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The present work describes a mathematical model of the aqueous flow in the poste-

rior chamber of the eye in a presence of iridotomy (i.e. a hole in the iris created with a

surgery and aimed at reducing the intraocular pressure) and implanted artificial intraoc-

ular lens (Hole-ICL). A first goal of the model is to predict the pressure distribution in

the posterior chamber with an iridotomy and find a dependence of the flux through the

iridotomy on the size and location of the hole. Since the fluid domain is long and thin,

we use the lubrication theory to simplify the Navier-Stokes equations. We assume that

the flux through the holes is proportional to the pressure drop and model the iridotomy

holes as point sinks. To this end, we work in terms of a suitably regularised pressure.

The semi-analytical solution for the pressure and velocity is obtained for realistic shapes

of the posterior chamber, which are inferred from ultrasound scan images. The results

allow us to predict the ideal size of the iridotomy that is sufficient to keep the pres-

sure within safe limits and also avoid large velocities to be generated. A second aim

of the work is to study how the fluid flow changes after implantation of a Hole-ICL

intraocular lens. This is an artificial lens that it is implanted in the posterior cham-

ber and has a hole in its body to allow fluid passage. Our simulations show that, for

the size of the hole that is employed in commercially available lenses, most of the fluid

flow takes place through the hole in the lens and very little through the ICL-iris channel.
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Chapter 1

Introduction

1.1 The aqueous humour

Figure 1.1: Sketch of a vertical cross-section
of the eye.

The aqueous humour is a transparent

fluid with mechanical properties similar to

those of water, and containing proteins in

small concentration. It occupies the an-

terior and posterior chambers of the eye,

the spaces between the lens and the cornea

(fig. 1.1). The aqueous humour is pro-

duced at a constant rate in correspon-

dence of the ciliary muscle, the structure

supporting the lens, it flows in the pos-

terior chamber, passes through the pupil

into the anterior chamber and is finally

drained in correspondence of the trabec-

ular meshwork. The aqueous humor flow

has many physiological functions, among

which the most important are:

• maintaining the intraocular pressure (pressure within the eye) and inflating the

globe of the eye;

• providing nutrition to the avascular tissues of the cornea and lens (e.g. amino acids

and glucose);

1
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• transporting ascorbate in the anterior segment to act as an antioxidant agent.

1.1.1 Mechanisms that drive the aqueous flow

The main mechanisms that generate flow of the aqueous humor are:

• production at the ciliary processes and drainage at the trabecular meshwork;

• miosis, i.e. contraction of the pupil;

• temperature differences between the anterior and the posterior regions of the an-

terior chamber. This temperature gradient produces a thermal flow, i.e. a flow

induced by buoyancy effects;

• motion induced by saccades (quick movements) of the eye.

A relatively large number of studies have been published in this field. Below, some of the

main contributions concerning the fluid mechanics of the aqueous are recalled and briefly

described. Heys et al. [2] studied fluid flow production and drainage assuming that iris is

an elastic solid. Canning et al. [3] used lubrication theory to find analytical solutions for

the natural convection in the anterior chamber. Modarreszadeh et al. [4] and Abouali

et al. [5] investigated the effects of eye rotations on the flow of aqueous numerically.

Silver [6] considered the aqueous flow in the iris-lens channel. A comprehensive and

relatively up to date review of the fluid mechanics of the eye and, in particular, of aqueous

flow is given in Siggers and Ethier (2012, [7]). In the present work we investigated the

flow of aqueous humor in the posterior chamber, in particular the flow due to aqueous

humor production and due to miosis.

1.2 Glaucoma

Glaucoma is a condition characterised by progressive death of retinal ganglion cells. It

is very often associated with an increased intraocular pressure. This can happen either

through an increased production or an increased resistance to aqueous humour outflow.

Increased resistance to outflow of aqueous humour may occur due to an abnormal tra-

becular meshwork or to obliteration of the meshwork due to injury or disease of the iris.

There are two main kinds of glaucoma: open-angle and closed-angle. In open/wide-angle
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glaucoma, resistance growth in the trabecular meshwork due to degeneration and ob-

struction of the meshwork, whose original function is to drain the aqueous humor. This

leads to a chronic, painless buildup of the pressure in the eye. In close/narrow-angle,

the iridocorneal (between cornea and iris) angle is completely closed owing to a forward

displacement of the iris against the cornea, which is tipically caused by pupillary block.

This results in the inability of the aqueous fluid to flow from the posterior to the ante-

rior chamber and then out of the trabecular meshwork. This accumulation of aqueous

humor causes an acute increase of pressure and pain. For this case immediate surgical

treatment is necessary. There is a common procedure for it, which is called iridotomy.

It consists in producing a hole in the iris, thus reducing the resistance to flow from the

posterior to the anterior chamber. The procedure is usually done with laser, and the

hole is placed in the iris under the upper eyelid at the 12-o’clock position (or at 3- or

9-o’clock positions depending on surgeon preference). The typical size of the iridotomy,

according to Silver et al. [6], is 100µm in diameter.

In chapter 3 of this thesis a theoretical model of aqueous flow in the posterior chamber in

the presence of iridotomy is described. For the current work we used lubrication theory

for simplifying the equations, which is applicable since the posterior chamber is long

and thin. The reason for choosing the theoretical model rather than numerical one is

that the channel between iris and the lens in very thin (∼ 7µm) and it causes the error

in numerical models in terms of flux conservation. To our best knowledge this is the

first mathematical study of the flow in the posterior chamber and also the first study

concerning the role of iridotomy.

The aim of the present work is to investigate the influence of the iridotomy on the

aqueous flow in the posterior chamber of the eye. We want to look for the dependence

between the outflow from the iridotomy and the size of the hole, to find the pressure

drop and velocity distribution in the posterior chamber.

1.3 Intraocular lenses

Phakic intraocular lenses (pIOLs) are artificial lenses that are implanted in the eye

without removing or altering the natural crystalline lens. Surgical interventions for

refractive error correction have become a viable alternative to the wearing of spectacles

and contact lenses. The most commonly adopted option is laser surgical remodeling of

the cornea; however, eyes with insufficient corneal thickness or very high refraction errors

are unsuitable for this surgery, but may be treated by the implantation of an artificial
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intraocular lens. There are three main types: sulcus-supported lenses are placed in the

posterior chamber, while angle-supported lenses and iris-fixated lenses are placed in the

anterior chamber. Although there are many advantages of Phakic IOLs, they might

be also associated with some possible complications, which, according to Kwitko and

Stolz [8] include loss of endothelial cells from the cornea, cataract formation, secondary

glaucoma, iris atrophy, and dislocation. Many works are devoted studying these kind of

lenses and their effect on the fluid flow in human eye. Baumeister et al. [9] evaluated

the distance between the phakic IOL and the crystalline lens and the cornea as well as

rotation around the optical axis for all three types of pIOLs. Kohnen et al. [10] overwied

possible complications due to the pIOL implantation. Repetto et al. [11] studied the

fluid flow in the anterior chamber in the presence of iris-fixated lens using numerical

techniques. Kawamorita [1] performed numerical simulations considering the aqueous

circulation with the sulcus-supported lenses in the posterior chamber. In the present

work we will focus in the special type of posterior chamber phakic intraocular lenses

Hole-ICL.

1.3.1 Hole-ICL

Posterior chamber (PC) phakic intraocular lenses (pIOLs) have many advantages for

the treatment of refractive error. The toric implantable collamer lens (ICL) has been

observed to be effective for the correction of miopia [12], [13]. However, cataract devel-

opment has been noted after PC pIOL implantation by Chen et al. [14]. Authors made a

systematic literature overview to determine the case of cataracts after the implantation

of pIOL, and to identify the possible factors for cataract formation. They reported the

incidence of the formation of cataract to be 9.6%, and the study of cataract progres-

sion in eyes with pre-existing cataracts presented a progression rate of 29.5% after pIOL

surgery. The cause of secondary cataracts may be a change in the aqueous humor flow

around the crystalline lens. Therefore, a centrally perforated ICL (i.e., the Hole-ICL)

was created to improve aqueous humour circulation (see figure 1.2). The improvement

Figure 1.2: On the left - toric ICL, centrally perforated ICL on the right ([1])

of aqueous flow in porcine eyes was observed by Fujisawa [15], who concluded that the
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Hole-ICL allowed sufficient flow of aqueous humor around the anterior surface of natural

crystalline lens. However, the circulation of aqueous humour in a porcine eye would be

different from that in a human eye. In 2012 Kawamorita et al. [1] studied the fluid

dynamics of aqueous humor with implanted Hole-ICL using computational fluid dynam-

ics. In the present work (Chapter 4) we develop preliminary theoretical model using

lubrication theory of aqueous flow in the posterior chamber of the eye. Although it the

model is very simplified, there are some useful conclusions which we can obtain from the

it. The aim is to determine the pressure drop and the velocity profile of aqueous humor

in the posterior chamber of the eye with the Hole-ICL. The model allows us to vary

geometrical parameters easily and to impose small values for iris-lens channel without

loss of precision, which gives us an advantage over the numerical models.

Before the introduction of a hole in the body of ICL lenses their implantation was

invariably accompanied by a laser iridotomy. This was done to provide an alternative

path for the aqueous to flow from the posterior to the anterior chamber. With the

introduction of Hole-ICL iridotomy is no more considered necessary. However, we test

in Chapter 5 of this thesis the effect of an iridotomy in the case in which a Hole-ICL is

implanted in the eye in order to check the changes in aqueous flow due to the iridotomy.



Chapter 2

Mathematical prerequisites

2.1 Lubrication Theory and simplification of the Navier-

Sokes equations

Lubrication theory is a technique for simplifying the Navier-Srokes equations and ob-

taining an approximate solution of them. It applies to cases in which the domain is long

and thin. We consider the posterior chamber to be an axisymmetric domain. The axis

z passes through the center of the pupil. Let us consider the Navier-Stokes equations in

cylindrical coordinates (r, θ, z):

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0, (2.1.1)

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
−
u2
θ

r
+ uz

∂ur
∂z

=

− 1

ρ

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂z2

)
(2.1.2)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

+ uz
∂uθ
∂z

=

− 1

ρr

∂p

∂θ
+ ν

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

+
1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

+
∂2uθ
∂z2

)
(2.1.3)
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Radius of the pupil rp 2.5 mm

Radius of the ciliary body rpc 6.3 mm

Height of the chamber on the outer boundary h0 0.727 mm

Height of the iris-lens channel hi 7 µm

Flux produced by ciliary body F 3 µl/min

Dynamic viscosity of aqueous humor µ 0.75 g/m/s

Table 2.1: Geometrical values and fluid properties

∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

=

− 1

ρ

∂p

∂z
+ ν

(
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

)
(2.1.4)

where u = (ur, uθ, uz) is the velocity vector and p is the pressure. Moreover, ρ denotes

fluid density and ν fluid viscosity. We denote with rp is the radius of the pupil and

with rpc the distance from the centre of the pupil to the outer boundary of the posterior

chamber (see figure 2.1). Thus, in the radial direction the domain extends from rp

to rpc (rp < r < rpc). The height of the posterior chamber is a decreasing function

h(r) (from now on the height of the domain is given by the function obtained from

the realistic geometry, the details can be found in § 3.3). Let L = rpc − rp ≈ 4.8

mm be the radial length of the domain. We define the average height of the domain

ha = 1
L

∫
rp<r<rpc

h(r)dr ≈ 0.44 mm. Let us introduce the ratio ε = ha/L = 0.092 << 1.

