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Chapter 1

Introduction

The interest in group III nitride semiconductors has �ared in the last two decades as the
inherent material properties o�er attractive advantages for optoelectronic and high-power
devices in diverse application �elds ranging from consumer electronics to military radars.
Gallium nitride (GaN), and its associated alloys, has emerged as the most promising
nitride semiconductor for commercial applications.

The group III nitride materials lack the technological maturity of other semiconductors
like silicon - the mainstay of the semiconductor industry - or gallium arsenide, as it still
presents many technological challenges e.g. high quality substrate production. The intri-
cate material properties of the gallium nitride material system must be well understood
to fully exploit the advantages o�ered by this semiconductor in devices. The physics-
based simulation of semiconductor devices assists in this cause by exposing a quantative
relationship between underlying material properties and device behaviour. Device opti-
mization in an experimental environment is very costly and time consuming and should
therefore also be complemented by simulations.

High electron mobility transistors (HEMTs) have proliferated themselves as the preferred
transistor type for RF and microwave frequency applications, especially when high power
outputs are required. This thesis investigates the physical simulation of the charge carrier
distribution in GaN/AlGaN heterostructures found in such HEMTs for the incorporation
in a complete simulator for GaN HEMT devices. This is done through the numerical
solution of a self-consistent Poisson-Schroedinger system incorporating the polarization
e�ects, evident in wurtzite GaN, and the solution of the continuity equation for the
nonequilibrium case is also attempted.

This report discusses the GaN material system (Chapter 2) followed by its implementation
in HEMT devices (Chapter 3). The material and physical models used are given in
Chapter 4 followed by a discussion of their implementation using numerical simulation
(Chapter 5). The subsequent results of the implementation are shown in Chapter 6. This
report is concluded (Chapter 7) by giving an outlook and recommendations for future
research e�orts based on the conclusions reached in this work.
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Chapter 2

Gallium nitride material system

This chapter reviews the basic material properties particular to group III nitrides, specif-
ically AlxGa1−xN. The research history of material system is brie�y reviewed and its
implementation in various application �elds is outlined.

2.1 Group III nitrides

Group III nitrides refer to the compound semiconductors composed of a group III el-
ement(s) (Al, Ga, In) and Nitrogen (N) and their associated alloys. These materials'
characteristics of distinguishable merit are their wide energy bandgaps and a wurtzite
crystal structure which bring about signi�cant polarization e�ects. GaN and AlGaN
have proliferated themselves amongst the III-nitrides for technological reasons but other
III-nitrides like InGaN may prove superior in FET1 applications if the technological issues
can be cured that arise due to the big di�erence in ionic size of In and N [1]. Quaternary
alloys, like InAlGaN, provide an extra degree of freedom that allow manipulating the
energy bandgap and lattice constants of the material independently but these alloys are
also plagued by the high ionicity of Indium.

Table 2.1 provides a comparison of key material properties between prevalent semicon-
ductors. It can be said that GaN consolidates the best properties of GaAs and SiC -
materials used in RF and power electronics, respectively - making it suitable for a wide
range of applications.

Table 2.1: Comparison of material properties at 300 K [2]
Property Si GaAs SiC GaN
Bandgap Eg (eV) 1.12 1.42 3.25 3.40
Breakdown �eld (MV cm−1) 0.25 0.4 3.0 4.0
Electron mobility µ (cm2 V−1 s−1) 1350 6000 800 1300
Maximum drift velocity vd (107 cm s−1) 1.0 2.0 2.0 3.0
Thermal conductivity κ (W cm−1 K) 1.5 0.5 4.9 1.3
Relative dielectric constant εr 11.8 12.8 9.7 9.0

2.2 Research history of gallium nitride

The �rst utilisation of gallium nitride in electronic devices started in the 1970's with
Pankove et al. [3] reporting a GaN-based blue light emitting diode (LED). A commercial

1Field-e�ect transistor
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realization was hindered by di�culties with producing highly p-doped GaN. A widespread
research interest in GaN-based devices withered due to the lack of high quality bulk sub-
strates at the time. To circumvent this problem, GaN epitaxial layers were grown on
substrates with big lattice mismatches which led to very high defect densities which seri-
ously diminished the quantum e�ciency, power capability and lifetimes of light emitting
devices. Research e�orts were still limited to optoelectronic devices, at that time, as sili-
con technology was well established and adequately served the needs for most electronic
device application �elds.

The late 1980's saw a renewed interest in GaN-based devices with several fundamental
breakthroughs, made by Shuji Nakamura, that facilitated the growth of high quality GaN
epitaxial layers on sapphire substrates (Al2O3) through the use of AlN or GaN nucle-
ation layers [4] and metalorganic chemical vapour deposition (MOCVD). Furthermore,
the problem of strongly p-doping GaN - found to be caused by hydrogen passivation [5] -
was remedied which made marketable e�cient blue LEDs a reality in 1992 [6]. This set
the stage for all further developments in GaN-based optoelectronics; a GaN-based laser
was realised in 1999.

The �rst reports of GaN-based transistors appeared in 1993 by Khan et al., showing
both HEMT [7] and MESFET [8] structures. This was shortly followed by reports of the
�rst GaN HBT, touted for high-temperature applications [9]. GaN can help attain high
speeds and high breakdown voltages in HBTs, however material quality issues, like low
p-type doping and short di�usion lengths in epitaxial layers, must �rst be solved [10]. A
transition frequency for GaN HEMTs exceeding 100 GHz was reported in 2000 for the
�rst time [11]. Research e�orts continue with the various transistor structures to improve
speed and reliability.

2.3 Crystal structure

The group III nitrides may occur in either a wurtzite (hexagonal) or a zincblende (cu-
bic) crystal structure2, the former being the thermodynamically stable form at room
temperature [1].

The wurtzite crystal structure has a hexagonal unit cell, with lattice constants a and
c, formed by two interpenetrating hexagonal close-packed (hcp) sublattices o�set by 5c/8
along the c-axis (�gure 2.1). Each sublattice consists of either group III element(s) or
Nitrogen forming cations and anions, respectively. Each Nitrogen (group III) atom is coor-
dinated by four group III (Nitrogen) atoms, �gure 2.1 shows this tetrahedral arrangement
with the cation-anion bonds. The nonsymmetric o�set between the sublattices along the
c-axis makes the GaN epitaxial layers - commonly grown along the {0001} basal plane -
either Ga-faced or N-faced giving a polarity to the surface of the material. Each polar
surface has unique chemical and physical properties. The polarity of the epitaxial layers
are not predicted easily for a speci�c deposition technique and should be veri�ed with
experiment for every structure [12].

A thermodynamically stabilised zincblende form of group III nitrides can be epitaxially
grown on speci�c substrate planes but requires an increased technological e�ort compared
to growing wurtzite structures. The zincblende form of group III nitrides, the same cubic
form as Si or GaAs, has gathered interest for applications in optoelectronic devices where
the lack of an internal electric �eld (as opposed to the wurtzite form) supports the light-
producing carrier recombination process. This promises an increased quantum e�ciency
while retaining the wide bandgap property of GaN.

In ternary alloys of III-nitride the speci�c ordering of the group III atoms with respect
to the N atoms may have an e�ect on the value of the bowing parameters but this e�ect
is insigni�cant for AlxGa1-xN since there is not such a big mismatch in lattice constants
between the composing binaries (unlike InGaN or AlInN, for example) [13].

2The rock salt structure does not occur naturally and can only be formed under high pressure
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Henceforth, the wurtzite crystal structure along the [0001] direction with Ga-polarity will
be assumed in this report, unless stated otherwise.

2.4 Substrates

The growth of pure bulk GaN substrates on commercial scale with wafer diameters greater
than 2 inches still eludes the semiconductor industry. However, recent advancements look
promising for a cost e�ective commercial production of GaN wafers up to 4 inches in
diameter with low defect densities [?]. The limited supply of pure bulk GaN substrates
is currently completely accounted for by the production of blue laser devices to satisfy
the great market pull for BluRayTMplayers and game stations [14]. Most GaN-based
applications in RF, power electronics and LEDs must still rely on so-called epiwafers
(GaN epitaxially grown on substrates).

Epitaxy (or epitaxial growth) is a process where a thin layer of material is deposited on
a single crystal substrate. This layer (epitaxial �lm) is monocrystalline and assumes the
same orientation and lattice structure as the substrate (seed crystal). The methods of
metalorganic chemical vapour deposition (MOCVD) and molecular beam epitaxy (MBE)
are commonly employed in the production of GaN epiwafers.

The choice of the substrate has an in�uence on the cost and performance of a device.
There are several factors that must be considered when selecting a substrate for a speci�c
application:

• the lattice mismatch between the substrate and epitaxial material(s);

• the di�erence in thermal expansion coe�cients between the substrate and epitaxial
material(s);

• the thermal conductivity of the substrate;

• the overall cost and commercial availability of the substrate.

