos(θjik))− g(1)

c (cos(θjik))
]
. (5.2.1)

However, in the implementation by Stuart et al., the following form is used

gc
(
cos(θjik)

)
= g(2)

c (cos(θjik)) + Ss(tN (Nij))
[
g(1)
c (cos(θjik))− g(2)

c (cos(θjik))
]
. (5.2.2)

This function imposes penalties for angle-bending and switches smoothly between two forms,
g

(1)
c and g(2)

c . Stuart’s paper states that g(2)
c is suitable for highly coordinated forms, i.e. when Nij ≥

Nmax
ij . According to the following equation

tN (Nij) =
Nij −Nmin

Nmax −Nmin
=: N c

ij (5.2.3)

when Nij = Nmax
ij , tN (Nij) = 1 and whenNij = Nmin

ij , tN (Nij) = 0. Then for t = 0,
Ss(tN (Nij)) = 1 and for t = 1, Ss(tN (Nij)) = 0. So in the context of equation 5.2.2, we get the
following implications

Nij = Nmax
ij =⇒ t = 1 =⇒ Ss(tN (Nij)) = 0 =⇒ gc = g(1)

c (5.2.4)

and
Nij = Nmmin

ij =⇒ t = 0 =⇒ Ss(tN (Nij)) = 1 =⇒ gc = g(2)
c (5.2.5)

which is clearly wrong. Thus the correct form of the equation is that used in the implementa-
tion, and as a result that is what was built upon to construct the Hessian implementation.

5.2.2. The πdh function

Within the bond-order term, the πdh term imposed penalties for rotations around multiple bonds.
Although it was originally defined in equation 3.1.35, it is repeated here for clarity.

πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wTik(rik)wTjl(rjl)Θ(sin(θjik)− smin)Θ(sin(θijl)− smin)

(5.2.6)

In Stuart et al.’s implementation, however, the term is represented as
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πdhij =Tij(Nij , Nji, N
conj
ij )

∑
k 6=i,j

∑
l 6=i,j

(1− cos2 ωkijl)·

wTik(rik)wTjl(rjl)

(
1− Ss

(
t
(

cos
(
θjik

))))
·

(
1− Ss

(
t
(

cos
(
θijl
)))) (5.2.7)

where

t
(

cos
(
θijl
))

=
cos
(
θijl
)
− cos

(
θijl
)min

cos
(
θijl
)max − cos

(
θijl
)min (5.2.8)

That is, the following change was made

Θ
(

sin (θabc)− smin
)
→
(

1− Ss
(
t
(
cos (θabc)

)))
(5.2.9)

The function in this form guarantees that the interactions will be smoothly switched on be-
tween 1.0 < cos(θjik) < −0.995, which corresponds to 180◦ < θjik < 174◦. This means that the
interactions are switched on if the vectors rji and rik are not parallel. This is as expected since the
πdh term imposes penalties for rotation around multiple bonds. As a result, this was the formulation
used within the C++ implementation.

5.2.3. V tors function

Recall that within the torsional energy term (equation 3.7.1), there was a torsional potential term,
V tors (Equation 3.7.2), and within that, the argument

cos10

(
ω

2

)
. (5.2.10)

In Stuart et al.’s implementation, they calculate the torsional angle, cos(ω), using the law of
cosines. To get from there to the expression in equation 5.2.10 they use the half angle formulas:

cos2

(
ω

2

)
=

1

2

(
1 + cos(ω)

)
(5.2.11)

sin2

(
ω

2

)
=

1

2

(
1− cos(ω)

)
(5.2.12)

However, in their implementation, they use equation 5.2.12 as opposed to equation 5.2.11.
Meaning that they as a result calculate sin10

(
ω
2

)
as opposed to the stated equation in the analytical

form of the potential (equation 5.2.10).

Although the past discrepancies could be reasoned by physical arguments, this particular
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discrepancy may in fact be a bug in the AIREBO implementation. Stuart et al. claim this torsional
potential, V (ω), has the nice property of having a single minimum when compared to a typical torsional
potential form, T (ω) [37]. These two functions are plotted in figure 5.1 [37].

Figure 5.1: Plots of a typical torsional potential, T (ω), and the torsional potential used in the AIREBO
potential, V (ω).