Thus, we can state that the domain is long and thin and we can apply lubrication theory.

We assume that changes in the r and θ velocity components ur and uθ are of order of

U , thus |∆ur| ∼ |∆uθ| ∼ U . Then, derivatives of the velocities with respect to the r and

θ directions can be estimated as |∂ur∂r | ∼ |
1
r
∂uθ
∂θ | ∼ U/L. From the continuity equation

(2.1.1) we obtain the order of |∆uz∆z | ∼ U/L, hence |∆uz| ∼ haU/L. In the next section

we will rescale and simplify the Navier-Stokes equations (2.1.1)-(2.1.4) using lubrication

theory.

2.2 Scaling

Let us consider U to be a characteristic scale for the velocity. We will discuss in the

following how U is defined, depending on the case under consideration.

Let us introduce the following scales:

r = Lr∗, z = haz
∗, h(r) = h∗(r∗)ha, ur = Uu∗r , uθ = Uu∗θ, uz = Uha

L u∗z. The scale for
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Figure 2.1: Sketch of the vertical cross-section of the domain

the pressure p = p∗LµU
h2a

is obtained by balancing the pressure derivative with the leading

viscous terms.

2.2.1 Flow due to aqueous production

The flow due to the aqueous production is steady, thus we can drop the term with

the time derivative from the equations. Let us scale the velocity through the incoming

flux produced by ciliary body, which is known to be approximately constant (see 2.1),

U = F/2πrpch0. With the above scales we obtain the following dimensionless equations:

1

r∗
∂(r∗u∗r)

∂r∗
+

1

r∗
∂u∗θ
∂θ

+
∂u∗z
∂z∗

= 0, (2.2.1)

Reε2

(
u∗r
∂u∗r
∂r∗

+
u∗θ
r∗
∂u∗r
∂θ
−
u∗2θ
r∗

+ u∗z
∂u∗r
∂z∗

)
=

− ∂p∗

∂r∗
+ ε2

(
1

r∗
∂

∂r∗

(
r∗
∂u∗r
∂r∗

)
− u∗r
r∗2

+
1

r∗2
∂2u∗r
∂θ2

− 2

r∗2
∂u∗θ
∂θ

)
+
∂2u∗r
∂z∗2

(2.2.2)

Reε2

(
u∗r
∂u∗θ
∂r∗

+
u∗θ
r∗
∂u∗θ
∂θ

+
u∗ru

∗
θ

r∗
+ u∗z

∂u∗θ
∂z∗

)
=

− 1

r∗
∂p∗

∂θ
+ ε2

(
1

r∗
∂

∂r∗

(
r∗
∂u∗θ
∂r∗

)
−
u∗θ
r∗2

+
1

r∗2
∂2u∗θ
∂θ2

+
2

r∗2
∂u∗r
∂θ

)
+
∂2u∗θ
∂z∗2

(2.2.3)
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Reε3

(
u∗r
∂u∗z
∂r∗

+
u∗θ
r∗
∂u∗z
∂θ

+ u∗z
∂u∗z
∂z∗

)
=

− ∂p∗

∂z∗
+ ε3

(
1

r∗
∂

∂r∗

(
r∗
∂u∗z
∂r∗

)
+

1

r∗2
∂2u∗z
∂θ2

)
+ ε

∂2u∗z
∂z∗2

(2.2.4)

where Re = UL/ν is the Reynolds number. The dimensionless number ε2Re is normally

refered to in lubrication theory as reduced Reynolds number. With the chosen param-

eters we can estimate ε = 0.092, ε2 = 0.008, ε2Re = 9.35 · 10−5. These dimensionless

numbers are small with respect to 1, thus we can neglect the terms of order ε, ε2, ε2Re

and obtain the following simplified equations:

1

r∗
∂(r∗u∗r)

∂r∗
+

1

r∗
∂u∗θ
∂θ

+
∂u∗z
∂z∗

= 0 (2.2.5)

∂2u∗r
∂z∗2

=
∂p∗

∂r∗
(2.2.6)

∂2u∗θ
∂z∗2

=
1

r∗
∂p∗

∂θ
(2.2.7)

∂p∗

∂z∗
= 0 (2.2.8)

2.2.2 Flow due to the miosis

For the case of miosis we will scale the velocity U as L/T , where T = 1s (Repetto et

al. [11]) is the time of the contraction and scale time t = Tt∗. With this scaling the

equation (2.1.1) will become the same as (2.2.1) and the equations (2.1.2)-(2.1.4) will

become duplicated (2.2.2)-(2.2.4) with the additional term corresponding to the time

derivative ε2Re∂u∂t . For this scenario the reduced Reynolds number is ε2Re = 0.25. It is

much bigger than in the previous case, however, it is still relatively small with respect

to 1. Thus, as a first approach to the problem we still neglect the terms of the orders

ε, ε2, ε2Re to obtain the same simplified system, as (2.2.5)-(2.2.8). This justifies the

quasi-steady approach which we will use to model the flow with miosis.

2.2.3 The equation for the pressure

Due to the equations obtained above, miosis can be modeled with the quasi-steady

approach. Thus, we will model the iris motion by imposing the velocity distribution on

the upper boundary of the domain but keeping the domain fixed. For convenience, we

will describe here the equations that govern the flow due to the aqueous production as
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a particular case of the flow due to miosis, in which the velocity at the boundary (the

iris) is set equal to zero.

We assume that we have an axisymmetric motion of the iris, which we describe by

imposing the velocity v = (vr(r), 0, vz(r)). From the equation (2.2.8) we conclude that

p does not depend on z. Thus, we can integrate the equations (2.2.6) and (2.2.7) with

respect to z, applying no-slip boundary condition at z = 0 and the imposed velocity v

at z = h(r). We get the following equation for the velocity:

u∗ = −1

2
∇∗p∗z∗(h∗ − z∗) +

v∗r
h∗
z∗ (2.2.9)

In the equation the continuity equation (2.2.9) the pressure is still unknown. To deter-

mine it we integrate the continuity equation (2.2.5) with respect to z and using no-slip

boundary condition at z = 0 and the velocity v at z = h(r), we obtain the following

equation for the pressure:

∇∗ · (h∗3∇∗p∗) =
h∗

2
∇∗ · v∗ − v∗r · h∗

′
+ v∗z . (2.2.10)

In the dimensional form this equation will become:

1

12µ
∇ · (h3∇p) =

h

2
∇ · v − vr · h′ + vz. (2.2.11)

The boundary condition on the outer boundary of the posterior chamber is given by

the flux F produced by ciliary body. We compute q =
∫ h(r)

0 u dz = − h3

12µ∇p + hvr
2 .

Therefore,

F =

∮
r=rpc

q · (−r̂) dl =

∮
r=rpc

h3

12µ

∂p

∂r
− h

2
vrdl =

2πh3rpc
12µ

∂p

∂r
− πhvrrpc on r = rpc.

(2.2.12)

The second boundary condition is the imposed pressure at the pupil, which we put to

be equal to the reference value 0:

p = 0 at r = rp. (2.2.13)

Thus, using the lubrication theory we simplified the Navier-Stokes equations to the

equation for the pressure (2.2.11) subject to the boundary conditions (2.2.12)-(2.2.13).



Chapter 3

Model of iridotomy

3.1 Assumptions and Model

Let us start with the description of the mathematical model of the iridotomy.

3.1.1 Assumptions

• Geometry of iridotomy: Where convenient we assume that the iridotomy di-

ameter is small enough, so that the iridotomy can be modelled as a point hole

through the iris.

• Geometry of the posterior chamber: We assume the posterior chamber has an

axisymmetric height h(r). The shape of the domain is taken from medical images,

as described in §3.3.1.

• Thermal effects: We ignore thermal variations within the posterior chamber, as

these are likely to be much smaller than those in the anterior chamber (in which

thermal gradients drive the majority of the flow).

• Fluid mechanics: We treat the aqueous humour as an incompressible Newtonian

fluid, which is a good approximation. We also neglect gravity (since it would only

make a difference in the case of buoyant effects due to thermal differences). This

means that the pressure has to be understood as the departure from the hydrostatic

pressure distribution. Since the height of the posterior chamber is much less than

that of the anterior chamber we assume that lubrication theory applies. This is

also a good approximation.

11
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• Anterior chamber: We assume the pressure in the anterior chamber is constant

and set it equal to the reference value zero. Thus the pressures given in this section

are relative to the (assumed constant) pressure in the anterior chamber.

• Flow through the hole: We use Dagan formula (based on [16]), which states that

the volumetric flow of an incompressible Newtonian fluid through a circular hole

in a flat membrane for low-Reynolds-number flows equals a4π∆p/(8Sµ + 3aπµ),

where a is the hole radius, S is the thickness of the surface, ∆p is the pressure

difference between points on either side of the hole and µ is the shear viscosity of

the fluid.

3.1.2 Mathematical model

We consider a model of the posterior chamber with small holes representing iridotomies.