The important material properties of commonly used substrates are compared to GaN
and AlN in table 2.2. Sapphire (Al2O3) and silicon carbide (SiC-6H) have emerged as
the most widely adopted substrates for GaN epiwafers as they provide a good tradeo�
between the mentioned criteria. SiC (or diamond), while more expensive than sapphire,
has superior thermal conductivity that may be essential in high-power devices [15]. Silicon
has also been adopted as a growth substrate [16], despite the greatly mismatched lattice
constants, to exploit its low overall cost to drive down the cost of GaN devices.

Figure 2.1: Wurtzite unit cell showing interpenetrating hcp structures and tetrahedral
coordination of constituent elements (Ga: yellow, big; N: grey, small)
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The quality of the substrates/epilayer interface is very important as the crystallographic
line defects (i.e. edge and screw dislocations) introduced here can erode the performance
capability and reliability of a device. Dislocations can propagate through the epitaxial
layer to the core of a device where they can signi�cantly decrease the lifetime of a device.
Nitride devices su�er from dislocation densities more than �ve orders of magnitude greater
than other compound semiconductors [13]. The strain present in the lattice structure of
GaN epiwafers is the major cause (process technological issues aside) of these dislocations.

The two major sources of strain in GaN epiwafers are the mismatches between the lattice
constants and the thermal expansion coe�cients of the layered materials. The lattice
mismatch between two materials induces a compressive or a tensile strain which causes
increased defect densities or even substrate cracking. Figure 2.2 clearly shows the mis-
match in lattice constants at a GaN-sapphire interface under an electron microscope. The
mismatched thermal expansion coe�cients provide another source of strain: as two mate-
rials cool down from their growth temperature they contract at di�erent rates introducing
further material defects during this cool-down phase.

Figure 2.2: HREM image of a GaN sapphire interface (a) and its Fourier �ltered version
(b)[17]

To reduce the strain in the epitaxial GaN layer nucleation layers of AlN or GaN (depending
on the substrate material) are �rst grown on the substrate to serve as an intermediate
layer to better match the lattice constants thereby relieving the strain in the GaN epitaxial
layer. The nucleation layer is critical for producing epiwafers of acceptable quality.

2.5 Polarization

Polarization here refers to the polarization density of a dielectric material. It is de�ned
as a dipole moment per unit volume with an SI unit of C m−2 and is denoted by the
polarization vector ~P . There are two mechanisms involved in the polarization of wurtzite
group III nitride, namely piezoelectric and spontaneous polarization. These mechanisms
are discussed below.

Table 2.2: Material properties of commonly used substrates for GaN epitaxy (compiled
from [1])

Lattice constant Thermal conductivity Thermal expansion
a [Å]@300 K κ

[
W m−1 K−1

]
∆a
a ×10−6

[
K−1

]
Sapphire 4.765 25 5.0
SiC-6H 3.081 380 4.46

Si 5.431 156 2.62
GaN 3.20 160 5.6
AlN 3.11 210 4.2
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2.5.1 Piezoelectric polarization

Piezoelectric polarization refers to the polarization (an electric state) induced by a me-
chanical strain in a material. Group III nitrides, like GaN, show very strong piezoelectric
polarization e�ects - an order greater than other III-V semiconductors [1].

The piezoelectric polarization can be intuitively understood as follows: the bond symme-
try in the tetrahedral arrangement of the constituent materials (�gure 2.3) is perturbed
by a strain in the crystal lattice. If the semiconductor crystal is assumed to be uncon-
strained in the growth direction (c-axis; [0001]) the strain is limited to the orthogonal
planes. A strain in the (0001) plane, either compressive or tensile, changes the bond
angles of atoms at the base vertices thereby changing their vertical components - a dipole
moment arises along the [0001] directions.

Figure 2.3: Stick-and-ball representation of the tetrahedral arrangement of Ga and N
(taken from [1]).

The piezoelectric polarization is related to the strain (both in magnitude and orientation)
present in the material. A larger strain causes a larger polarization; compressive strain
induces a polarization oppositely directed than a tensile strain. This is portrayed in �gure
2.4.

Figure 2.4: Heterostructures showing the magnitude and orientation of the spontaneous
and piezoelectric polarization components when the top layer is relaxed (a), under tensile
strain (b) and under compressive strain (c).

2.5.2 Spontaneous polarization

Spontaneous polarization can only be measured relative to another 'unstrained' material.
Hence, only the di�erence in spontaneous polarization between two materials (like at a
heterointerface) are of signi�cance and not their absolute magnitude. The orientation of
the polarization vector (i.e. the 'sign') is determined by the polarity of the material.

The spontaneous polarization
(
~Psp

)
e�ect occurs in ferroelectrics and pyroelectrics (e.g.

III-nitrides). The spontaneous polarization is a direct result of the lacking inversion
symmetry along the c-axis of the wurtzite crystal structure in�uencing the bonding nature
of the material and cannot be altered by applying an electric �eld (unlike in ferroelectrics).
The inequivalence between the bonds of nearest neighbours (�gure 2.3), where one bond,
along the [0001] direction, has a di�erent ionicity (longer bond) compared to the other
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three, causes the geometric centres of the negative charge (electrons) and positive charge
(nuclei) not to coincide and a dipole moment results. All III-nitrides have a negative
value for ~Psp [13] (taking the direction along the c-axis, [0001], as positive).

2.5.3 Pyroelectric e�ect

The same crystal properties that give III-nitrides their polarization property also lead
to the pyroelectric e�ect. The pyroelectric e�ect arises in the crystal due to a small
displacement of atoms due to a change in temperature leading to a temporary thermally
induced electric �eld. This e�ect may be signi�cant in high-power ampli�ers and lasers.
To simulate the pyroelectric e�ect an energy transport model is required and is not
considered here.

2.6 Applications

The inherent material properties of III-nitrides - high temperature stability, high operat-
ing voltages and high maximum electron drift velocities - give rise to the selling points of
GaN devices: handling high frequencies, high power levels and higher operational linear-
ity. These are traits required by technologies that are, or will soon become, economically
signi�cant [15]. The GaN device revenues for 2010 were estimated at almost 7000 million
US Dollars3 [14]. This revenue is almost exclusively ascribed to high-brightness LEDs
and lasers currently, but GaN presents a gamut of other application �elds that are set to
grow. It is expensive to maintain several technologies in a production line which makes
it favourable to have a single technology, like GaN, that can cover a broad range of
applications.

Table 2.3 summarises the performance advantages that the inherent material properties
of III-nitrides o�er. These are discussed in context of the various application �elds below.

Table 2.3: Performance advantages of GaN material properties [?]
Need Enabling feature Performance advantage

High voltage operation High breakdown �eld Reduce voltage step-down
High temperature operation Wide energy bandgap Reliability; reduced cooling

High e�ciency High operating voltage Power saving; reduced cooling
High frequency High peak electron velocity Bandwidth; microwaves

2.6.1 Optoelectronics

Gallium nitride, with its wide direct energy bandgap, is a huge technological enabler for
envisaged applications in the green to ultraviolet spectral range.

The advent of e�cient blue GaN LEDs paved the way for the realization of 'white' LEDs
which are proliferating themselves in e�cient general illumination (which accounts for
approximately 20% of the world's electricity consumption [18]). Green GaN LEDs also
are a key development for somewhat mundane applications like tra�c signals.

Blue GaN-based lasers have enabled a new technology step in high-density optical storage
(e.g. BluRayTM) found in consumer electronics. GaN-based lasers are also used in medical
applications and laser printers.

3approximately 4858 million Euro at an exchange rate of 1 USD = 0.69 EUR
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The wide direct bandgap of GaN allows for e�cient UV detectors to be made that can
be used for �ame detectors or pollution monitors. The high temperature stability of
III-nitrides allows these sensors to be operated in harsh corrosive environments.

2.6.2 Radio Frequency electronics

The three major application sectors of radio frequency (RF) electronics for GaN tran-
sistors are wireless communication, defence and data broadcast; the major markets for
GaN devices in RF electronics are in cellular base transceiver stations (BTS) and mili-
tary radar. The market value for GaN RF transistors was estimated to lie upwards of
100 million US Dollars4 in 2010 [?].

Military applications mostly relate to phased array radars and electronic warfare equip-
ment, especially in the X-band5. Phased array radars can consist of up to 1000 antennas
each of which has to be individually driven by a power ampli�er (PA). The performance
of a radar strongly depends on its power output. The required power can be facilitated
through high voltages instead of high currents, thanks to the high breakdown voltage of
GaN, which allows thinner conductors. The high temperature stability of GaN also allows
for reduced cooling which adds to a more compact design.