To rigorously test their implementation, both an analytical expression and computational ex-
pression were plotted to compare against figure 5.1. First, analytical expressions for

V tors(ω) = ε

[
256

405
cos10

(
ω

2

)
− 1

10

]
(5.2.13)

and

V tors(ω) = ε

[
256

405
sin10

(
ω

2

)
− 1

10

]
(5.2.14)

were plotted. After that, the implementation was plotted using both of the half angle formulas.
This was done by first using the direct implementation of Stuart et al., which used equation 5.2.13,
and then by secondly plotting the same thing only changing one line to use 5.2.14 instead.

Both the analytical results and implementation results yielded identical plots. These are
shown in figure 5.2.

From inspections of figures 5.1 and 5.2 it is confirmed that the implementation does not agree
with the analytical form, nor does it with the physical arguments made for such a functional form.

81



Figure 5.2: Plots representing the values yielded for both the analytical and implementation results of
equation 5.2.13 (blue) and equation 5.2.14 (green).

5.2.4. Current Status

As of the submission of this thesis, the code is not currently outputting correct values for the Hessian.
This is because the knot values for the derivative of the spline functions are not yet properly in place.
This is actively being worked on and meaningful results are expected in the future.
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Chapter 6

Summary

This thesis first reduced the AIREBO potential to the case for systems composed exclusively of Car-
bon atoms. Subsequently, the gradient of this reduced potential was calculated, and finally, the Hes-
sian was calculated. It was noted that in such a large calculation, careful attention was required of the
interaction radius of each term. Interaction radii, along with an exhaustive summary of the Hessian,
were presented in table form in chapter 4. This was done in part so that needless calculations were
not computed in the C++ implementation.

The bulk of the thesis work was in the C++ implementation of the results found in chapter 3
to a functioning program that would take an input file1 of N atoms and output the 3N × 3N Hessian.
This process exposed a number of discrepancies between Stuart et al.’s analytical presentation of
the AIREBO potential [37] and their corresponding C++ implementation. These discrepancies are
outlined in chapter 5, and in all but one case it was shown that the C++ implementation was correct
and was to override the errors in their analytical formulation. In the exceptional case, the authors were
contacted.

Results from the C++ implementation can be directly applied to the applications that require
only individual Hessian elements, such as configurational temperature. However, for many of the
applications outlined in the introduction, the full spectrum2 of the eigenvalue problem (equation 2.1.5)
is required. This is a highly non-trivial task, but has been the focus of study in numerics for decades.
Solving the spectrum of a large linear system often times reduces to the problem of diagonalizing the
system (i.e. Hessian).

A result of Schwarz’s theorem [41] is that if the function f : Rn → R has continuous second
partial derivatives at a given point in the domain, then the partial derivatives are commutative at that
point. This would then imply symmetry for the Hessian, which would in turn make diagonalizing the
system much easier as specific algorithms could be employed.

It was noted, however, that within the current formulation for the AIREBO potential, there
are specific regions of discontinuity for the second partial derivatives. Namely, these occurred within

1The input files follow the form required for the LAMMPS software, outlined here: http://lammps.sandia.gov/doc/

Section_commands.html#cmd-3.
2The spectrum is the list of eigenvalues for the particular eigenproblem.
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the two switching functions Ss and Sp at endpoints prescribed for the variable in question. A more
detailed analysis of the switching functions at these discontinuous regions would have to be employed
to guarantee symmetry of the Hessian.

If symmetry is assumed, this property along with the large degree of sparsity within the Hes-
sian, as determined by the interaction radii, result in the Hessian being both sparse and symmetric.
Many numerical methods exist for the efficient diagonalization of such systems. Implementation of
such algorithms would output the spectrum of the Hessian and allow the desired calculations to be
made.

84



Bibliography

[1] G. C. Abell. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys-
ical Review B, 31, 1985.

[2] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. Journal of Chemical
Physics, 27, 1957.

[3] M. P. Allen. Introduction to molecular dynamics simulation. NIC Series, 23, 2004.

[4] N. L. Allinger and J.-H. Lii. Molecular mechanics - the mm3 force-field for hydrocarbons 2.
vibrational frequencies and thermodynamics. Journal of the American Chemical Society, 111,
1989.