Since the posterior chamber is long and thin, we apply lubrication theory and using the

analysis in § 2.2.3 obtain the equation 1
12µ∇ · (h

3∇p) = h
2∇ · vr− vr ·h

′+ vz for the flow

in the posterior chamber. We assume there are Nh small holes, with the ith hole having

polar coordinates (di, φi), radius ai and a flux Qi coming out of it. By the results of

§ 2.2 the velocity profile can be written as

u = − 1

2µ
∇p · z (h− z) +

vrz

h

from which we obtain the depth integrated velocity as

q =

∫ h(r)

0
u dz = − h3

12µ
∇p+

hvr
2
,

The volumetric flux through the hole i is given by

Qi =

∮
ri=ai

q · (−r̂i) dl =

∮
ri=ai

h3

12µ

∂p

∂ri
− hvr

2
dl, (3.1.1)

where ri is the distance from the ith hole. Assuming that h is constant and equal to

hi and vr is a constant around the border of the ith hole it follows that ∂p/∂ri needs

to have an average value of 6µQi/(πaih
3
i ) around this border. By assuming the holes

have zero size, we can solve on the simple geometry rp < r < rpc, where rp is the

pupil diameter and rpc is the posterior chamber diameter. However, this approximation

requires ∂p/∂ri to tend to infinity at the hole. We define function f̂ = 6µQi
πh3i

ln
(
ri
ai

)
such

that, ∂f̂/∂ri = 6µQi/(πaih
3
i ). In this way f̂ satisfies the flux requirement, therefore, we
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subtract it from the pressure to regularise it. Hence we define a regularised pressure

preg = p−
Nh∑
i=1

6µQi
πh3

i

ln
ri
ai
. (3.1.2)

If we assume Dagan’s formula applies then Qi = a4
iπ∆pi/(8Sµ + 3aiπµ), where ∆pi

is the pressure drop across the hole, and, assuming a uniform pressure in the anterior

chamber, that we take to be the reference pressure of zero,

∆pi = preg|i +

Nh∑
j=1,i 6=j

6µQj
πh3

j

ln
dij
aj
, (3.1.3)

and therefore,

Qi =
πa4

i

8Sµ+ 3πµai
preg|i +

Nh∑
j=1,i 6=j

6a4
iQj

h3
j (8S + 3πai)

ln
dij
aj
, (3.1.4)

where dij is the distance between holes i and j. This can conveniently be written in a

matrix notation as MQ = b, where Q is the vector of volumetric fluxes, M is a matrix

of geometrical factors given by

Mij =

 1 if i = j

− 6a4i
h3j (8S+3πai)

ln
dij
aj

if i 6= j,
(3.1.5)

and b is the vector given by bi =
πa4i

8Sµ+3πµai
preg|i. We therefore have the governing

equation, written in terms of preg:

1

12µ
∇ ·

(
h3∇preg

)
= −

Nh∑
i=1

Qi
2πh3

i

∇ ·
(
h3∇ ln

ri
ai

)
+
h

2
∇ · vr − vr · h′ + vz =

= −
Nh∑
i=1

Qi
2πrih3

i

∂h3

∂ri
+
h

2
∇ · vr − vr · h′ + vz. (3.1.6)

The boundary condition on the outer boundary of the posterior chamber is given by the

flux F produced by ciliary body (2.2.12) and the condition at the pupil is given by an

imposed pressure (2.2.13)
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Therefore, we can rewrite the set of equations in terms of regularized pressure:

∇ ·
(
h3∇preg

)
= −

Nh∑
i=1

6µQi
πrih3

i

∂h3

∂ri
+ 12µ

(h
2
∇ · vr − vr · h′ + vz

)
(3.1.7)

subject to the boundary conditions:

Qi =
πa4

i

8Sµ+ 3πµai
preg|i +

Nh∑
j=1,i 6=j

6a4
iQj

h3
j (8S + 3πai)

ln
dij
aj

at the point i, i = 1, ..., Nh ,

(3.1.8)

∂preg
∂r

=
6µF

πrpch3
+

6µvr
h2
−

Nh∑
1

6µQi
πrih3

i

∂ri
∂r

flux boundary condition at r = rpc,

(3.1.9)

preg = −
Nh∑
1

6µQi
πh3

i

ln
ri
ai

at the pupil r = rp,

(3.1.10)

with the unknowns preg and Qi, i = 1, ..., Nh.

The relationship between the components of relative coordinate systems (ri, θi) with the

initial point in the hole (di, φi), and the coordinate system with the initial point at the

center of the pupil (r, θ) are given by:

ri =
√
r2 + d2

i − 2dir cos(θ − φi), θi − φi = tan−1

(
r sin(θ − φi)

r cos(θ − φi)− di

)
(3.1.11)

r =
√
r2
i + d2

i + 2diri cos(θi − φi), θ − φi = tan−1

(
ri sin(θi − φi)

di + ri cos(θi − φi)

)
(3.1.12)

Thus we obtained mathematical model of the iridotomy.

3.2 Solutions

We will introduce two different methods for solving the equation that have been used in

case of one hole and in case of multiple holes respectively. Both methods are based on

the finite difference scheme.
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3.2.1 Case of one hole

In the case of just one hole, we can rewrite the equation (3.1.7),

∇ ·
(
h3∇preg

)
= − 6µQhole

πrholeh
3
hole

∂h3

∂rhole
+ 12µ

(h
2
∇ · vr − vr · h′ + vz

)
(3.2.1)

where hhole is the posterior chamber height at the hole and rhole is the distance from the

hole, subject to

Qhole =
πa4

i

8Sµ+ 3πµai
preg|hole at the hole, (3.2.2)

∂preg
∂r

=
12µF

2πrpch3
+

6µvr
h2
− 12µQhole

2πrholeh
3
hole

∂rhole
∂r

flux boundary condition at r = rpc,

(3.2.3)

preg = −12µQhole

2πh3
hole

ln
rhole
ahole

at the pupil, (3.2.4)

These equations should be solved for the unknowns preg and Qhole. Assuming without

loss of generality that the hole is on the positive x-axis at a distance dhole from the centre

of the pupil, then we have the following relationships (3.1.11) - (3.1.12):

rhole =
√
r2 + d2

hole − 2dholer cos θ, θhole = tan−1

(
r sin θ

r cos θ − dhole

)

r =
√
r2
hole + d2

hole + 2dholerhole cos θhole, θ = tan−1

(
rhole sin θhole

dhole + rhole cos θhole

)
, (3.2.5)

where θ is the azimuthal angle and θhole is the azimuthal angle from the hole, and

therefore
∂rhole
∂r

=
r − dhole cos θ

rhole
.

Let us solve the system using finite difference method. Consider the domain in the polar

coordinates D = {rp ≤ r ≤ rpc}. On D let us introduce the uniform partition in θ and

non uniform in r:

ω = {(ri, θi) ∈ D, ri = ri−1 + si−1, θi = θi−1 + sθ, r0 = rp, rnr = rpc, θ0 = 0, θnθ = 2π}.
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In order to define the step sr we put the shape of the grid to be squares, such that

si = risθ. Then, the average step ŝ we will define as

ŝ(i) =


1
2s0 if i = 0,
1
2(si + si−1) if 1 ≤ i ≤ nr − 1,
1
2snr−1 if i = nr.

Let us introduce the grid function ρ(i):

ρ(i) =


rp + 1

4s0 if i = 0,

ri + 1
4(si − si−1) if 1 ≤ i ≤ nr − 1,

rpc − 1
4snr−1 if i = nr.

Since we have two unknowns preg and Qhole which are connected by the boundary con-

dition at the point of the hole (3.2.2), we will replace Qhole in the equations using this

formula. Thus, we need to solve the problem for preg only and then apply the condition

(3.2.2) to find the flux through the hole.

Let us define the following functions

a(r) = rh3 c(r, θ) =
6πa4

hole

(8S + 3πahole)rholeh
3
hole

∂h3

∂rhole

b(r) = h3 f(r, θ) = 12µ
(h

2
∇ · vr − vr · h′ + vz

)
g(2) = −6µF

πrpc
+ 6µvrh g(1)(θ) =

3a4
hole

(8S + 3πahole)h
3
hole

ln

(
r2
p + d2

hole − 2dholerp cos θj

a2
hole

)

g(3)(θ) =
6a4

holeh
3

(8S + 3πahole)rholeh
3
hole

∂rhole
∂r

.

Moreover, let us denote a+
i = a(ri+1/2), a−i = a(ri−1/2), where ri+1/2 = ri + si/2,

ri−1/2 = ri− si−1/2. For the discretized functions at the points of the grid ω we will use

the notation with indexes, i.e.

ai = a(ri) bi = b(ri) ci,j = c(ri, θj)

fi,j = f(ri, θj) g
(1)
j = g(1)(θj) g

(3)
j = g(3)(θj).

and the unknown function we denote y. Let us define i∗ to be the point in radial

direction of the grid ω which is closest to the point of the hole. Since we placed the hole

in positive x-axis, the point closest to the hole in ω will be (ri∗ , 0). We will use second

order finite difference method for the non-uniform grid. The scheme is taken from the
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book by Samarsky and Nikolaev [17] (available in russian only). The equation (3.2.1)

will become:

1

ρŝ

(
a−i
si−1

yi−1,j −

(
a−i
si−1

+
a+
i

si

)
yi,j +

a+
i

si
yi+1,j

)
+
bi
ρ2

yi,j−1 − 2yi,j + yi,j+1

s2
θ

+

+ ci,jyi∗,0 = fi,j , 1 ≤ i ≤ nr − 1, 0 ≤ j ≤ nθ − 1. (3.2.6)

We also take into account periodicity condition:

y(i, j) = y(i, j + nθ), j = 0,−1. (3.2.7)

The boundary condition at the pupil (3.2.4) can be written as

y0,j + g
(1)
j yi∗,0 = 0, 0 ≤ j ≤ nθ − 1 (3.2.8)

To discretize (3.2.3) we use ”ghost” point method:

−
a−nr

ρŝsnr−1
(ynr,j − ynr−1,j) +

bnr
ρ2
·

(
ynr,j−1 − 2ynr,j + ynr,j+1

s2
θ

)
+ cnr,jyi∗,0−

−
a−nr
ρŝ

g
(3)
j yi∗,0 = fnr,j −

r

ρŝnr
g(2) 0 ≤ j ≤ nθ − 1, (3.2.9)

Therefore, we obtained (nr + 1)nθ equations for (nr + 1)nθ unknowns yi,j . Solving the

system directly requires lots of memory, since the dimension of the matrix is (nr+1)2 ·n2
θ.

Thus, in order to reduce the computational complexity and speed up the calculations

we will use the modified method of reduction.