Approximately 60% of the electricity costs of mobile network operators are attributed
solely to the PAs in cellular base stations [18]. New switching ampli�er architectures
(class E/F) promise improvements up to 75% in e�ciency [18]. An implementation using
Si-LDMOS - the current dominating technology in the 3G BTS market - is only viable at
frequencies up to 1 GHz. The performance advantages of GaN are needed for higher fre-
quency implementations [19] needed for next-generation wireless communication protocols
e.g. WiMax and LTE advanced. The superior power density of GaN power transistors
(10× compared to GaAs devices) allows power ampli�ers to be shrunk to the extent that
they can be �tted on top of the BTS mast avoiding the cable losses of present setups.

Data broadcast applications include cable television and very small aperture satellite
(VSAT) that can bene�t from the increased power output capabilities of GaN transistors.

2.6.3 Power electronics

An estimated 40% of the world's energy is consumed in the form of electricity and this
is predicted to increase to 60% by 2040 [18]. Power conversion (recti�ers and inverters)
plays a key part in many technologies related to electrical energy e.g. wind turbines,
photovoltaics, hybrid vehicles. The wide bandgap of GaN allows devices based on this
technology to directly handle high voltages, without step-down, thereby improving con-
version e�ciency and reducing bulk. GaN devices provide a very low thermal impedance
(when grown over SiC substrates) and a reliable high temperature operation which eases
the burden of the thermal management.

The mentioned advantages of GaN in power electronics equally apply to SiC - an already
established competing technology. However, the strong development of GaN technology
in optoelectronic and RF devices may sway the economic advantage to GaN as the gained
know-how can be shared amongst several application sectors.

4approximately 69 million Euro at an exchange rate of 1 USD = 0.69 EUR
5the 8.0 to 12 GHz electromagnetic spectrum de�ned by the IEEE for radar engineering
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Chapter 3

High electron mobility transistors

This chapter reviews the basic operation principle of GaN HEMTs giving a description
of their geometry and some physical device characteristics.

3.1 Origin of HEMT structure

The operation of �eld e�ect transistors, like MOSFETs, rely on the concept of charge
control - being able to in�uence the carrier concentration in a plane with a gate potential.
Group III-nitrides do not allow the MOSFET structure to be used for high performance
transistors because there is no high quality gate dielectric available, as is conveniently the
case in silicon technology with its native oxide, SiO2. The MESFET structure in GaN
technology has been used but the required doping and gate proximity to the channel
were di�cult to attain for high-performance (short-channel) devices [10]. The HEMT
structure o�ers the attractive attributes of close gate proximity to the conducting channel
(implying high transconductance) and high drain e�ciency which, along with the high
low-�eld mobility, high maximum drift velocity and high electron sheet densities, make
GaN HEMTs ideally suited for high-power RF and microwave applications. The high
power per width of GaN transistors translates into smaller devices that are easier to
manufacture and have a higher impedance which simpli�es impedance matching [?].

The HEMT transistor structure was inspired through the experimentation with AlGaAs/GaAs
quantum wells and superlattices where the spatially con�ned, high concentration of carri-
ers at heterointerfaces was discovered [20]. The HEMT structure (�gure 3.1) exploits this
by 'burying' the 2DEG at the heterointerface, away from the 'rough' surface interface,
and controls it through band bending by a gate potential.

3.2 Operation principle of a HEMT

A heterointerface between two materials with a su�cient di�erence in energy bandgaps
is required to achieve the necessary energy band bending to form a 2DEG. The electrons
of donor impurities in the larger bandgap material (AlGaN), near the junction to the
smaller bandgap material (GaN), di�use across the heterointerface to the lower conduction
band where they are con�ned due to the potential barrier formed by the heterointerface.
The resultant 2DEG is spatially separated from the ionized donor atoms and thereby
bene�ts from transport without (or little) ionic scattering in the undoped GaN region
thereby increasing the electron mobility in the channel substantially, hence the name
high electron mobility transistor, or HEMT1. This 2DEG formed at the heterointerface

1also commonly called MODFET or HFET
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can be controlled by applying a potential at the gate of the transistor which bends the
energy bands.

The strong polarization e�ects in III-nitrides (of wurtzite structure) induce high electric
�elds in the structure that further enhance the carrier concentration and spatial con-
�nement of the 2DEG. A redistribution of free and weakly bound electrons takes place
in an attempt to shield the polarization-induced charge. For the HEMT structure con-
sidered here, a positive sheet charge is induced at the interface between two materials
with di�erent polarizations. This positive, �xed charge attracts mobile electrons which
tend to accumulate at the interface thereby adding to the electron concentration of the
2DEG. In theory, the polarization di�erences at the metal/GaN and GaN/substrate in-
terfaces should also be considered. However, the induced charge at the surface interface
is completely shielded by carriers on the metal gate contact. The sheet charge of the
GaN/substrate interface may reduce the carrier concentration in the channel if the bulk
is very thin, however, if a thick bulk is considered the sheet charge is shielded by the
background doping in the bulk.

The source of the mobile electrons in the 2DEG is still a point of debate. In the absence
of a metallic contact on the surface of the device a sheet charge of surface states supply
electrons, otherwise the n-doped AlGaN layer, or carrier injection from the gate, supply
electrons.

The 2DEG serves as a current channel that facilitates a high current density. The electron
concentration is mainly determined by conduction band o�set, the doping concentration
in the barrier layer(s) and the polarization e�ects.

Anomalies in the operation of AlGaN/GaN HEMTs can occur due to electrons of the
channel getting trapped in the AlGaN, GaN bulk and unpassivated surface states, causing
current collapse, I-V 'kinks' and long-term instability.

3.3 Structure

The structure of a GaN/AlGaN HEMT is shown in �gure 3.1 with a [0001] growth di-
rection (Ga-polarity). The strain-relieving nucleation layer(s) is followed by a GaN layer.
The GaN layer, known as the bulk, is unintentionally n-doped to a concentration between
1014 cm−3 and 1016 cm−3 by impurities (contamination, native defects, O, Si) depending
on the speci�c process.

Figure 3.1: Structure of a generic HEMT showing the substrate, nucleation layer, GaN
bulk and AlGaN layer. The blue �eld represents the 2DEG that serves as a current
channel between drain and source.
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The GaN layer is followed by an AlGaN layer. The AlxGa1−xN layer is intentionally
n-doped between 1017 cm−3 and 1019 cm−3 to supply the mobile electrons for the 2DEG.
Increased n-doping in the barrier increases the electron density in the channel but also
reduces the mobility and increases the gate leakage of the device. The mole-fraction of Al
in�uences the carrier density in the channel but also the mobility in the 2DEG. An Al-
content up to 35% shows an increase in both 2DEG density and mobility. Further increases
increase the strain and thereby the defects in the AlGaN layer, although Al-content up
to 50% has been shown to give increased performance without signi�cant penalties in
mobility at room temperature [21]. The doping characteristics with increasing Al-content
is not yet well understood but it has been suggested that donor atoms move deeper into
the energy bandgap i.e. their ionization energies increase [1] which reduces the achievable
n-doping levels.

A thin undoped layer (∼ 5 nm) of AlGaN or AlN is sometimes inserted between the bulk
and the barrier layers to shield the 2DEG from the ionized dopants in the adjacent n-doped
AlxGa1−xN. The �nal epitaxial layer is the cap layer of GaN, its purpose is facilitating
ohmic contacts with a low resistance and to modify the e�ect of surface depletion in the
un-gated regions. The gate contact is formed on the cap layer with the drain and source
contacts extending down to the 2DEG at the heterointerface to ensure contact with the
2DEG. Since GaN does not form a native oxide, like silicon does, a passivation layer of
silicon nitrate (or others) is deposited on the surface of the device.

3.3.1 Breakdown

The breakdown voltage of a semiconductor device is ultimately limited by the inherent
material properties of the semiconductor. The breakdown voltage of a semiconductor
is related to the energy bandgap of the material which provides III-nitride devices with
good credentials for high-voltage operation.

To fully exploit the high-voltage capability of the material in GaN/AlGaN HEMTs �eld
plates between the gate and the drain are used to spread the electric �eld, arising from
the gate potential, more uniformly thereby increasing the drain breakdown voltage. The
trade-o� is more complicated fabrication and increased capacitance. These structural
modi�cations of the 'generic' HEMT structure are not considered here.

The amount of electrons in the current channel (2DEG) limit the maximum current den-
sity. The sheet carrier density may be increased by increasing the doping in the AlGaN
supply layer but the breakdown voltage of the HEMT is thereby decreased [22]. It is
suggested in [22] that by spreading the donor doping over several layers and using sev-
eral heterojunctions a higher current density can be achieved in the channel(s) without
decreasing the breakdown voltage of the HEMT since multiple 2DEG channels will be
formed. The breakdown e�ect cannot be handled by the equations considered in this
simulator and it is certainly not straight-forward a�air to model breakdown e�ects nu-
merically.