[5] N. L. Allinger and J.-H. Lii. Molecular mechanics - the mm3 force-field for hydrocarbons 3. the
van der waals potentials and crystal data for aliphatic and aromatic hydrocarbons. Journal of the
American Chemical Society, 111, 1989.

[6] N. L. Allinger, Y. H. Yuh, and J.-H. Lii. Molecular mechanics - the mm3 force-field for hydrocar-
bons 1. Journal of the American Chemical Society, 111, 1989.

[7] N. L. Allinger and. S. Chen and J.-H. Lii. An improved force field (mm4) for saturated hydrocar-
bons. Journal of Computational Chemistry, 17, 1996.

[8] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Jour-
nal of Chemical Physics, 72, 1980.

[9] R. H. Baughman, H. Eckhardt, and M. Kertesz. Structureproperty predictions for new planar
forms of carbon: Layered phases containing sp2 and sp atoms. The Journal of Chemical Physics,
87, 1987.

[10] M. Born. Thermodynamics of crystals and melting. Journal of Chemical Physics, 7, 1939.

[11] C. Braga and K. P. Thomas. A configurational temperature nosé-hoover thermostat. Journal of
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Appendix A

Spline Derivatives

The explicit expression for the first and second derivatives of all involved spline functions will be
discussed herein.

The one dimensional splines will not be explicitly presented due to their simple nature. In
general, these one dimensional splines can be represented by an N th degree polynomial, PN , with
argument χ. The first and second derivatives of such splines are presented in equations A.0.1 and
A.0.2.

∂PN (χ)

∂uq
=
∂PN

∂χ
· ∂χ
∂uq

(A.0.1)

∂2PN (χ)

∂uq∂uq
=
∂2PN

∂χ2
· ∂χ
∂uq
· ∂χ
∂up

+
∂PN

∂χ
· ∂2χ

∂uq∂up
(A.0.2)

The treatment of the tricubic splines are more difficult and will now be presented. Both
T (Nij , Nji, N

conj
ij ) and πrcij (Nij , Nji, N

conj
ij ) are tricubic splines in the same variables and only differ by

their interpolation points. As such, only the definition tables will be presented for T (Nij , Nji, N
conj
ij ).

Table A.1: Definition of a general tricubic spline, with further definitions of its individual arguments.

A B C D E
1 T (Nij , Nji, N

conj
ij )

2 Nij

3
∑
k 6=i,j wik(rik) k ∈ S0

i \ {j}
4 Nji

5
∑
k 6=i,j wjk(rjk) k ∈ S0

j \ {i}
6 N conj

ij

7 1+ S∞

8
[∑

k 6=i,j wik(rik)wki(Nki)
]2

+ k ∈ S0
i \ {j} ∩ S2

i
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9
[∑

l 6=i,j wjl(rjl)wlj(Nlj)
]2

l ∈ S0
j \ {i} ∩ S2

j
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Table A.2: First derivative of a general tricubic spline

A B C D E

1 ∂
∂uq

(
T (Nij , Nji, N

conj
ij )

)
2 ∂

∂Nij
T ·

3 ∂
∂uq

Nij+

4
∑
k 6=i,j w

′
ik(rik) k ∈ S1

i \ {j} ∧ q ∈ {i, k}
5 ∂

∂Nji
T ·

6 ∂
∂uq

Nji

7
∑
k 6=i,j

∂
∂uq

wjk(rjk) k ∈ S1
j \ {i} ∧ q ∈ {j, k}

8 ∂

∂Nconjij

T ·

9 ∂
∂uq

N conj
ij

10 2
∑
k 6=i,j

[[
wik(rik)wki(Nki)

]
· tables 4.9 - 4.11

11
[
w′ik(rik)wki(Nki) + wik(rik)w′ki(Nki)

]]
+ tables 4.9 - 4.11

12 2
∑
l 6=i,j

[[
wjl(rjl)wlj(Nlj)

]
· tables 4.9 - 4.11

13
[
w′jl(rjl)wlj(Nlj) + wjl(rjl)w

′
lj(Nlj)

]]
tables 4.9 - 4.11
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Table A.3: First derivative of a general tricubic spline

A B C D E

1 ∂2

∂up∂uq

(
T (Nij , Nji, N

conj
ij )