We put our system into the following vector form:

− Y j−1 + CY j − Y j+1 +DjY 0 = F j , 1 ≤ j ≤ N − 1

− Y N−1 + CY 0 − Y 1 +D0Y 0 = F 0, j = 0, Y 0 = Y N . (3.2.10)

where N = nθ. Here for j = 0, . . . N − 1 we used the following notations:

Y j = (y(1, j), y(2, j), . . . , y(nr, j)),

F j = (t1f̂(1, j), t2f̂(2, j), . . . , tnr f̂(nr, j)),

CY j =
(
(2E − t1Λ)y(1, j), . . . , (2E − tnrΛ)y(nr, j)

)
,

DjY 0 = (t1ĉ1,jy(i∗, 0), . . . , tnr ĉnr,jy(i∗, 0)).
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Moreover,

f̂(i, j) =

{
−f(i, j) if 1 ≤ i ≤ nr − 1,

−f(i, j)− rpc
ρŝ g

(2) if i = nr.

ĉ(i, j) =


−c(1, j) +

a−1
ρs0ŝ

g
(1)
j if i = 1.

−c(i, j) if 1 ≤ i ≤ nr − 1,

−c(nr, j) +
a−nr
ρŝ g

(3)
j if i = nr.

and the difference operator Λ is given by the formula:

Λy =


1
ρŝ

((
a−

s0
+ a1

s1

)
y1,j + a+

s1
y2,j

)
if i = 1,

1
ρŝ

(
a−

si−1
yi−1,j −

(
a−

si−1
+ a+

si

)
yi,j + a+

si
yi+1,j

)
if 2 ≤ i ≤ nr − 1,

− a−

ρiŝsi−1
(ynr,j − ynr−1,j) if i = nr,

and, finally, E is a unit matrix, ti = ρ2(i)sθ/b
3
i . With these notations C and Dj are

matrices of the size nr × nr. The row i of C correspond to the row i of (2E − tiΛ).

Note, that matrix C is tridiagonal, which will allow us to use Thomas algorithm for

inverting it. Matrix Dj has zeros entries everywhere, but the column i∗ is the vector

(t1ĉ1,j , t2ĉ2,j , . . . , tnr ĉnr,j). Thus, where it is convenient and possible, Dj can be treated

as a vector. To solve this system we modified the reduction method described in [17] to

consider also the additional term with y(i∗, 0).

3.2.1.1 Modified reduction method

Let us describe in details the modified method of reduction for solving the system (3.2.10)

as in [17]. The number of points in θ for the method should be a power of 2, N = 2n. In

(3.2.10) for j = 2, 4, 6, . . . , N − 2 let us eliminate the variables Y j with odd numbers

from two neigbouring equations. We will get

− Y j−2 + C(1)Y j − Y j+2 +D
(1)
j Y 0 = F

(1)
j , j = 2, 4, . . . , N − 2,

− Y 2 + C(1)Y 0 − Y 2 +D
(1)
j Y 0 = F

(1)
0 ,

where

C(1) = C2 − 2E, F
(1)
j = F

(0)
j−1 + CF

(0)
j + F

(0)
j+1, D

(1)
j = D

(0)
j−1 + CD

(0)
j +D

(0)
j+1,

F
(1)
0 = F

(0)
N−1 + CF

(0)
0 + F

(0)
1 , D

(1)
0 = D

(0)
N−1 + CD

(0)
0 +D

(0)
1 ,F

(0)
j = F j , D

(0)
j = Dj .
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Then, the unknowns Y j with odd numbers can be found from the equations:

C(0)Y j = F
(0)
j + Y j−1 + Y j+1 −D(0)

j Y 0, j = 1, 3, 5, . . . , N − 1, C(0) = C

The process of elimination can be continued. After the step l we will get the system of

equations for the unknowns Y j with j being a multiple of 2l:

−Y j−2l + C(l)Y j − Y j+2l +D
(l)
j Y 0 = F

(l)
j , j = 2l, 2 · 2l, . . . , N − 2l,

−Y 2l + C(l)Y 0 − Y 2l +D
(l)
j Y 0 = F

(l)
0 ,

along with the group of equations

C(k−1)Y j = F
(k−1)
j + Y j−2k−1 + Y j+2k−1 −D(k−1)

j Y 0, (3.2.11)

j = 2k−1, 3 · 2k−1, 5 · 2k−1, . . . , N − 2k−1, k = l, l − 1, . . . , 1, C(k) = (C(k−1))2 − 2E

for obtaining rest of the variables. F
(k)
j and D

(k)
j are defined recurrently for k =

1, 2, ..., n− 1 as

F
(k)
j = F

(k−1)

j−2k−1 + C(k−1)F
(k−1)
j + F

(k−1)

j+2k−1 , D
(k)
j = D

(k−1)

j−2k−1 + C(k−1)D
(k−1)
j +D

(k−1)

j+2k−1 ,

j = 2k, 2 · 2k, 3 · 2k, . . . , N − 2k, F
(0)
j = F j , D

(0)
j = Dj , (3.2.12)

F
(k)
0 = F

(k−1)

N−2k−1 + C(k−1)F
(k−1)
0 + F

(k−1)

2k−1 , D
(k)
0 = D

(k−1)

N−2k−1 + C(k−1)D
(k−1)
0 +D

(k−1)

2k−1 ,

For the step n− 1 we will obtain the system for Y 0 and Y 2n−1 (Y N = Y 0):

C(n−1)Y 2n−1 + (D
(n−1)
2n−1 − 2E)Y 0 = F

(n−1)
2n−1 ,

−2Y 2n−1 + (C(n−1) +D
(n−1)
0 )Y = F

(n−1)
0 . (3.2.13)

By solving this system we will find Y 0, Y 2n−1 and Y N = Y 0. The rest of the unknowns

can be found from (3.2.11) as the solutions of the equations:

C(k−1)Y j = F
(k−1)
j + Y j−2k−1 + Y j+2k−1 −D(k−1)

j Y 0,

j = 2k−1, 3 · 2k−1, 5 · 2k−1, . . . , N − 2k−1, k = n, n− 1, . . . , 1.
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However, before we solve (3.2.13) we would like to use complementary vectors p
(k)
j , q

(k)
j

and l
(k)
j , m

(k)
j connected to F

(k)
j and D

(k)
j with the following relations

F
(k)
j = C(k)p

(k)
j + q

(k)
j ,

D
(k)
j = C(k)l

(k)
j + m

(k)
j , j = 0, 2k, 2 · 2k, 3 · 2k, . . . , N − 2k. (3.2.14)

Note that Dj is a matrix which has zero entries everywhere, except of the column i∗.

Thus, where convenient Dj is considered to be a vector. We will introduce the way to

find p
(k)
j , q

(k)
j , and l

(k)
j , m

(k)
j can be found by following the same procedure. Using the

recurrent formulas (3.2.12) we will obtain the relations

C(k−1)S
(k−1)
j = q

(k−1)
j + p

(k−1)

j−2k−1 + p
(k−1)

j+2k−1 ,

p
(k)
j = p

(k−1)
j + S

(k−1)
j ,

q
(k)
j = 2p

(k)
j + q

(k−1)

j−2k−1 + q
(k−1)

j+2k−1 , (3.2.15)

j = 2k, 2 · 2k, , 3 · 2k, . . . , N − 2k, k = 1, 2, . . . , n− 1,

q
(0)
j = F j , p

(0)
j = 0, j = 1, 2, , . . . , N − 1,

from which we can find p
(k)
j , q

(k)
j for j 6= 0 and formulas

C(k−1)S
(k−1)
0 = q

(k−1)
0 + p

(k−1)

2k−1 + p
(k−1)

N−2k−1 ,

p
(k)
0 = p

(k−1)
0 + S

(k−1)
0 ,

q
(k)
0 = p

(k)
0 + q

(k−1)

2k−1 + q
(k−1)

N−2k−1 , k = 1, 2, . . . , n− 1, (3.2.16)

q
(0)
0 = F 0, p

(0)
0 = 0,

for finding p
(k)
0 , and q

(k)
0 . Now we can solve system (3.2.13). From (3.2.15) and (3.2.16)

for k = n− 1 we can obtain

q
(n−1)
2n−1 = 2p

(n−1)
2n−1 + q

(n−2)
2n−2 + q

(n−2)
3·2n−1 ,

q
(n−1)
0 = 2p

(n−1)
0 + q

(n−2)
2n−2 + q

(n−2)
3·2n−1 ,

from which we can find

q
(n−1)
0 − q

(n−1)
2n−1 = 2(p

(n−1)
0 − p

(n−1)
2n−1 ). (3.2.17)

The analogous relation can be obtained for l
(k)
j and m

(k)
j

m
(n−1)
0 −m

(n−1)
2n−1 = 2(l

(n−1)
0 − l

(n−1)
2n−1 ). (3.2.18)
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Let us subtract the first equation of (3.2.13) from the second one and apply the formulas

(3.2.17),(3.2.18) to obtain

(C(n−1) + 2E)(Y 0 − Y 2n−1) +
(
D

(n−1)
0 −D(n−1)

2n−1

)
Y 0 =[

C(n−2)
]2(

Y 0 − Y 2n−1 +
(
l
(n−1)
0 − l

(n−1)
2n−1

)
Y 0

)
=
[
C(n−2)

]2(
l
(n−1)
0 − l

(n−1)
2n−1

)
.

Assuming that C(n−2) is not singular, we can obtain the relation

Y 2n−1 =
[
E + l

(n−1)
0 − l

(n−1)
2n−1

]
Y 0 − p

(n−1)
0 + p

(n−1)
2n−1 . (3.2.19)

Therefore, using (3.2.19), from the second equation of (3.2.13) we get

(C(n−1) − 2E)
(
Y 0 − l

(n−1)
0 Y 0

)
+ 2l

(n−1)
2n−1 Y 0 =F

(n−1)
2n−1 − 2p

(n−1)
0 + 2p

(n−1)
2n−1 =

= (C(n−1) − 2E)p
(n−1)
0 + q

(n−1)
2n−1 + 2p

(n−1)
2n−1

We denote B = (C(n−1)−2E). This matrix can be easily inverted, thus, we can find Y 0

from the relations

Bs1 = 2l
(n−1)
2n−1 ,

Bs2 = q
(n−1)
2n−1 + 2q

(n−1)
2n−1 , (3.2.20)

(E + l
(n−1)
0 + s1)Y 0 = p

(n−1)
0 + s2.

where s1 and s2 are the vectors in first two equations and matrices which have zero entries

everywhere except the column i∗ in the last one. We can find Y 2n−1 from (3.2.19) and

the rest of the variables can be found from the formulas

Y N = Y 0,

C(k−1)t
(k−1)
j = q

(k−1)
j + Y j−2k−1 + Y j+2k−1 −m

(k−1)
j Y 0,

Y 0 = p
(k−1)
j + tj

(k−1) − l
(k−1)
j Y 0, (3.2.21)

j = 2k−1, 3 · 2k−1, 5 · 2k−1, . . . , N − 2k−1,

k = n− 1, n− 2, . . . , 1.