3.3.2 Passivation

Unpassivated surface states can cause current lag through donor-like surface states that
capture and release electrons. Passivation reduces the e�ects of surface states on current
lag and increases the breakdown voltage of the device. Surface passivation may improve
HEMT characteristics like pinch-o� and current lag while deteriorating others like tran-
sition frequency and noise �gures [23, 24]. The speci�c e�ects depend on the passivation
layer used and device structure speci�cs.
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3.3.3 Schottky barrier gate contact

The Schottky metal at the surface will deplete all the surface states. The potential at
the surface is �xed by the Schottky barrier height and the applied gate voltage. The high
defects density in GaN devices introduce many surface states that make it di�cult to
realize a low-leakage Schottky barrier [10].
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Chapter 4

Physical and material models

This chapter reviews the material parameters, material models and the semiconductor
equations used to simulate the one dimensional charge distribution of a GaN/AlGaN
heterostructure.

4.1 Material models and parameters

The accuracy of a physical device simulator greatly depends on the accuracy of the phys-
ical material parameters employed. The data in the literature on some of the physical
properties of III-nitrides still shows some inconsistencies and is evolving, especially for
the Indium alloys e.g. the InN bandgap controversy [13] and the thermal conductivity of
quartenary alloys [13]. Apart from the experimental variations and the di�erent quality
of test samples (the strong e�ect of strain-induced polarization in III-nitrides makes sam-
ple preparation especially important), the di�erences are mostly due to improvement and
further development of measurement techniques. This especially holds true for physical
material parameters derived by computational techniques which have advanced greatly
in recent times[1]. When utilizing computed parameters care should be taken that all
the parameters have been calculated by the same method to retain consistency [1]. Like-
wise, comparison between parameter values that were measured by di�erent techniques
requires great diligence. Parameters that show good agreement between the computed
(theoretical) and experimental values, naturally, inspire the greatest con�dence. Blindly
calculating mean values between all published results might prove counterproductive.

Most of the published material parameters of GaN have converged to values that have
found wide acceptance. Good reference literature for nitride materials has been estab-
lished [1, 13, 25] which provides a very good overview and interpretation of the published
material properties and parameters. These references, amongst others, have been con-
sulted to select material parameters and their associated physical models.

The material parameters of ternary alloys, like AlxGa1−xN, are usually calculated by a
linear interpolation between the values of the binary compounds (AlN and GaN), known as
Vegard's law. Vegard's law holds well for macroscopic quantities like lattice parameters
but not always for microscopic properties where a nonlinear dependency on the mole-
fraction x exists e.g. energy bandgap. This is remedied by introducing a so-called bowing
parameter which leads to a 2nd order polynomial [13]. The nonlinearity found in some
material and electronic properties is due to the internal stress caused by the size mismatch
between the composing group III elements in the alloy. This is the reason why AlxGa1−xN
shows a more linear behaviour than InGaN, for example, since the atomic size of Al is
much better matched to Ga than is the case for In.

Some material parameters, especially those a�ected by the fabrication process, are used
as empirical '�t parameters' based on measured device characteristics [13] to 'calibrate'
the simulator to match measured results.
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The various material models and parameters are now discussed.

4.1.1 Bandgap

The ternary alloy of GaN and AlN, AlxGa1−xN, provides a wide continuous range of
bandgap values with a small associated change in the lattice constant. The energy
bandgap of AlxGa1−xN is modelled with both a temperature and a compositional de-
pendence. The compositional dependence of the principal bandgap of AlxGa1−xN shows
a nonlinear increase of the bandgap with increasing Al-content. It is modelled by the
empirical equation

Eg(x) = xEg(AlN) + (1− x)Eg(GaN)− bx(1− x) eV (4.1)

with x and b representing the mole-fraction of Al and the bowing parameter, respectively.
The values of the bowing parameter still show big inconsistencies in the literature.

The temperature dependence of the bandgap is modelled by the empirical Varshni equa-
tion

Eg(T ) = Eg(0)− αT 2

(β + T )
eV (4.2)

with α and β being empirical �t parameters which are given along with other parameters
in table 4.1.

Table 4.1: Energy bandgaps of AlN and GaN and empirical �tting parameters
Parameter Value Reference

Bandgap Eg(AlN)[eV] 6.1 [1]
Bandgap Eg(GaN)[eV] 3.42 [1]
Bowing parameter b -1 [1]
Fitting parameter α 2.15× 10−3 [13]
Fitting parameter β 1561 [13]
EV discontinuity [eV] 0.85x [13]

The di�erence of the bandgaps between the materials present in the heterostructure leads
to a discontinuity in the conduction and valence bands at the heterointerface. The value
of this 'jump' is not split evenly between the conduction and the valence bands. The max-
imum value of the discontinuity in the valence band is 0.85 eV and is assumed to increase
linearly with increasing Al-content. The associated of the conduction band discontinuity
follows directly from this. This value is needed when solving Schrodinger's equation.

4.1.2 E�ective carrier masses

An anisotropy in the e�ective carrier masses is evident for the hole carriers in GaN and
AlN in the wurtzite phase; the electrons have an isotropic e�ective mass. The values
used are given in table 4.2. The e�ective mass for AlxGa1−xN is once again a linear
interpolation between the values of AlN and GaN (of either transverse of longitudinal
values)

m∗ (AlxGa1−xN) = (1− x)m∗(GaN) + xm∗(AlN) (4.3)

A distinction should be made between the e�ective carrier mass used for density of states
(DOS) calculations and conductivity (mobility) calculations. The geometric mean of the
e�ective masses is used for the DOS calculations, given by

m∗DOS = M
3/2
C

3

√
m
‖
e−

(
m⊥
e−

)2
(4.4)
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with MC the valley multiplicity (one for GaN). Whereas, the e�ective mass used for
conductivity (mobility) calculations is

m∗cond =
3

1

m
‖
e
−

+ 2
m⊥

e
−

(4.5)

Table 4.2: E�ective masses of carriers in AlN and GaN [26] (expressed in units of free
electron mass m0).

Mass AlN GaN

m⊥
e−(=m

‖
e−
) 0.27 0.18

m⊥lh 0.25 0.15
m
‖
lh 3.68 1.10

m⊥hh 6.33 1.65
m
‖
hh 3.68 1.10

4.1.3 Dielectric constant

The relative dielectric constant of the AlxGa1−xN alloy is a linear interpolation between
the dielectric constants of the binary alloys GaN and AlN and is given by [1]

εAlxGa1−xN = 10.28 + 0.03x (4.6)

for an Al mole-fraction, x.

4.1.4 Lattice constant

The hexagonal unit cell of the wurtzite structure has two lattice parameters to which
Vegard's law can be applied:

aAlxGa1−xN = 3.1986− 0.0891x (4.7)

cAlxGa1−xN = 5.2262− 0.2323x (4.8)

These values have been well established and their linear interpolation matches experi-
mental values to within 2% [1].

4.1.5 Crystal strain

A crystal lattice is strained (deformed) when under stress. The stress may be due to
several factors which are discussed here and in the following subsection.

Stress-strain relation The mechanical deformation of a crystal can be described using
the linear stress-strain relation, known as Hooke's law. In its most general form

σij =
∑
kl

Cijklεkl for i, j, k, l = 1, 2, 3 (4.9)

where σij , Cijkl and εkl represent the stress, elastic sti�ness and deformation (strain),
respectively, along the various directions of the crystal (using tensors of appropriate rank).
Due to symmetry considerations of the wurtzite crystal structure σxy = σyx, σyz = σzy
and σxz = σzx which allows (4.9) to be written in a more compact form

σi =
∑
j

Cijεj (4.10)
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where the Voigt notation is employed: xx→ 1, yy → 2, zz → 3, yz, zy → 4, xz, zx→ 5
and xy, yx→ 6.

The wurtzite crystal structure is assumed unconstrained in the growth direction [0001],
therefore only biaxial strain in the (0001) plane remains to be considered (σ4,5,6 = 0). σxx

σyy
σzz

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 εxx
εyy
εzz

 (4.11)

4.1.6 Polarization

There exist both piezoelectric and spontaneous polarization e�ects that can be treated
independently.

4.1.6.1 Piezoelectric polarization

The piezoelectric polarization vector
(
~Ppz

)
is determined by the strain (deformation)

that a crystal is subjected to when a stress (compressive or tensile) is applied. This is
expressed by the relation [1]

~Ppz =←→e ~ε (4.12)

where ←→e represents the piezoelectric tensor (the derivative of polarization w.r.t. strain)
and the strain tensor ~ε. Through symmetry consideration of the hexagonal wurtzite
crystal structure 4.12 simpli�es to [1]

 Px
Py
Pz

 =

 0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0



εxx
εyy
εzz
εyz
εxz
εxy

 (4.13)

where one remains with three independent components e15 = e24, e31 = e32 and e33.
The piezoelectric coe�cient e15 relates to shear strain which is not present in epitaxially
grown layers, thus 4.13 reduces to simply

Ppz, z = e31εxx + e32εyy + e33εzz (4.14)

The strain components in the epitaxial layer grown in the z-direction are approximated
as

εxx = εyy =
a− a0

a0
(4.15)

εzz =
c− c0
c0

(4.16)

where a0, c0 refer to the relaxed lattice constants of the substrate, or material, on which
the epitaxial layer is pseudomorphically grown and a, c represent the lattice constant
assumed by the epitaxial material. Under these assumptions of a completely relaxed
substrate and a coherently strained epitaxial layer 4.14 simpli�es to

Ppz, z = 2e31εxx + e33εzz (4.17)

The above argument can also be developed in terms of stress tensors and piezoelectric
moduli, as shown in [1]. By substituting 4.15 in 4.17 and expressing εzz i.t.o. εxx using
Poisson's ratio one obtains [12]

Ppz, z = 2
a− a0

a0

(
e31 − e33

C13

C33

)
(4.18)
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where C13 and C33 are elastic sti�ness coe�cients. Since the second term (in brackets)
is constantly negative it becomes clear that Ppz < 0 under tensile strain (a > a0) and
Ppz > 0 under compressive strain (a < a0).