)
2 ∂2

∂N2
ij
T ·

3 ∂2

∂up∂uq
Nij+

4
∑
k 6=i,j w

′†
ik(rik) k ∈ S1

i \ {j} ∧ q, p ∈ {i, k}
5 ∂2

∂N2
ji
T ·

6 ∂2

∂up∂uq
Nji

7
∑
k 6=i,j w

′†
jk(rjk) k ∈ S1

j \ {i} ∧ q, p ∈ {j, k}
8 ∂2

∂Nconj
2

ij

T ·

9 ∂2

∂up∂uq
N conj
ij

10 2
∑
k 6=i,j

[[
w′ik(rik)wki(Nki) + wik(rik)w′ki(Nki)

]
· tables 4.9 - 4.11

11
[
w†ik(rik)wki(Nki) + wik(rik)w†ki(Nki)

]
+ tables 4.9 - 4.11

12
[(
wik(rik)wki(Nki)

)
· tables 4.9 - 4.11

13
[
w

′†
ik(rik)wki(Nki) + w′ik(rik)w†ki(Nki)+ tables 4.9 - 4.11

14 w†ik(rik)w′ki(Nki) + wik(rik)w
′†
ki(Nki)

]]
+ tables 4.9 - 4.11

15 2
∑
l 6=i,j

[[
w′jl(rjl)wlj(Nlj) + wjl(rjl)w

′
lj(Nlj)

]
· tables 4.9 - 4.11

16
[
w†jl(rjl)wlj(Nlj) + wjl(rjl)w

†
lj(Nlj)

]
tables 4.9 - 4.11

17
[(
wjl(rjl)wlj(Nlj)

)
· tables 4.9 - 4.11

18
[
w

′†
jl(rjl)wlj(Nlj) + w′jl(rjl)w

†
lj(Nlj)+ tables 4.9 - 4.11

19 w†jl(rjl)w
′
lj(Nlj) + wjl(rjl)w

′†
lj (Nlj)

]
tables 4.9 - 4.11

95



Appendix B

Bond Angle and Torsion Angle
Definitions and Derivatives

The explicit expression for the first and second derivatives of the bond angles and torsional angles
will be presented herein. For the sake of clarity, θjik is referred to as the bond angle and ωkijl as
the torsion angle. These angles only appear as arguments to trigonometric functions throughout the
derivation of the Hessian. For this reason they will only be considered in that form as it simplifies
things. There are many similarities between θjik and ωkijl. We will start by calculating the first and
second derivatives of cos(θjik) and then continue with cos(ωkijl).

B.1. Bond Angle (θjik) First Derivative

We begin with the definition of cos
(
θjik

)
:

cos
(
θjik

)
=

rji · rki
|rji||rki|

(B.1.1)

which is equivalent to

cos(θjik) =
rji · rki√
r 2
jir

2
ki

(B.1.2)

Taking its derivative, one gets

∂

∂uq
cos(θjik) =

∂
∂uq

rji · rki + rji · ∂
∂uq

rki√
r 2
jir

2
ki

−
rji · rki

(
2rji · ∂

∂uq
rjir

2
ki + 2r 2

jirki · ∂
∂uq

rki

)
2(r 2

jir
2
ki)

3
2

(B.1.3)
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To simplify things, let’s now consider breaking the vectors into their components

rji := [a1, a2, a3]

rki := [b1, b2, b3]
(B.1.4)

Let A be the set of the vector components, ηi (artificial variables). In this case, this is explicitly
given by

A = {a1, a2, a3, b1, b2, b3}. (B.1.5)

Using this formulation the derivative of the bond angle is then given by

∂ cos(θjik)

∂uqi
=
∑
ηi∈A

∂ cos(θjik)

∂ηi
· ∂ηi
∂uqi

(B.1.6)

Returning to the explicit calculation, if we take the derivative with respect to a1, we see things
simplify. This will be done in detail and then symmetry relations will be used to obtain explicit expres-
sions for all six possible derivatives.

First recall the dot product operation:

rji · rki = a1b1 + a2b2 + a3b3 (B.1.7)

Also recall what occurs when a derivative of a vector is taken with respect to a scalar:

∂rji
∂a1

=

[
∂a1

∂a1
,
∂a2

∂a1
,
∂a3

∂a1

]
= [1, 0, 0] (B.1.8)

Using these two ideas, equation B.1.3 will reduce to a simpler form.