Therefore, the equations (3.2.15)-(3.2.16), (3.2.19)-(3.2.21) describe the modified method

of reduction for solving the system (3.2.10). For inverting the matrices C(n−1) and B we
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use the factorizations proposed in [17]

C(k−1) =
2k−1∏
l=1

Cl,k−1, Cl,k−1 = C − 2 cos
(2l − 1)π

2k
E, (3.2.22)

B =

[
n−2∏
k=1

2k−1∏
l=1

Cl,k−1

]2

(C − 2E)(C + 2E). (3.2.23)

Note that for given tridiagonal C, all the matrices Cl,k−1 are tridiagonal as well. Thus,

for inverting them we use tridiagonal matrix algorithm (TDMA), also known as Thomas

algorithm (can be found in [17]).

The equations were coded in Python and the results were obtained as shown in § 3.3.

3.2.2 Case of multiple holes

The equations for the regularized pressure in case when we have Nh iridotomies are

derived in § 3.1.2:

∇ ·
(
h3∇preg

)
= −

Nh∑
i=1

6µQi
πrih3

i

∂h3

∂ri
+ 12µ

(h
2
∇ · vr − vr · h′ + vz

)
(3.2.24)

Qi =
πa4

i

8Sµ+ 3πµai
preg|i +

Nh∑
j=1,i 6=j

6a4
iQj

h3
j (8S + 3πai)

ln
dij
aj

at the point i, i = 1, ..., Nh ,

(3.2.25)

∂preg
∂r

=
6µF

πrpch3
+

6µvr
h2
−

Nh∑
1

6µQi
πrih3

i

∂ri
∂r

flux boundary condition at r = rpc,

(3.2.26)

preg = −
Nh∑
1

6µQi
πh3

i

ln
ri
ai

at the pupil r = rp,

(3.2.27)

where ri is given by relations (3.1.11), hi = h(di) - height of the domain in the point of

the hole.

The idea of solving the equation is to make an iterative process. DenoteQ = (Q1, . . . , QNh)

- vector of fluxes through the holes. By knowing Q we can find preg and vice versa. We

start from initial configuration for Q(0) = 0. With the given Q(0) we can find p
(0)
reg by
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solving the equation (3.2.24) with the boundary conditions (3.2.26)-(3.2.27). Then ,

from the condition (3.2.25) we find Q(1). Thus, step k consists of the following proce-

dure: for given Q(k) we solve the system to find p
(k)
reg, while not reaching given tolerance

ε : ‖Q(k) − Q(k−1)‖ < ε. For every k the problem can be solved using finite difference

method. The discretization is similar to the case one hole. The grid ω, step s, average

step ŝ and grid function ρ are defined in the same way as in § 3.2.1. Then, the equation

(3.2.24) we will write as

1

ρŝ

(
a−i
si−1

yi−1,j −

(
a−i
si−1

+
a+
i

si

)
yi,j +

a+
i

si
yi+1,j

)
+
bi
ρ2

yi,j−1 − 2yi,j + yi,j+1

s2
θ

= fi,j ,

1 ≤ i ≤ nr − 1, 0 ≤ j ≤ nθ − 1, (3.2.28)

where a+
i , a

−
i , bi are defined in the same way as before, f(r, θ) = −

∑Nh
i=1

6µQ
(k)
i

πrih3i

∂h3

∂ri
+

12µ
(
h
2∇ · vr − vr · h

′ + vz

)
, fi,j = f(ri, θj). The boundary conditions (3.2.26)-(3.2.27)

can be written as

y0,j = −
Nh∑
1

3µQi
πh3

i

ln

(
r2
p + d2

hole − 2dholerp cos θj

a2
hole

)
, 0 ≤ j ≤ nθ − 1, i = 0

(3.2.29)

−
a−i

ρŝsnr−1
(ynr,j − ynr−1,j) +

bi
ρ2
·

(
ynr,j−1 − 2ynr,j + ynr,j+1

s2
θ

)
=

= fnr,j −
r

ρŝ

(
− 6µF

πrpc
+

Nh∑
1

6µh3Qi
πrih3

i

∂ri
∂r

)
0 ≤ j ≤ nθ − 1, i = nr (3.2.30)

where (3.2.27) is discretized using the ”ghost point” method. Therefore, for each iterative

step k with given Q(k) we will find corresponding preg by solving the system of discretized

equations (3.2.28) - (3.2.30). In order to speed up the computational process the method

called ”complete reduction” was used for solving the linear system. The method is

described in [17]. It can be also done with the method from § 3.2.1.1, with Dj being a

zero matrix. Therefore, we will not describe it here. The equations were coded and the

results are shown in § 3.3

3.3 Results

In this section we will present and analyse the results obtained for the iridotomy model

described above. All the simulations were done in Python using the packages numpy,



24

(a) Ultrasound image of the anterior part of
the human eye

(b) Interpolated height of the posterior cham-
ber

Figure 3.1: The shape of the posterior chamber

scipy and ,matplotlib packages. The resolution in the θ component was taken in the

range 210 − 212, and in range 400 − 600 in r component. First we will introduce the

function h, which we used for all the simulations. Then we will proceed to the results

for two different scenarios: the flow due to the aqueous production (§ 3.3.2) and the flow

due to miosis (§ 3.3.3). Then, we will compare the obtained results in § 3.3.4.

3.3.1 Geometry

For all the simulations we used a realistic geometry taken from an ultrasound picture of

the domain (fig. 3.1a). Since the posterior chamber is located behind the iris that is not

a transparent tissue other optically based techniques, such as OCT (optical coherence

tomography) cannot be used to visualise the posterior chamber. In order to obtain high

resolution image very high frequency ultrasound scans should be used. Since such an

instrument was not available in the working group asit is not normally employed in the

clinical practice, we analysed an image freely available on the Internet. We proceeded by

measuring the height of the posterior chamber for left part of the image in MatCad for 20

points. Then, we used the Python function PchipInterpolator from the scipy.interpolate

package, which for given arrays x and y performs a monotone smooth interpolation.

Therefore, we obtained an approximate height of the domain (which we consider to be

axisymmetric) and it is shown in a figure 3.1b. The ultrasound scan resolution is not

good enough to resolve the tiny passage between the lens and the iris. Thus, for the

height of the iris-lens channel we assumed the value of ∼ 7 µm ([6])
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(a) (b)

(c) (d)

Figure 3.2: The pressure, velocity (a,c,d) and wall shear stress on the iris (b) without
the iridotomy

3.3.2 Flow due to aqueous production

We are interested in the pressure distribution, velocity profile and flux through the

iridotomy. Figures 3.2-3.3 represent the results for the flow without the iridotomy (fig.

3.2), and with the iridotomy of radii 50µm and 100 µm (fig. 3.3). The hole is located

along the positive x-axis, at a distance of 5 mm from the center of the pupil. Figure 3.2

(a) and (b) represents the view on the domain from the top, the inner circle represents

the pupil, the outer one the boundary of the posterior chamber. In (a) the color-bar

represents the pressure distribution and the arrows are the vertically averaged velocity

vectors. In (b) the color-bar describes the wall shear stress on the domain. In figures

(c) and (d) the x-axis is the radial coordinate r spanning the region from the radius

of the pupil (left) to the outer boundary of the posterior chamber (right). Note, that

the pressure along the radial line through the iridotomy and the wall shear stress look

very similar to each other for different sizes of iridotomy, just differing in magnitude.
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(a) (b)

(c) (d)

Figure 3.3: Pressure distribution and average velocity vectors (a,b) and the average
velocity on the radial line through iridotomy (c,d). Radius of iridotomy in (a,c) is 50µm,

in (b,d) - 100µm

Therefore, in the figure 3.3 we plotted only the pressure distribution and average velocity

vectors (a,b) and the average velocity distribution along the radial line through iridotomy

(c,d).

From these figures we can observe that the pressure distribution along the radial line is

almost constant everywhere and it is decreasing rapidly close to the pupil. This is due

to the fact that the channel iris-lens is very thin compared to the rest of the domain.

Note that the maximum pressure in the posterior chamber decreases with increasing size

of the iridotomy; however, it is relatively small even for small iridotomies. The wall

shear stress on the iris is also decreasing with the increasing size of the hole. We observe

that the shear stress is highest around the pupil and, in case of bigger holes, around the

iridotomy as well. The velocity profile increases in magnitude towards the pupil and has

a discontinuity across the point of the iridotomy. The table 3.1 shows the percentage of

the flux through the hole and the relative error in terms of flux conservation for different
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Radius of the iridotomy ahole Flux through the iridotomy Qhole Relative error

10 µm 0.09% 0.35%

50 µm 33.72% 0.33%

100 µm 87.58% 0.29%

Table 3.1: The percent of the flux through the iridotomy for different sizes of the hole

Figure 3.4: Flux percentage through the iridotomy out of the total incoming flux
depending on different radii of iridotomy for different places of the hole

sizes of the iridotomy. The iridotomy is placed at the distance of 5 mm from the center

of the pupil. The relative error here is a percentage of deviation of the total outflow

from the inflow, error= (Qhole +Qpupil − F )/F · 100%, where Qpupil is the flux going out

of the pupil.

Figure 3.5: Velocity of the jet through the iridotomy vs size of iridotomy
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In figure 3.4 we plotted the percentage of flux through the hole out of the total flux

produced by ciliary body depending on the size of the iridotomy. The green line corre-

sponds to the case in which the iridotomy is placed at a distance 4 mm from the center

of the pupil, the blue line - 5 mm and the yellow one - 6 mm. This plot suggests that

the place of the iridotomy is not affecting much the flux through the iridotomy, whereas

with the variation of the radius of the hole the flux varies from 0 to approximately 100

%.

Another possible concern one might have in case of iridotomy is the magnitude of the

velocity of the jet from the iridotomy. We are interested in it, since high velocities might

cause the detachment of endothelium cells from the cornea (the inner boundary of the

anterior chamber). This was postulated by Kaji (2003) [18]. The figure 3.5 shows the

velocity of the jet through the hole for different sizes of the hole. We calculated it as a

flux through the iridotomy divided by the area of the iridotomy U = Qhole/πa
2
hole. This

curve has a maximum of 2.3 mm/s in correspondence of the radius 60µm. However,

even for the maximum, the velocity is still very small. The value of Reynolds number

corresponding to the jet is Uahole/ν ≈ 0.37. This is extremely small and thus it is non

conceivable that the jet might change significantly the wall shear stress on the cornea.

Pupillary block.