The piezoelectric polarization can be calculated using 4.17 since all involved quantities
are well established in the literature for GaN and AlN. The value of ~P pz for AlxGa1−xN
is calculated as an linear interpolation between the values of AlN and GaN

~P pz
AlxGa1−xN

= [x←−→eAlN + (1− x)←−→eGaN]−→ε (x) (4.19)

The nonlinear dependence of ~P pz
AlxGa1−xN

on x enters through the nonlinear strain rela-
tions for the composing binaries AlN and GaN which given in [1] as

P pz
AlN =

{
−1.808ε+ 5.624ε2 if ε < 0
−1.808ε− 7.888ε2 if ε > 0

(4.20)

P pz
GaN = −0.918ε+ 9.541ε2 (4.21)

Using the material parameters provided in [1] the value for ~P pz
AlxGa1−xN

on both a AlN
and GaN substrate are calculated as

P pz

AlxGa1−xN/GaN
= −0.0525x+ 0.0282x(1− x) C m−2 (4.22)

P pz

AlxGa1−xN/AlN
= −0.026x+ 0.0282x(1− x) C m−2 (4.23)

4.1.6.2 Spontaneous polarization

The advent of the modern theory of polarization (MTP), allowed the accurate, yet
simple, computation of Psp by 1st principles [13]. Psp is negative for all Ga-polarity
heterostructure-s [12].

The value of P sp
AlxGa1−xN

exhibits a nonlinear dependence on x which is described by the
introduction of a bowing parameter to the usual linear interpolation between values of
AlN and GaN

P pz
AlxGa1−xN

= xP sp
AlN + (1− x)P sp

GaN + bAlxGa1−xNx(1− x) (4.24)

with the bowing parameter calculated as

bAlxGa1−xN = 2P sp
AlN + 2P sp

GaN − 4P sp
Al0.5Ga0.5N

(4.25)

this yields, for the values provided in [1]

P sp
AlxGa1−xN

= −0.09x− 0.034(1− x) + 0.0191x(1− x) C m−2 (4.26)

Table 4.3: Polarization related parameters [13]
GaN AlN

e13 -0.338 -0.533
e33 0.667 1.505
C13 103 108
C33 405 373

Psp [C.m−2] -0.034 -0.090
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4.1.6.3 Multi-layer heterostructure

When an extra material layer is added to the AlGaN/GaN heterostructure, an additional
material interface is introduced. This additional layer may be a AlN barrier layer be-
tween the AlGaN and GaN layers or a GaN cap layer on top of the AlGaN producing
AlGaN/AlN/GaN and GaN/AlGaN/GaN multilayer heterostructures, respectively. The
AlGaN/AlN/GaN is considered here but the GaN/AlGaN/GaN structure follows similar
arguments.

The GaN layer is assumed to be thick enough to be completely relaxed and the AlN is then
pseudomorphically grown on this GaN, adopting the lattice constant of the underlying
GaN close to this interface. The strain, and thus piezoelectric polarization, can only be
roughly approximated at the AlN/AlGaN interface since the e�ective lattice constant (and
consequently the strain) of the AlN at the second interface is not known. Some relaxation
of the lattice occurs as the AlN epitaxial is grown. At the second heterointerface between
the AlGaN and AlN it is unclear what the lattice constant of the AlN is that should be
used to calculate the strain. If one assumes the strained AlN barrier layer is so thin that
it maintains the assumed lattice constant of the underlying GaN throughout the thickness
of the layer, the strain at the AlGaN/AlN interface can be calculated using this value
(this is the currently employed approach).

It is more likely that there occurs some relaxation of the AlN lattice moving away from
the AlN/GaN heterointerface. The typical thickness of the barrier layer (up to 5 nm) is
not enough for it to attain its relaxed lattice constant and it is not known at what rate this
relaxation occurs (without reverting to more complex computational methods). If one can
establish what thickness is needed before the AlN returns to its relaxed lattice constant,
when grown on GaN, one could make an interpolation to approximate the strained lattice
constant in the thin AlN barrier layer. The use of such a crude approximation may not
have a signi�cant e�ect on the overall results since it would only a�ect the piezoelectric
component of the polarization but the dominating spontaneous polarization will remain
una�ected.

To accurately calculate the strain in the entire device structure one would need to min-
imize the total elastic energy of the structure using, for instance, a conjugate gradient
method. This would require introducing further equations that will not be discussed here.

4.1.6.4 Thermally-induced strain

High-power devices and lasers can experience signi�cant self-heating (Joule-heating) un-
der operation. The resulting temperature variations cause a thermally-induced strain in
the lattice due to the mismatched thermal expansion coe�cients of the various materials.
To take this e�ect into consideration, a phonon-transport model should be coupled to the
other semiconductor equations but is not considered here.

4.1.7 Schottky barrier

A Schottky barrier is a metal-semiconductor contact with a high barrier1 and low dop-
ing. For power HEMTs it is desirable to have a Schottky contact at the gate with a
high barrier to achieve low gate-leakage currents and high breakdown voltages. Current
transport is due to majority carriers generated through thermionic emission (described
by Richardson's law). An ideal Schottky barrier between a metal and an n-type semicon-
ductor is characterised by the di�erence between the metal work function metal (φm) and
the electron a�nity (χ) of the semiconductor material i.e. the di�erence across interface
between the energy level of the majority carrier band edge of the semiconductor and the
metal Fermi level. This barrier height is calculated as

φBn = φm − χ eV (4.27)
1relative to the thermal energy kT; φB � kT
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or in another form
φBn = φm − φsc + (EC − EF ) eV (4.28)

where φsc, EC and EF denote the semiconductor work function and the conduction band
and Fermi level energies, respectively.

The work functions for commonly used gate metals and their corresponding Schottky
barrier heights with respect to bulk GaN [27] are given in table 4.4. The electron a�nity
of GaN and AlN are approximately 4.2 eV and 2.05 eV, respectively [28]; the electron
a�nity of AlxGa1−xN decreases with increasing Al mole-fractions. By using a linear
interpolation between the electron a�nities of GaN and AlN the barrier height between
an arbitrary metal and the alloy AlxGa1−xN can be calculated as

φB(metal−AlxGa1−xN) = φm − χAlxGa1−xN (4.29)

χAlxGa1−xN = χGaN + (1− x)χAlN (4.30)

This interpolation, applied to a nickel contact, is found to hold [1]:

φB(Ni−AlxGa1−xN) = 0.95 + 2x eV (4.31)

The linear increase in barrier height with increasing Al mole-fractions holds only up to
approximately x = 0.2 after which it deviates, presumably due to an increased density of
surface defects caused by the increased Al mole-fraction [28]. The barrier height increases
monotonically with increasing metal work functions but does not scale linearly with the
associated barrier height [27]. This suggests that other factors are at play, like surface
states or process defects, that in�uence the barrier height. This is substantiated by
the experimental values for barrier heights that depend on sample preparation and the
measurement technique used.

The data reported hitherto are for Schottky contacts between a metal and a bulk semi-
conductor, as is common in literature. However, the barrier heights for GaN/AlGaN
heterostructures, with a strained AlGaN layer, di�er from the values measured for their
corresponding bulk (i.e. relaxed) counterparts. A lowering of the Schottky barrier height
due to polarization e�ects in GaN/AlGaN heterostructures has been proposed [29]. Fur-
thermore, the normal thermionic emission theory cannot be applied due to the strong
piezoelectric polarization in the strained AlGaN layer [30].

The Schottky barrier height for a Ni-AlxGa1−xN contact of equation (4.31) is modi�ed
for a GaN/AlGaN heterostructure [29] as

φB(Ni−AlxGa1−xN) = 0.917 + 1.784x eV (4.32)

Schottky barriers can also be used to simulate the e�ect know as Fermi level pinning. This
e�ect is ascribed to surface states and requires the Fermi level to be a certain 'distance'
from the conduction band implying, for example, a non-zero built-in electric �eld for a
homogeneous semiconductor. This e�ect can be reproduced by a Schottky 'contact' with
the appropriate barrier height.