∂ cos(θjik)

∂a1
=

b1 + 0√
r 2
jir

2
ki

− (a1b1 + a2b2 + a3b3)

(r 2
jir

2
ki)

3
2

(
a1r

2
ki

)
(B.1.9)

=
(r 2
jir

2
ki)b1

(r 2
jir

2
ki)

3
2

− r 2
ki(a

2
1b1 + a1a2b2 + a1a3b3)

(r 2
jir

2
ki)

3
2

(B.1.10)
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=
r 2
ki

(r 2
jir

2
ki)

3
2

[
a2

1b1 + a2
2b1 + a2

3b1 − a2
1b1 − a1a2b2 − a1a3b3

]
(B.1.11)

=
r 2
ki

(r 2
jir

2
ki)

3
2

[
b1(a2

2 + a2
3)− a1(a2b2 + a3b3)

]
(B.1.12)

And that is the simplest expression we can find. Fortunately, this has great symmetry proper-
ties.

∂ cos(θjik)

∂a1
=

r 2
ki

[
b1(a2

2 + a2
3)− a1(a2b2 + a3b3)

]
(r 2
jir

2
ki)

3
2

∂ cos(θjik)

∂a2
=

r 2
ki

[
b2(a2

1 + a2
3)− a2(a1b1 + a3b3)

]
(r 2
jir

2
ki)

3
2

∂ cos(θjik)

∂a3
=

r 2
ki

[
b3(a2

2 + a2
1)− a3(a2b2 + a1b1)

]
(r 2
jir

2
ki)

3
2

∂ cos(θjik)

∂b1
=

r 2
ji

[
a1(b22 + b23)− b1(b2a2 + b3a3)

]
(r 2
jir

2
ki)

3
2

∂ cos(θjik)

∂b2
=

r 2
ji

[
a2(b21 + b23)− b2(b1a1 + b3a3)

]
(r 2
jir

2
ki)

3
2

∂ cos(θjik)

∂b3
=

r 2
ji

[
a3(b22 + b21)− b3(b2a2 + b1a1)

]
(r 2
jir

2
ki)

3
2

(B.1.13)

The ∂ηi/∂uqi terms must now be incorporated. The αi terms can further be broken down into
individual atom coordinates. We begin by explicitly showing the definitions

rji =[a1, a2, a3] = [uj1 − ui1 , uj2 − ui2 , uj3 − ui3 ]

rki =[b1, b2, b3] = [uk1 − ui1 , uk2 − ui2 , uk3 − ui3 ]
(B.1.14)

where, for example, uj1 , is the x-coordinate for the position of the jth atom.

Clearly

∂ηi
∂uqi

= 0 (B.1.15)

for all q /∈ {i, j, k}. Thus we only consider for when q ∈ {i, j, k}. The derivatives can then be
computed as
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Table B.1: Table form of artificial variable derivatives.

HHH
HH∂
∂

a1 b1 a2 b2 a3 b3

ui1 -1 -1 0 0 0 0
ui2 0 0 -1 -1 0 0
ui3 0 0 0 0 -1 -1
uj1 1 0 0 0 0 0
uj2 0 0 1 0 0 0
uj3 0 0 0 0 1 0
uk1 0 1 0 0 0 0
uk2 0 0 0 1 0 0
uk3 0 0 0 0 0 1

∂aα
∂uiβ

= −δαβ

∂aα
∂ujβ

= δαβ

∂aα
∂ukβ

= 0

∂bα
∂uiβ

= −δαβ

∂bα
∂ujβ

= 0

∂bα
∂ukβ

= δαβ

(B.1.16)

where α, β ∈ {x, y, z} are a Euclidean coordinate. A tabular summary of this can be found in
table B.1. Now one is able to fully represent all theta derivatives in terms of the position coordinates
of every atom using equations B.2.3, B.1.13 and table B.1.