Another condition we are interested in is a complete pupillary block. If this happens

the iridotomy needs to be performed, to avoid abnormal growth that might cause a

closed-angle glaucoma. Thus, we put in our model the flux coming out of the pupil to

be zero. This will modify the boundary condition at the pupil, however the methods

for the solution will not change. The results for the radius of the iridotomy 50µm are

shown on the figure 3.6. For this case we are interested in the maximum of the pressure

depending on the size of the iridotomy. The results show that for very small iridotomy

size (∼ 10µm) the pressure growth is almost 30mmHg. By the increasing of the iridotomy

size, the maximum pressure decreases very rapidly(fig. 3.7). Indeed, for an iridotomy

with a radius of 25µm the maximum pressure drop becomes less then 1mmHg, and

for one with radius 50µm it is less then 0.1mmHg. Therefore, it is essential in case of

pupillary block to have an iridotomy with a radius larger then 50µm to normalize the

pressure.

Multiple holes The case of multiple iridotomies is not very common in ophthalmology.

However, there are some cases when it is performed. In figures 3.8 - 3.10 we show the

results for the case of multiple iridotomies. Figure 3.8 represents case of 2 holes with

radii 40µm and 50µm. In this case the iridotomies are pleced in front of each other at
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(a) (b)

(c) (d)

Figure 3.6: The pressure, velocity (a,c,d) and wall shear stress on the iris (b) in the
case of pupillary block with iridotomy of radius 50µm

opposite sides of the pupil. The fluxes through the holes in this case are 12.43% and

29.57% out of the total incoming flux. In figure 3.9 the result for 3 holes is shown with

radii 40, 45, 40µm and placed symmetrically in the domain. The fluxes out of the holes

are 12.1%, 19.15%, 12.1% respectively. And finally, the figure 3.10 represents the case of

4 holes with radii 40µm each and placed symmetrically on the eye. The flux percentage

out of each iridotomy in this case is 11.56%.

3.3.3 Flow due to miosis

For the case of miosis the flow is more intense due to the imposed velocity on the iris.

Let us denote with rc the radius of the pupil after the contraction, rc < rp. We recall

that we use here the quasi steady approach and solve the problem in the fixed domain

coinciding with the initial shape of the posterior chamber. However, we impose a velocity

distribution along the iris that depends on the final configuration of the iris at the end of
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Figure 3.7: Maximum pressure in case of pupillary block depending on the size of
the iridotomy, the place of the iridotomy is on the distance 5mm from the center of the

pupil

(a) (b)

Figure 3.8: 2 holes h and o placed in (5mm, 0◦), (6mm, 180◦) in polar coordinates,
with radii 40µm and 50µm respectively. (a) represents pressure distribution and average
velocity vectors, in (c) - blue line the average velocity on the radial line through the

hole h, the green line - through the hole o.

the pupil contraction. Unfortunately, we do not know exactly how the iris moves during

contraction, and a better analysis could be done if more clinical data were available.

However, we will make some assumptions that seem to be physically reasonable in order

to determine a suitable velocity profile for the iris. Let vr be the velocity in radial

direction, and vz - vertical velocity. We suppose that the iris on the posterior chamber is

not moving, v(rpc) = 0, and from rp to rc the iris is moving horizontally, thus vz(rp) = 0.

We put maximum velocity in the radial direction to be vr,max = (rp−rc)/T and vr to be

a linear function, vr = − rp−rc
T · r−rpcrp−rpc (fig.3.12a). For vz we choose the function which

has its maximum vz,max such that the domain remains concave, and put it to satisfy the
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(a) (b)

Figure 3.9: 3 holes h,o,l placed in the polar coordinates (5mm, 0◦), (6mm, 120◦),
(5.5mm, 240◦) with radii 40, 45, 40µm respectively. (b) shows pressure distribution
and average velocity vectors, in (d) blue line is the velocity along the radial line through

hole h, red line - through hole l, green one - through hole o.

(a) (b)

Figure 3.10: 4 holes h,o,l,e placed in the polar coordinates (5mm, 0◦), (6mm, 90◦),
(5.5mm, 180◦), (4.5mm, 270◦) all with radius 40µm. (b) shows pressure distribution and
average velocity vectors, in (d) blue line is the velocity along the radial line through
hole h, red line - through hole l, green one - through hole o, light blue - through the

hole e

mentioned assumptions: vz = −vz,max
T sin

π(r−rp)
rpc−rp (fig. 3.12b). We will introduce here the

results for different sizes of the holes and for different rc (different imposed velocities).

In the case of miosis we calculate the total incoming flux as sum of the fluxes caused

by aqueous production and moving of the iris Qtot = F +Qwall. Thus we will calculate

the percentage of the flux through the iridotomy as Qhole/Qtot · 100%. On the figure

3.13 the result for radius of contraction rc = 1.5mm and radius of iridotomy 100µm is

shown. The flux percentage through the iridotomy in this case is 85%. On the figure

3.14 we show the result for rc = 1mm and iridotomy size ahole = 50µm. We observe that
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Figure 3.11: Vertical cross section of the axisymmetric domain in case of miosis

(a) (b)

Figure 3.12: The radial and vertical velocities imposed on the iris (rc = 1.21mm)

the pressure is negative and the fluid goes into the posterior chamber both through the

iridotomy and the pupil. The flux through the iridotomy in this case is 36%. The figure

3.15a represents the comparison plot for different radius of the contraction rc = 1, 1.5, 2

mm depending on radius of the iridotomy ahole. The green line denotes the radius of the

contraction 1 mm from the center of the pupil, the yellow line - 2 mm and the light blue

one - 1.5 mm. This plot suggests that the radius of the contraction of the domain is

not affecting the flux percentage out of the total flux, whereas with the variation of the

radius of the hole the flux varies roughly from 0 to 100 %. This is similar to what we

observe in the case of the steady production/drainage flow. The plot 3.15b shows the

flux through the hole and the flux through the pupil for different rc (which influences the

velocity imposed on the iris). We observe that the fluxes become negative for rc < 1.2

mm, meaning that for such cases aqueous humor enters the posterior chamber through

the pupil and the iridotomy.

As in the case of aqueous production, we want to observe the velocity of the jet through

the hole 3.16. The curve is very similar to the one in figure 3.5, however, the magnitude
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(a) (b)

Figure 3.13: Pressure distribution and average velocity vectors (a) and average ve-
locity on the radial line through iridotomy (b) during miosis with contraction radius

rc = 1.5mm and iridotomy with radius ahole = 100µm

(a) (b)

Figure 3.14: Pressure distribution and average velocity vectors (a) and average ve-
locity on the radial line through iridotomy (b) during miosis with contraction radius

rc = 1mm and iridotomy with radius ahole = 50µm

of the velocity is different. In the case of miosis the maximum magnitude is almost

40 times bigger than in the case of the flow due to aqueous production only, and the

Reynolds number can reach a value of ≈ 10. Thus, in this case these can be a variation of

wall shear stress on the cornea in the region opposite of iridotomy. The feasibility of such

an assumption should be verified modelling the jet behavior in the anterior chamber.

This is beyond the scope of this thesis work, but it is an endeavour that will deserve

future attention.
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(a) (b)

Figure 3.15: (a) flux percentage through the iridotomy out of the total flux Qtot

depending on different radii of iridotomy aholefor different radii of the contraction rc =
1, 1.5, 2mm. (b) Ratio of flux through the hole (red line) and the flux through the

pupil (blue) to the incoming flux F , ahole = 5µm

Figure 3.16: Velocity of the jet through the iridotomy vs size of iridotomy

3.3.4 Conclusions

From the results in previous section we can make the following conclusions.

• The iridotomy should be at least 40 microns to get a significant impact on the

flow. For the small iridotomies (rad. 10µm) the flux through the hole is very small

with respect to the total flux. For iridotomies with a radius of 80−100µm, almost

all the flux goes out of the hole.
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• The size of the iridotomy has a big impact on the flux through the iridotomy,

whereas the location of the hole has not.

• In the case of pupillary block small iridotomies induce extremely high intraoccular

pressures. Thus, for normalizing the pressure in this case one needs the iridotomy

of radius at least 50µm.

• During the flow with miosis and the flow due to the aqueous production the per-

centage of the flux through the iridotomy is very similar for the same sizes of the

hole.

• In case of miosis the percentage of the flux through the hole doesn’t differ much

with various velocities imposed on the iris.

• During miosis the velocity of the jet through the hole is almost 40 times bigger

than during the normal case. This is the situation that one has to avoid to prevent

cells detachment from cornea.

• The velocity imposed on the iris is very roughly approximated, thus for a bet-

ter model we need more clinical data, preferably medical images of the posterior

chamber before and after pupil contraction.



Chapter 4

Hole-ICL Model

4.1 Mathematical model and assumptions

We are interested in modelling the aqueous flow in the case of implanted Hole-ICL into

the posterior chamber of the eye. In the figure 4.1b the cross section of the eye with

Hole-ICL is shown. For simplicity we consider axisymmetric domain. For the first model

of the problem we assume that the lens is a axisymmetric surface of radius rl, with a

(a) (b)

Figure 4.1: The Hole-ICL (a) and the velocity profile with Hole-ICL implanted into
the posterior chamber (b), Kawamorita et al. [1]

small hole of radius r0 in the center. Since the hole is in the center of the lens and both

the geometry of the lens and of the posterior chamber are axisymmetric we can consider

the flow to be axisymmetric as well. We split the domain of the posterior chamber into

three regions with heights hi, i = 1, 2, 3 (as it is shown in figure 4.2). Let us define region

1 to be the area without the Hole-ICL, region 2 is the domain between the Hole-ICL

and the natural lens, and region 3 is the one between the Hole-ICL and the iris. For

every region we want to apply lubrication theory in order to simplify the Navier-Stokes

36
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Figure 4.2: The vertical cross section of an axisymmetric domain

equations. Indeed, according to the table 4.1 each region can be considered long and

thin and, as we did in § 2.2.3 we can drop the terms of order ε2, ε2Re compared to

order 1 terms in the equations (2.2.1)-(2.2.4). Therefore, for each domain we write the

equation for the pressure pi, i = 1, 2, 3 using lubrication theory as in § 2.2.3,

d

dr

(
h3
i r
d

dr
pi

)
= 0, i = 1, 2, 3.

The corresponding velocities and depth averaged velocities in each domain are

ui = − 1

2µ

d

dr
pi · z (hi − z) ⇒ qi =

∫ h(r)

0
ui dz = − h3

i

12µ

d

dr
pi, i = 1, 2, 3.