Table 4.4: Work functions of metals used for n-GaN Schottky contacts and barrier heights
to n-GaN determined by I-V measurements [27]

Metal Work functionφm [eV] Barrier height φB [eV]
Au 5.1 0.87
Pd 5.12 0.94
Ni 5.16 0.95
Pt 5.65 1.01
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4.1.8 Surface states

The e�ect of surface states on the charge distribution in the device structure can be
included by using appropriate distribution statistics when calculating the charge density
in Poisson's equation (by including the surface states through a δ-doping layer). The
surface states are often modelled in a phenomenological manner by assuming the existence
of certain acceptor and donor surface states, with a speci�c ionization energy, at the
surface of the device but with no further knowledge on their physical behaviour or origin
[31]. It may be the case that their ionization does not actually follow the assumed Fermi-
Dirac statistics. A discussion of the incorporation of donor surface states in a simulator
is discussed in [32].

4.2 Semiconductor equations

To study the channel formation (electron distribution) in HEMTs, taking quantum ef-
fects into account, a self-consistent solution of the Poisson (4.33) and Schrodinger (4.34)
equations should be used. Additionally, the continuity equation (4.35) must be solved for
the nonequilibrium case.

∇ ·
(
~D
)

= ρ (4.33)

− ~2

2m∗
4ψ + V = Eψ (4.34)

∇ · (qµnn∇EFn) = 0 (4.35)

The symbols represent: the reduced Planck constant (~), e�ective mass (m∗), elementary

charge quantity (q), the electric displacement �eld
(
~D
)
, the potential function (V ), the

wave function (ψ) with its associated energy (E), the electron mobility (µn), the electron
density (n) and the quasi-Fermi level of the electrons (EFn).

4.2.1 Poisson's equation

The Poisson equation (4.33) relates the electrostatic potential with the spatial charge
distribution in the material. The signi�cant polarization e�ects in III-nitrides requires
the Poisson equation (4.33) to be solved for the electric displacement �eld

~D = ε ~E + ~P (4.36)

where ε, ~E and ~P represent the permittivity, electric �eld and polarization density, respec-
tively. In the absence of a time-varying magnetic �eld, the electric �eld may be expressed
as

~E = −∇φ (4.37)

Substituting (4.36) and (4.37) into (4.33) yields

ε∇2φ = −ρ+∇~P (4.38)

The charge distribution in the semiconductor is a nonlinear function of the potential

ρ(φ) =
[
p (φ)− n (φ) +N+

D (φ)−N−A (φ)
]

(4.39)

through the mobile charge carrier densities, p and n, and the ionized donor N+
D and

acceptor N−A dopants' densities. The nonlinearities are introduced by the expressions
used to calculate the carrier densities and the ionized dopant concentration (detailed in
4.2.3).
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Electro-mechanical coupling In sections 4.1.5 and 4.1.6, linear elastic theory (Hooke's
law) was used assuming that no electro-mechanical coupling exists i.e. no electric �eld
induced strain exists in the crystal structure due to the piezoelectricity of the AlGaN.
Thermodynamics, however, dictates that such a coupling between electrical and mechan-
ical e�ects exists in piezoelectric materials [10]. In this case the stress tensor and the
electric displacement �eld are coupled and should be considered concurrently; they are
expressed as

σij = Cijklεkl − ekijEk (4.40)

Di = eijkεjk − εijEj + P si (4.41)

where the meaning of all previously introduced quantities is retained; the second rank
permittivity tensor εij is introduced along with the the spontaneous polarization P si .

The coupling between (4.40) and (4.41) is especially pronounced in materials with a strong
piezoelectric e�ect, like AlGaN, which calls for a simultaneous treatment of the stress
tensor and the electric displacement vector. However, it has been found that the electro-
mechanical coupling only has a signi�cant in�uence on the results in heterostructures in
the absence of free carriers - this is not the case in HEMTs and as a result, this coupling
can be safely neglected [31]. There have, however, been recent attempts to incorporate
the gate-dependent polarization in full-�edged simulators [33].

4.2.2 Schrodinger's equation

The Schrodinger equation is needed to accurately describe the quantum e�ects that occur
at the GaN/AlGaN interface. The discontinuity in the conduction band forms a potential
well that leads to a quantization of the energy levels. The electrons in the potential
well assume a 2-dimensional behaviour. The solution of the Schrodinger equation gives
a wave function associated with an energy - an eigenpair - for the lowest k subbands i.e.
the eigenpairs associated with the k smallest eigenvalues. This information allows the
speci�cation of a spatial probability distribution of �nding an electron at a given energy.
The state of the system, the wave function as expressed in (4.34), is a superposition of
the wave functions of all the subbands. The equation

−~2

2

d

dx

(
1

m∗ (x)

d

dx

)
ψm(x) + V (x)ψm(x) = εmψm(x) (4.42)

must be solved for m = 1, 2, ...., k i.e. for each subband. The potential function

V (x) = −qφ(x) + ∆EC(x) (4.43)

depends on the electrostatic potential φ (obtained from Poisson's equation) and the con-
duction band discontinuity ∆EC .

At the heterointerface there occurs a discontinuity in the conduction (and valence) bands.
When one assumes the level of EC in the GaN bulk to be the reference i.e. ∆EC = 0, the
value of ∆EC in the AlGaN layer will be positive since it lies above the reference value.
The value of ∆EC is thus space dependent - this is not always clear from equations quoted
in literature. The potential function used here is very simple. Additional terms accounting
for electron-electron interactions (the cross-correlation term) can also be added (usually
denoted by VXC).

Di�erent Hamiltonians can be used to solve Schrodinger's equation, like e�ective masses,
k ·p expansion or tight-binding expansion (one band k ·p). The latter two approximations
are still very sophisticated models that may be needed to accurately describe valence band
states and interband transitions of carriers. The e�ective mass approximation, however, is
very accurate if only conduction band processes are of interest as is the case for III-nitride
HEMTs [10].
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4.2.3 Calculation of charge carrier densities

The charge distribution in the semiconductor, introduced by (4.39), requires the calcu-
lation of the charge carrier densities contributed by ionized dopants and mobile charge
carriers.

4.2.3.1 Ionization of dopants

Not all dopants are necessarily ionized when they are introduced into a semiconductor
crystal, depending on their energy level and the lattice temperature. The ionized donor
density is given by

N+
D =

ND

1 + gDe

(
EF−ED

kT

) (4.44)

where ND is the donor concentration and ED = EC − Eion is the donor energy level,
where Eion is the energy required to ionise the dopant. Symbol gD is the degeneracy
in the ground state of the donor dopant energy level (ED) and is taken to be 2 due to
opposite electron spin [34]. A similar equation describes the ionized acceptors

N−A =
NA

1 + gAe

(
EA−EF

kT

) (4.45)

where EA is the acceptor dopant energy level and gA is the ground state degeneracy,
taken to be 4 because of the valence band degeneracy of the heavy hole and light hole
energy bands at k = 0 [34].

This dopant ionization model may be further extended to account for deep and shallow
dopant levels by simply introducing additional terms of (4.44) and (4.45) with appropriate
EA and ED.

4.2.3.2 Mobile charge carriers

The carrier density (electrons or holes) of a semiconductor in equilibrium, within the
parabolic band approximation, can be calculated (for electrons) by

n =

∞̂

EC

g(E) f(E) dE (4.46)

where g(E) describes the density of states (DOS) and f(E) is the Fermi-Dirac distribution
function. The Fermi-Dirac function (4.47) is a probability density function describing the
probability of �nding a fermion (e.g. electron) at a speci�c energy level.

f(E) =
1

1 + e
E−EF
kBT

(4.47)

The 3-dimensional density of states (4.48) are the number of quantum states available
per unit volume (in the k -space).

g3D(E) =
(2m∗)

3/2

2π2~3

√
E − EC (4.48)

In structures where one component of the wave vector k̄ = (kx, ky, kz) is restricted e.g.
quantum wells, a 2-dimensional DOS, describing the number of quantum states per unit
area, is needed.

g2D(E) =
m∗

π~2
(4.49)
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Using (4.48) and (4.47) in (4.46) yields an expression for the 3-dimensional electron density

n3D =
(2m∗)

3/2

2π2~3

∞̂

EC

√
E − EC

1 + e
E−EF
kBT

dE (4.50)

and by making the substitution

ε =
E − EC
kBT

(4.51)

and de�ning

ηF ≡
EF − EC
kBT

(4.52)

which expresses the distance of the Fermi energy from the conduction band, the integral
(4.50) becomes

n3D =
(2m∗kBT )

3/2

2π2~3

∞̂

0

√
ε

1 + eε−ηF
dε (4.53)

The Fermi integral of order 1/2 is de�ned as

F1/2 (ηF ) ≡
∞̂

0

√
ε

1 + eε−ηF
dε (4.54)