B.2. Bond Angle (θjik) Second Derivative

Now we can focus on taking the second derivative. Using the same outline for the first derivative, the
second derivative can be expressed as

∂2 cos(θjik)

∂uqi∂upi
=

∑
ηi,ηj∈A

∂2 cos(θjik)

∂ηi∂ηj

∂ηi
∂uqi

∂ηj
∂upi

+
∂ cos(θjik)

∂ηi

∂2ηi
∂uqi∂upi

(B.2.1)

Clearly

∂2ηi
∂uqi∂upi

≡ 0 (B.2.2)

and thus equation B.2.1 reduces to

∂2 cos(θjik)

∂uqi∂upi
=

∑
ηi,ηj∈A

∂2 cos(θjik)

∂ηi∂ηj

∂ηi
∂uqi

∂ηj
∂upi

(B.2.3)

In total there will be 36 second derivatives, of which 21 will be unique. Only six will be
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presented herein. The other thirty are then simply a matter of swapping coordinates.

∂2 cos(θjik)

∂a2
1

=
−3a1(a2

2 + a2
3)b1 + 2a2

1(a2b2 + a3b3)− (a2
2 + a2

3)(a2b2 + a3b3)

r 2
ji

√
r 2
jir

2
ki

(B.2.4)

∂2 cos(θjik)

∂a1∂a2
=

(2a2
1a2b1 − a2(a2

2 + a2
3)b1 − a3

1b2 + a1(2a2
2b2 − a2

3b2 + 3a2a3b3))

r 2
ji

√
r 2
jir

2
ki

(B.2.5)

∂2 cos(θjik)

∂a1∂a3
=

(2a2
1a3b1 − a3(a2

3 + a2
2)b1− a3

1b3 + a1(2a2
3b3 − a2

2b3 + 3a3a2b2))

r 2
ji

√
r 2
jir

2
ki

(B.2.6)

∂2 cos(θjik)

∂a1∂b1
=
a1b1(a2b2 + a3b3) + (a2

2 + a2
3)(b22 + b23)

(r 2
jir

2
ki)

3
2

(B.2.7)

∂2 cos(θjik)

∂a1∂b2
=
−b1(a1a2b1 + (a2

2 + a2
3)b2) + a1a3b2b3 − a1a2b

2
3

(r 2
jir

2
ki)

3
2

(B.2.8)

∂2 cos(θjik)

∂a1∂b3
=
−b1(a1a3b1 + (a2

2 + a2
3)b3) + a1a2b2b3 − a1a3b

2
2

(r 2
jir

2
ki)

3
2

(B.2.9)

Using this information, and the values presented in table B.1, computing the second derivative
of the bond angle is a trivial extension of the above derivation.

B.3. Torsion Angle (ωkijl) First Derivative

Torsional angles only appear as arguments to trigonometric functions. The definition is presented in
equation B.3.1.

cos(ωkijl) =
rji × rik
|rji × rik|

· rij × rjl
|rij × rjl|

(B.3.1)

Define
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rij := [−a1,−a2,−a3]

rji := [a1, a2, a3]

rik := [−b1,−b2,−b3]

rjl := [c1, c2, c3]

(B.3.2)

Now the set A of our artificial variables is A = {a1, a2, a3, b1, b2, b3, c1, c2, c3}.

The first derivative can be represented as

∂ cos(ωkijl)

∂uqi
=
∑
ηi∈A

∂ cos(ωkijl)

∂ηi
· ∂ηi
∂uqi

(B.3.3)

Calculating the explicit representation is a tedious and laborious task that will not be done
here. The interested reader can refer to the C++ code for the explicit representations of the torsional
derivative.

B.4. Torsion Angle (ωkijl) Second Derivative

The second derivative can be seen as

∂2 cos(ωkijl)

∂uqi∂upi
=

∑
ηi,ηj∈A

∂2 cos(ωkijl)

∂ηi∂ηj

∂ηi
∂uqi

∂ηj
∂upi

+
∂ cos(ωkijl)

∂ηi

∂2ηi
∂uqi∂upi

(B.4.1)

Clearly

∂2ηi
∂uqi∂upi

≡ 0 (B.4.2)

and thus equation B.2.1 reduces to

∂2 cos(ωkijl)

∂uqi∂upi
=

∑
ηi,ηj∈A

∂2 cos(ωkijl)

∂ηi∂ηj

∂ηi
∂uqi

∂ηj
∂upi

(B.4.3)

Again, this is a very tedious task and the explicit representation will not be computed here.
The interested reader can refer to the C++ code for the explicit representations of the torsional second
derivatives.
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