Region 1 2 3

Length of the region, L, mm 2 4,5 2

Maximum height, hmi , mm 0.7 0.1 0.1

ε = hmi /L 0.35 0.022 0.05

ε2 0.12 4.94 · 10−4 2.5 · 10−3

ε2Re 5.71 · 10−4 2.62 · 10−5 5.8 · 10−5

Table 4.1: Characteristic values for each region of the posterior chamber

In this chapter we will introduce two different submodels for describing the flow. In the

first one (§ 4.2) we will consider the hole in the lens to be of a finite size, whereas in the

second model (§ 4.3) the hole is a point hole. The significant difference is that for the

point-hole model we have to introduce the regularised pressure as we did for the case of

iridotomy. We will observe that both models produce the same results.



38

4.2 Model with finite-size hole

We consider now the lens as the annulus r0 < r < rl. The inflow in the ciliary body

is caused by aqueous production, and is equal to F = 3 µl/min. Thus, on the outer

boundary of the domain we have the condition dp1
dr = 6µF

πrpch31
, r = rpc. On the pupil

we will impose zero pressure, p3 = 0, r = rp. We want the pressure to be continuous

on the edge of the lens, p1 = p2, p1 = p3, in r = rl and the flux to be conserved

Q2 + Q3 = F , where Q2, Q3 are the fluxes entering the regions 2 and 3 respectively.

The last boundary condition is the one on r0 and it is taken from Dagan’s formula:

Q2 = π∆p2|ir4
0/(8Slµ+3πr0), where Sl is the thickness of the Hole-ICL and µ is dynamic

viscosity.

Therefore, we can write the final equations considering the axisymmetric flow

d

dr

(
h3
i r
d

dr
pi

)
= 0, i = 1, 2, 3 (4.2.1)

dp1

dr
=

6µF

πrpch3
1

flux boundary condition on r = rpc (4.2.2)

p3 = 0 on r = rp (4.2.3)

r4
0π

16µS + 3µπr0
p2 =

πr0h
3
2

6µ

dp2

dr
flux through the hole in the lens r = r0 (4.2.4)

p1 = p2 condition on r = rl (4.2.5)

p1 = p3 condition on r = rl (4.2.6)

dp2

dr

πrlh
3
2

6µ
+
dp3

dr

πrlh
3
3

6µ
= F peservation of the flux on r = rl (4.2.7)

Note that we assume h2 is a constant, which makes sense considering the shape of Hole-

ICL. For the case of linear domain (h1 and h3 are linear functions) we can obtain an

analytical solution of the problem.

4.3 Model with a point hole

Now let us now consider the hole in the center of the ICL to be a point hole. For this

case in order to avoid singularity at the point of the hole. As we did in 3.1.2 for the
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iridotomy case, we will introduce the regularised pressure in the region 2

p2,reg = p2 −
6µQ0

πh3
2

ln
r

r0
,

where rh is the distance from the hole, which in our case coincides with the origin, so

it is equal to r itself, and Q0 is the flux through the hole. We can compute Q0 using

Dagan’s formula: Q0 =
r40π

16µS+3µπr0
p2|0. Then, the equation for p2,reg will be :

d

dr

(
h3

2r
d

dr
p2,reg

)
=

12µQ0

2πr

dh3
2

dr
,

however, since we consider the height under the Hole-ICL h2 to be a constant, we can

simplify the above equations accordingly. We end up with the following final set of ODEs

d

dr

(
r
d

dr
p2,reg

)
= 0,

d

dr

(
h3
i r
d

dr
pi

)
= 0, i = 1, 3. (4.3.1)

The boundary conditions at zero are

p2,reg =
Q0(16µS + 3µπr0)

r4
0π

, |p2,reg| <∞, r = 0 (4.3.2)

and all other boundary conditions will remain the same as in § 4.2. Since h2 is constant,

we can compute p2,reg analytically, to get p2,reg = c3 ln r + c4. Because of the condition

|p2,reg| < ∞ we conclude that c3 = 0. Constant c4 we can define from (4.3.2). Thus,

p2,reg = Q0(16µS+3µπr0)
r40π

⇒ p2 = Q0(16µS+3µπr0)
r40π

+ 6µQ0

πh32
ln r

r0
. However, Q0 is unknown

still, and we can define it from the remaining boundary conditions which we rewrite in

terms of the regularised pressure in region 2

dp1

dr
=

6µQ

πrpch3
1

flux boundary condition on r = rpc (4.3.3)

p3 = 0 on r = rp (4.3.4)

p1 = p2,reg +
12µQ0

2πh3
2

ln
r

r0
condition on r = rl (4.3.5)

p1 = p3 condition on r = rl (4.3.6)

dp2,reg

dr

πrlh
3
2

6µ
+
dp3

dr

πrlh
3
3

6µ
= Q−Q0 peservation of the flux on r = rl (4.3.7)

If h1 and h3 are linear functions we obtain an analytical solution of the equations (4.3.1)

with boundary conditions (4.3.3)-(4.3.7). The results are shown in the § 4.4
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(a)

(b) (c)

Figure 4.3: Pressure (a) along the radial line and pressure distribution with average
velocity vectors (b), (c), height under Hole-ICL is h2 = 0.2mm

4.4 Results

In this section we will present the solution for models of the previous two sections. The

solutions coincide, therefore we can use any of the two models. We solved the problem

analitically for linear h3 and h1. In h3 we defined the height of iris-Hole-ICL channel

to be the same height as the iris-lens channel without Hole-ICL, equal to 7µm. The

height below the Hole-ICL is not known, thus we tried different cases. The size of the

hole in the lens is r0 = 0.36mm, [1]. On the figure 4.3a the pressure distribution in the

posterior chamber with the Hole-ICL implanted is shown. Each line represents pressure

along the radial line in a different region: the red line represents the average pressure in

region 1 (the outer region of the posterior chamber); the blue line - in region 2 (natural

lens - Hole-ICL); the green one - in region 3 (Hole-ICL - iris). Figure 4.3b represents
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Figure 4.4: Flux through the hole vs height of the lens-Hole-ICL region

pressure distribution (colorbar) and average velocity vectors (arrows) in the regions 1-2.

The view of the domain is from the top, the inner circle (with stars) is the hole in the

Hole-ICL, the middle circle (with stars) is the edge of the Hole-ICL and the outer circle

is the outer boundary of the posterior chamber. Similarly, the figure 4.3c shows the

pressure distribution and the velocity profile in the regions 1-3. In this case the inner

circle represents the pupil. The flux through the hole in the Hole-ICL 99.6% out of the

total incoming flux produced by ciliary body. Note that he pressure here is 10 times

smaller then in the case without the Hole-ICL.

Let us see what happens if we vary the height in the region 2 (under Hole-ICL) keeping

the Hole-ICL - iris channel fixed and equal to 7µm. We think this is a reasonable

assumption, since the iris ”wants” to be on its original position without the implanted

lens. On the figure 4.4 the flux percentage through the hole out of the total flux is shown

as a function of the height of the region 2. We conclude that almost all the fluid flows

out of the hole in the ICL.

4.5 Conclusions

In this section we proposed a preliminary model of circular Hole-ICL implanted into the

posterior chamber of the eye. Two submodels were presented, one considering the hole

in the ICL to be the hole of finite size and another one - with a point hole. The results
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for both models are the same and they are presented in § 4.4. We conclude that almost

all the flux goes out from the hole in the ICL, which is due to the fact that the channel

iris-Hole-ICL is very small. We also conclude that the pressure is 10 times smaller with

the lens than in the case without the lens. However, this conclusion might not be very

reliable due to the lack of information about the geometry of the posterior chamber with

the implanted lens.

As a proposed development of this model we can suggest first to consider a better geom-

etry. Since the height of the domain has a strong impact on the behavior of the flow this

might be a crucial improvement. High resolution ultrasound images with the lens im-

planted into the eye should work for measuring the height of the domain. Unfortunately,

at the moment we do not have these data. Another improvement is to consider the real

shape of the Hole-ICL. This will make the model much more complicated, since the flow

and, what is more important, the domain, will no longer be axisymmetric. However, we

assume that the overall picture of the results will not change significantly.



Chapter 5

Model of Hole-ICL with an

iridotomy

5.1 Assumptions and mathematical model

The objective of current chapter is to combine the model of iridotomy with a model of

Hole-ICL. We will start from the assumptions.

5.1.1 Assumptions

• Geometry of the Hole-ICL: We assume that the implanted lens is a circular

plate of finite thickness Sl with radius rl and a little hole in the center of radius r0

(thisis the same geometry as considered in chapter 4).

• Geometry of the posterior chamber: We assume the posterior chamber has

an axisymmetric shape. The domain is divided into 3 regions: region 1 without

ICL, region 3anterior to the ICL and region 2 posterior to ICL. Each region has

height hi(r), i = 1, 2, 3, see fig. 4.2. The height of the region below the lens

is constant, h2 =const, and h1, h3 are linear functions. We need more data to

overcome this assumption. The iridotomy is placed along positive x-axis in region

1 at a distance dhole from the center of the pupil.

• Geometry of iridotomy: Where convenient we assume the iridotomy diameter

is small enough that the iridotomy can be modelled as a point hole through the

iris.
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• Flow through the hole: As before, we use Dagan formula, for both the flow

through the hole in the lens and the flow through iridotomy.

5.2 Mathematical model

We consider the basic model of an ICL lens in the posterior chamber with the iridotomy.