Following the same procedure for the 2-dimensional electron density using (4.49) in (4.46)
one obtains

n2D =
m∗kBT

π~2

∞̂

0

ε0

1 + eε−ηF
dε (4.55)

where the Fermi integral of order 0 is de�ned as

F0 (ηF ) ≡
∞̂

0

ε0

1 + eε−ηF
dε (4.56)

The general expression for the Fermi integral is given by

Fk(x) ≡ 1

Γ(k + 1)

∞̂

0

tk

1 + et−x
dk, k > −1 (4.57)

where Γ is the gamma function de�ned as

Γ(k) = (k − 1)! (4.58)

and has the property
Γ(k + 1) = kΓ(k) (4.59)

For k = 1/2 it is de�ned as
Γ (1/2) =

√
π (4.60)

Adopting the general Fermi expression (4.57) in (4.53) one obtains

n3D = N3DF1/2 (ηF ) (4.61)

where N3D is the e�ective density of states, given by

N3D = 2

(
m∗kBT

2π~2

)3/2

(4.62)
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Similarly, for (4.55)
n2D = N2DF0 (ηF ) (4.63)

N2D =
m∗kBT

π~2
(4.64)

The Fermi integrals cannot be solved analytically and have to be evaluated numerically,
in the general case. An analytical solution exists for the 0th order Fermi integral (4.56)

F0 (ηF ) =

∞̂

0

ε0

1 + eε−ηF
dε = ln (1 + eηF ) (4.65)

Using the following property of Fermi integrals

d

dx
Fk = Fk−1 (4.66)

its solution can be extended to any k ≤ 1 with an analytical expression of the Fermi
integral.

4.2.3.3 Quantum carrier density

The quantum electron density is a function of the electrostatic potential, φ, through the
dependence of the eigenenergy En(φ) and wave function ψn(φ). The quantum electron
density (similarly for holes) is obtained by summing over all energy bands (i.e. eigenpairs)
multiplying the occupancy Nq

n of the n
th energy band by the squared modulus of the wave

function2:
nq(φ) =

∑
n

Nq
n |ψn(φ)|2 (4.67)

Nq
n ≡

1

π

(
2m∗kBT

~2

)1/2

F−1/2

(
EF − En(φ)

kBT

)
(4.68)

F−1/2 (ηF ) =
2√
π
F−1/2 (ηF ) (4.69)

The squared modulus of the wave function expresses a spatial probability distribution
function i.e. the probability of �nding an electron, with an energy En, at a speci�c point
in space. This probability should also be multiplied by the occupancy: the probability of
the electron occupying a state at energy En, described by the Fermi-Dirac distribution
introduced before, and the appropriate density of states (which would be 2-dimensional
for the quantum well we wish to describe). Taking this into consideration, the expression
follows

nq(φ) =
1

π

(
2m∗kBT

~2

)1/2∑
n

ψ2
n(φ)F−1/2

(
EF − En(φ)

kBT

)
(4.70)

4.2.4 Continuity equation

When a gate potential is applied, the device is no longer in thermal equilibrium and the
Fermi level is not constant throughout the structure in this case. The Fermi level must
be solved using the continuity equation which is expressed in the following form

∂n

∂t
=

1

q
∇ · ~Jn +G (4.71)

where Jn is the electron current density and G the net generation-recombination term.
Since we are only considering steady-state solutions the temporal variation is ignored i.e.

2in the time-independent Schrodinger equation the wave functions are real and the modulus (i.e.
complex conjugate) is not needed
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∂n
∂t = 0. Furthermore, the gate current is assumed to be very small implying that the
electron density does not deviate far from its equilibrium value. This makes the neglect
of the generation-recombination term, G = 0, a reasonable assumption.

The best-known expression for current density is the drift-di�usion model:

~Jn = qµn ~E + qDn∇n (4.72)

where µn and Dn denote the electron mobility and di�usivity coe�cients, respectively;
the electric �eld is ~E = −∇φ. By using a linearization of the distribution function (of
carriers) around the equilibrium point the current density can also be expressed as

~Jn = −qµnn∇EFn (4.73)

where EFn is the quasi-Fermi level for electrons. By substituting (4.73) into (4.71) and
considering the mentioned assumptions, one obtains

∇ · (µnn∇EFn) = 0 (4.74)

The calculation of the electron-current across the heterointerface may require the use
of thermionic emission theory, as proposed in [35]. The 2D electrons that are con�ned
within the potential well have their motion constricted in the direction of the gate current
�ow; only unconstrained electrons in the upper subbands should contribute to the gate
current. The consideration of this in the code implementation requires special attention.
One solution could be to neglect the contribution of the bottom three or four subbands,
that represent the quantized electrons in the quantum well, when calculating the electron
density for continuity equation calculations.

4.3 Quasi-2D charge transport model

The current-voltage (I-V) characteristics of the HEMT can be calculated using a quasi-
2D charge transport model, as detailed in [36, 37, 38]. Firstly the sheet charge density is
calculated at several 1D sections perpendicular to the gate. This is done by solving the
Schrodinger-Poisson system, using the appropriate gate voltage as a boundary condition.
Using the calculated sheet charge density, the current �ow in the parallel direction is cal-
culated using a transport model e.g. drift-di�usion (DD) or hydrodynamic (HD) models.
The The basic assumptions common for a quasi-2D simulator are

• negligible current �ow in the perpendicular direction (to the layers);

• one-dimensional current density, restricted to the current channel (2DEG);

• linear variation of the voltage between the drain and the source of a biased transistor;

• only DC and steady-state conditions are calculated.

This quasi-2D model neglects the interaction between electrons in the parallel and per-
pendicular directions but, nonetheless, allows many physical e�ects to be incorporated in
the model in a computationally e�cient manner [37].
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Chapter 5

Numerical simulation

This chapter discusses the numerical simulation of the system of coupled equations dis-
cussed in Chapter 4. An iterative solution approach to the equation system is discussed
along with the discretization and solution of the individual equations using numerical
schemes.

5.1 Solving the system of equations

The semiconductor equations presented in section 4.2 (repeated below for convenience)
have to be solved self-consistently since they are coupled amongst each other. To solve
such a system one can either solve all three equations simultaneously or use an iterative
method where the separate equations are solved successively until convergence is achieved.
The latter approach is preferred since it is easier to implement (each equation can be tested
independently) and it also allows for an easier implementation of 'numerical tricks' to aid
in convergence.

ε∇2φ = −ρ(φ, ψ,EF ) +∇~P (5.1)

− ~2

2m∗
4ψ + V (φ) = Eψ (5.2)

∇ · (µnn (φ, ψ,EF )∇EF ) = 0 (5.3)

For the equilibrium case (when no gate voltage is applied) only the Schrodinger and the
Poisson equations - the so-called SP system - needs to be solved. When a gate voltage is
applied the continuity equation must be solved in addition to the SP system. First, the
self-consistent solution of the SP system will be discussed and then the solution for the
nonequilibrium case where all three equations must be solved self-consistently.

5.1.1 Self-consistent solution of Schrodinger-Poisson system

The equations (5.1)-(5.2) form a system of equations that are coupled through the quan-
tum electron density. The solution of Poisson's equation yields a potential φ which de-
pends on the value of the quantum electron density which, in turn, is determined by
solving Schrodinger's equation which again depends on the potential.

To obtain a self-consistent solution of equations (5.1)-(5.2) an iterative technique is used
where the two equations are solved sequentially [39, 40]. The �owchart in �gure 5.1
outlines the basic procedure: If no initial value for the potential is available (a guess or
an analytic approximation), Poisson's equation is �rst solved assuming a purely classical
electron density to obtain φ1. Then the iterative procedure is started. For the k-th
iteration the Schrodinger equation is solved to obtain a quantum electron density nkq
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(using the resulting band energies and wave functions). Poisson's equation is then solved
again, using nkq , to obtain a new potential, φk. The process is repeated until the values
of the potential converges to within a set tolerance, otherwise we replace φk+1 → φk and
repeat the process.

This system is intrinsically oscillatory [40]; a simple iteration between the Poisson and
Schrodinger equations fails to converge because the quantum charge density changes the
potential pro�le too much between iterations. The physical justi�cation for this numerical
oscillation is given by the high sensitivity that the energy values have on the con�ning
potential and, in turn, the strong dependence of the quantum charge density on the energy
values [40]. This makes the initial guess of the potential and the updating algorithm
critical to ensure (fast) convergence. The updating algorithm governs how the variables
are updated between iterations. There are several possible approaches to damp this
numerical oscillation, two of which will now be discussed.

5.1.1.1 Under-relaxation

The under-relaxation method is the most obvious and very easy to implement. The
updated carrier densities (or alternatively the potential) is damped su�ciently between
iterations to obtain convergence

nnew, damped = αnnew + (1− α)nold (5.4)

The convergence behaviour depends on the selection of the damping coe�cient, αε[0, 1],
and is typically selected heuristically based on numerical experiments. If the damping
coe�cient is too large, the system oscillates and fails to converge; if the damping co-
e�cient is too small the system converges slowly and requires (too) many iterations to
converge. This method generally exhibits a poor convergence rate and is not feasible for
computationally intensive iterations unless it is more re�ned e.g. one could dynamically
adjust the value of the damping coe�cient based on the norm of the change of a variable
between iterations.