We split the domain into 3 different regions with heights hi. We will consider h2 to

be constant and h1 and h3 to be functions of the radius (see fig. 4.2). Using the

model described in §4.1 for the region i we write the equation for the pressure pi using

lubrication theory

∇ · (h3
i∇pi) = 0, i = 1, 2, 3. (5.2.1)

Now let us consider the hole in the ICL and the iridotomy to be point holes with radius

r0 and ai respectively. Then, we have to introduce the regularized pressure in regions

2 and 1 in order to avoid the singularity at the point of the hole, as we did for the

iridotomy and the Hole-ICL model,

p1,reg = p1 −
6µQi
πh3

i

ln
ri
ai
.

p2,reg = p2 −
6µQ0

πh3
2

ln
r

r0
,

where Q0, Qi denote the flux through the hole in the lens and the iridotomy respectively;

and ri is the distance from the iridotomy. We can compute Q0 and Qi using Dagan

formula as before: Q0 =
r40π

8µSl+3µπr0
p2|0, Qi =

a4i π
8µSi+3µπai

p1|0, where Sl and Si are

thickness of Hole-ICL and the iris, respectively. The boundary conditions will be the

same as in §4.2 with an additional condition at the point of the iridotomy. Therefore,

the equations in terms of regularised pressure will become

∇ · (h3
1∇p1,reg) =

6µQi
πrih3

i

dh3
1

dri
, (5.2.2)

∇ · (∇p2,reg) = 0, (5.2.3)

∇ · (h3
3∇p3) = 0 (5.2.4)
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subject to the boundary conditions

p2,reg =
Q0(8µSl + 3µπr0)

r4
0π

the condition on flux in r = 0 (5.2.5)

∂p1,reg

∂r
=

6µQ

πrpch3
1

− 6µQi
πrih3

i

∂ri
∂r

. flux boundary condition on r = rpc (5.2.6)

p3 = 0 on r = rp (5.2.7)

p1,reg +
6µQi
πh3

i

ln
ri
ai

= p2,reg +
6µQ0

πh3
2

ln
r

r0
condition on r = rl (5.2.8)

p1,reg +
6µQi
πh3

i

ln
ri
ai

= p3 condition on r = rl (5.2.9)

∂p2,reg

∂r
|rl
rlh

3
2

12µ
+
∂p3

∂r
|rl
rlh

3
3

12µ
− ∂p1,reg

∂r
|rl
h3

1rl
12µ

=
Qih

3
1rl

2πh3
i ri

∂ri
∂r
− Q0

2π
(5.2.10)

peservation of the flux on r = rl

p1,reg =
Qi(8µSi + 3µπai)

a4
iπ

in the point of iridotomy (5.2.11)

Equations (5.2.2)-(5.2.11) describe the aqueous flow in the posterior chamber with im-

planted Hole-ICL and iridotomy.

5.3 Results

We will use the finite difference method for solving the equations (5.2.2)-(5.2.11). The

used a scheme is based on the one described in § 3.2.1. Obviously, the method needs to

be used for each pi, i = 1, 2, 3. The boundary conditions (5.2.6), (5.2.10) were discretized

using forward and backward second order finite differences. In this case the boundary

conditions make it impossible to use the reduction or the modified reduction methods

introduced in S 3.2.1.1. Thus we solve the linear system by storing everything into one

matrix and then using a regular solver in Python from the package scipy.sparse.linalg.

The results are shown on the figure 5.1. This limits the size of the mesh that we can

deal with. The size of the hole in the lens is r0 = 0.36 mm. The iridotomy is placed

along the positive x-axis at a distance 5mm from the center of the pupil. Figure 5.1a

represents pressure distribution (colorbar) and average velocity vectors (arrows) in the

regions 1-2. The view of the domain is from the top, the inner circle is the hole in the

Hole-ICL, the middle circle is the edge of the Hole-ICL and the outer circle is the outer

boundary of the posterior chamber. Similarly, figure 5.1b shows the pressure distribution

and the velocity profile in the regions 1-3. In this case the inner circle represents the



46

(a) (b)

(c) (d)

Figure 5.1: Pressure distribution and average velocity vectors for the radius of irido-
tomy 100µm

pupil. The flux through the iridotomy is 17% and the flux through the hole in the ICL

is 81% out of the total incoming flux produced by ciliary body. In the figure 5.1c the

pressure distribution in the posterior chamber with the Hole-ICL implanted is shown.

Each line represents the pressure along the radial line in a different region: the red line

represents the average pressure in region 1 (the outer region of the posterior chamber);

the blue line - in region 2 (natural lens - Hole-ICL); the green one - in region 3 (Hole-ICL

- iris). The plot 5.1d is the average velocity distribution along the radial line through

the iridotomy in different regions.Note that the pressure is continuous from one region

to another while the velocity is not. This is a consequence of the finite thickness of the

ICL, which implies that the thickness of the region 1 is bigger that the sum of the height

of regions 2 and 3.

We are interested in how the flow will change depending on the size of the iridotomy

and the height of the domain under the Hole-ICL. In the figure 5.2a we plotted the flux
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through the hole for different sizes of iridotomy. The height of the region under the

Hole-ICL is 0.1 mm. We observe that even for large iridotomies (100 µm) almost all

(a) (b)

Figure 5.2: Flux through the iridotomy and flux through the hole in ICL vs size of
the iridotomy (a) and height of the region under the Hole-ICL (b)

the flux goes through the hole in the ICL. This could be explained by the fact that the

height of the domain 2 is large (which is usually even larger according to [1]) and also

the size of the hole in the lens is much bigger than the one of the iridotomy. Figure

5.2b is obtained by varying height of the domain under the Hole-ICL from 30 µm to

200 µm and keeping iridotomy large (100 µm). The majority of the fluid goes out of the

iridotomy for small height (< 60 µm) and the flux decreasing rapidly with the increasing

of the height. Therefore, we conclude that the flux through the iridotomy is significant

only for the small height of the region 2.

5.4 Conclusions

In this chapter we combined the model aqueous flow in the posterior chamber in cases of

Hole-ICL and iridotomy. The solution is obtained by using the finite difference method.

From the results we observe that the iridotomy has a significant influence on the flow

only when the height of the domain under the Hole-ICL is small. Note that, this is

the conclusion for quite large iridotomy, for smaller holes the impact of the iridotomy is

even less. Therefore, we might conclude that iridotomy might be useful only when the

region between Hole-ICL and the natural crystalline lens gets very thin. However, this

conclusion needs a verification due to the fact that geometry of the domain is not very

realistic.
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First improvement of the model will be to consider realistic geometry for the shape of

the posterior chamber and the Hole-ICL. Another possible extension will be to consider

the flow due to miosis.



Chapter 6

Conclusions

In this thesis we proposed a mathematical model of the aqueous flow in the posterior

chamber of the eye. Two problems were considered: the iridotomy model and the

model with implanted Hole-ICL. In both cases we use lubrication theory to obtain semi-

analytical solutions.

For the problem of iridotomy, we separated cases of the flow caused by aqueous produc-

tion and the flow caused by miosis (pupil contraction). For miosis we use quasi-steady

approach by keeping the domain fixed and imposing velocities on the iris. We modelled

an iridotomy as a point hole and assumed that the flux through the hole is proportional to

the pressure drop across the hole. Moreover, we worked in terms of regularized pressure.

For solving the equations we used a second order central finite difference scheme and for

solving the corresponding linear system the modified method of reduction. Therefore,

we obtained the solution for the pressure and velocity profile in the posterior chamber.

For all the simulations we used a realistic geometry of the posterior chamber obtained

by analysing a medical image. The results suggest, that iridotomy should have radius

of least 40 µm to cause a significant impact on the flow. Moreover, in case of pupillary

block the pressure grows so drastically, that one needs an iridotomy of at least 40 µm

in radius in order to normalize the pressure. The position of the iridotomy and the

velocity imposed on the iris do not have a big impact on the flux percentage through the

hole. During miosis one has to avoid high velocity of the jet through the hole in order

to prevent cells detachment from cornea. We found that the jet velocity is maximum

for a radius of the hole of 60 µm. To improve the model, we need more data to model

the velocity imposed on the iris and medical images of the posterior chamber with very

high resolution.
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For the model of Hole-ICL we used an axisymmetric shape of the domain. We split the

posterior chamber into tree different regions (the region without ICL, the region above

ICL and the region below the ICL) and applied lubrication theory to each of them. At

the edge of the lens we imposed the continuity of pressure and conservation of flux. The

pressure drop through the hole in ICL was modelled using Dagan’s formula. For linear

height of the domain we obtained an analytical solution of the problem. The results

suggest that almost all the fluid exits through the hole in the lens, which is due to the

fact that channel iris-Hole-ICL is very thin. The first improvement of the model will

be to consider realistic geometry of the posterior chamber with implanted Hole-ICL.

Secondly, we should consider the real shape of Hole-ICL for more accurate results.

The last part of the thesis combines the models of ICL and iridotomy. We place the

iridotomy in the region without the lens and introduce regularized pressure in region

without the lens (due to iridotomy) and region between the natural lens and Hole-ICL

(due to the hole in ICL). Therefore, we obtain a set of equations which we solve using

second order finite difference scheme. The results vary with the height of the region under

the Hole-ICL. For the small height (∼ 60 µm) most of the flux goes out from iridotomy,

whereas for bigger height the flux through the iridotomy is not significant. We also

observe that the size of iridotomy should also be large, since small iridotomies will not

have significant impact on the flow. Therefore, the conclusion is that the iridotomy

in case of implanted ICL should be large and performed for the case when the height

between lens and Hole-ICL is small.

For further research we will suggest, firstly, to consider better geometry, especially in

the case of ICL. Moreover, one may include in the model time dependence instead of

considering the steady approach, especially in the case of miosis. Furthermore, combining

this model with the model of the flow in the anterior chamber could be a good extension,

which will result in the complete solution of the problem of aqueous humor flow in the

anterior part of the eye.



Appendix A

Codes

In this appendix a brief outlook of the code for iridotomy problem is provided.

Main Program

import numpy as np

from closest_point import *

from newreduction import *

import geometry

from matrices import *

from velocities import *

ahole =5e-5#radius of iridotomy , m

dhole =5e-5#place of iridotomy , m

S=0.406e-3#thickness of the iris , m

mu=0.75e-3#viscosity kg/m/s

#set height of the domain

h=geometry ()

#number of points in theta

n=10

nth =2**n

#partition of theta

th=np.arange(0,nth +1)/ float(nth )*2* math.pi

dth =2* math.pi/float(nth)

#setting step in r and partition in r

s=[ rpupil*dth]

r=[ rpupil]

i=0
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while r[i]<rpost:

r=np.append(r,r[i]+s[i])

s=np.append(s,(s[i]+r[i])*dth)

i=i+1

nr=np.size(r)-1

r[nr]=rpost

s[nr -1]=r[nr]-r[nr -1]

#point closes to the point of the hole

istar=closest_node(dhole ,r)

TH,R=np.meshgrid(th,r)

#set the matrices

C,F,D=matrices(ahole ,dhole ,nth ,nr ,h)

#use reduction to find preg

preg=newreduction(C,F,D,n,nr ,istar)

#Dagan formula for the flux through the hole

Qhole=np.pi*ahole **4/(8*S*mu+3*mu*np.pi*ahole )*preg[istar ,0]

#from the regularized pressure to the pressure

p=preg +3*mu*Qhole/np.pi/h[istar ]**3* np.log((np.multiply(R,R)+\

dhole **2-2*R*dhole*np.cos(TH))/ ahole **2)

#velocity components

qr,qtheta=velocities(p)
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