5.1.1.2 Predictor-corrector

If an expression could be derived describing the quantum electron density as only a func-
tion of the potential (opposed to a function of the wave functions and energies), the

Figure 5.1: Flowchart outlining the approach to solving the Schrodinger-Poisson system
self-consistently in an iterative manner.
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quantum electron density could be calculated without solving the Schrodinger equation.
By substituting this (hypothetical) function (nq(φ)) in 5.1, one could only solve a non-
linear Poisson equation of the form

ε∇2φ = −ρ (nq(φ), φ)−∇~P (5.5)

The correct quantum electron density could then be simply calculated by substituting the
solution φ into nq(φ). The function nq(φ) is not known but one may approximate such a
function - the so-called predictor.

The Poisson equation is solved for φ, using a predictor of the quantum density ñq(φ)
(the predictor step). This value of φ is then used when solving Schrodinger's equation to
obtain the actual quantum electron density (the corrector step). These steps are repeated
until convergence of the SP system is achieved. Trellakis et al. [39] �rst published
the damping of the Schrodinger-Poisson system using this predictor-corrector algorithm,
using a predictor of the quantum charge derived by �rst-order perturbation theory. The
derivation of the quantum electron density predictor and the solution of the subsequent
nonlinear Poisson equation are discussed below.

The convergence behaviour of the SP system is dramatically improved using this predictor-
corrector approach compared to a simple under-relaxation method and is therefore pre-
ferred.

Quantum electron density predictor To derive a predictor of the change in the
quantum carrier density, �rst-order perturbation theory is applied. A perturbation of the
potential

φ→ φ+ δφ (5.6)

changes the Hamiltonian of Schrodinger's equation

Ĥ → Ĥ − qδφ̂ (5.7)

and the quantum carrier density

nq(φ)→ nq(φ+ δφ) = nq(φ) + δnq(φ, δφ) (5.8)

Exploiting the properties of the Fermi integral and some �rst-order perturbation theory,
the perturbation δnq(φ, δφ) can be approximated as

˜δnq(φ, δφ) = Nq
∑
n

ψ2
n(φ)F−3/2

(
EF − En(φ)

kBT

)
qδφ

kBT
(5.9)

This can then be applied to (5.8) and then using the Fermi-integral property (4.66) again,
one obtains

ñq(φ+ δφ) = Nq
∑
n

ψ2
n(φ)F−1/2

(
EF − En(φ) + qδφ

kBT

)
(5.10)

which is equivalent to the original expression (4.70) with E(φ) → En(φ) − qδφ. The
prediction of the quantum density at the potential φ+ δφ is given by (5.10). Essentially
one assumes that the wave functions remain unchanged at variations of the potential
and that the eigenvalues are shifted according to the potential perturbation. It is clear
that once the solution converges (i.e. δφ → 0) then the equation tends towards the
unperturbed quantum density expression (4.70). For a more complete treatment of this
approach refer to [39].

5.1.2 Nonequilibrium case

In the nonequilibrium case the continuity equation has to be solved for quasi-Fermi level
EFn in a self-consistent manner with the Schrodinger and Poisson equations. To obtain
such a self-consistent solution, the three equations are solved in succession until conver-
gence is achieved. It is not clear what the best method is to achieve convergence - there
are several possibilities:
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1. Solve the SP system self-consistently, then the continuity equation (�gure 5.2(a)).

2. Solve the Poisson and continuity equations self-consistently, then the Schrodinger
equation (�gure 5.2(b)).

3. Solve all three equations, one after the other (�gure 5.2(c)).

Figure 5.2: Flowchart outlining three possible approaches to solving the Poisson,
Schrodinger and continuity equations self-consistently as detailed in the text.

It should be investigated which approach is feasible since the implementation of these
schemes have not been tested thoroughly. It is not clear, for instance, how well the
corrector-predictor stabilisation of the SP-system works if the continuity equation is solved
additionally. Whether the quantum density predictor 5.10 should also be used in the
continuity expression is also not known. The value of EFn may need to be damped
to achieve convergence. Further comment on the the attempted approaches is given in
subsection 5.2.4.5.

5.2 Numerical schemes

This section discusses the discretization of the equations highlighted in section 4.4 and
their subsequent solution using numerical methods.

5.2.1 Spatial discretization

A nonuniform spatial discretization is used (if speci�ed by the user). A representation of
the discretized space is given in �gure 5.3. There are a total of N nodes, numbered from
1 to N; N-2 'internal' nodes and 2 boundary nodes. The length of the N-1 line segments
are denoted by ∆xi for a line segment between nodes i and i+1.

Figure 5.3: Representation of nonuniform spatial discretization showing node numbering.
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The small variation in both carrier densities and potential within the GaN bulk region
allows a coarse spatial resolution. Aiming for a node-to-node variation in potential of less
than the thermal voltage (∼ 26 mV) is a good reference value. A �ner spatial resolution
should be used in regions where large electron density gradients are present/expected
e.g. around the potential well at the heterointerface (3 Åwas used to generate presented
results in Chapter 6).

By using a nonuniform mesh the symmetry of the matrices of the discretized equations
is lost (as will become apparent in the following subsections) which negatively a�ects
the performance of the algorithms used to solve the linear systems. Symmetry can be
regained by applying transformations on the matrices but since all the linear systems are
solved using MATLAB's robust procedures, this does not have to be done explicitly.

5.2.2 Poisson's equation

Rewriting (4.38) for the one-dimensional case, substituting (4.39), yields the equation

εφxx = −
[
p (φ)− n (φ) +N+

D (φ)−N−A (φ)
]

+ Px (5.11)

which is a nonlinear elliptic equation in φ. It is discretized using the �nite volumes method
and then solved using the Newton-Raphson method (detailed in section 5.2.2.3).

Using the �nite volumes discretization, the introduction of δ-doping layers (sheet charge)
can be easily added.

5.2.2.1 Discretization by �nite volumes

At the material interface(s) of the heterostructure a discontinuity of the material pa-
rameters occurs. The discontinuity may introduce numerical problems, especially for the
spatial derivative of the polarization, Px. This may be partly cured by introducing a
gradual change in the Al-content (x) - as would be the case in an actual heterostructure
- but the rate of change is (generally) not known.

Instead, the �nite volume method is used to manage these material discontinuities in a
more robust manner. By integration of (5.11) one obtains a weak formulation. Equation
(5.11) is repeated here in more compact notation:

εφxx = −ρ+ Px (5.12)

Integrating over the element associated with node i (i.e. the line segment xε
[
xi− 1

2
, xi+ 1

2

]
)

one obtains
x
i+1

2ˆ

x
i− 1

2

εφxx dx = −

x
i+1

2ˆ

x
i− 1

2

ρ dx+

x
i+1

2ˆ

x
i− 1

2

Px dx (5.13)

By employing the second fundamental theorem of calculus1 it is valid to write the de�nite
integral of the polarization derivative, despite its discontinuity, as[
ε
(
xi+ 1

2

)
φx

(
xi+ 1

2

)
− ε
(
xi− 1

2

)
φx

(
xi− 1

2

)]
= −ρ (xi)

[
xi+ 1

2
− xi− 1

2

]
+
[
P
(
xi+ 1

2

)
− P

(
xi− 1

2

)]
(5.14)

The charge density (ρ) is assumed to be constant over the element (an exponential in-
terpolation should be considered). The �rst-order derivatives are discretized using a

1Let f be a real-valued function de�ned on a closed interval [a, b] that admits an antiderivative g
on [a, b]. That is, f and g are functions s.t. ∀x ε [a, b], f(x) = g′(x). If f is integrable on [a, b] then´ b
a f(x) dx = g(b)− g(a)

30



�rst-order �nite di�erence approximation, giving the left-hand side (LHS) and right-hand
side (RHS) of (5.14) as

LHS =

[
εi+ 1

2

φi+1 − φi

∆xi−1
− εi− 1

2

φi − φi−1

∆xi−1

]
(5.15)

RHS = −ρ (xi)
[
xi+ 1

2
− xi− 1

2

]
+
[
Pi+ 1

2
− Pi− 1

2

]
(5.16)

where ∆xi = xi+1−xi and Pi+ 1
2
is the total polarization at the centre of the line segment

between the nodes i+ 1 and i.

The equations (5.15) and (5.16) can be rewritten in a form suitable for matrix implemen-
tation:

εi+ 1
2

∆xi
φi+1 −

(
εi+ 1

2

∆xi
+

εi− 1
2

∆xi−1

)
φi +

εi− 1
2

∆xi−1
φi−1 = −ρi

(
xi+ 1

2
− xi− 1

2

)
+
(
Pi+ 1

2
− Pi− 1

2

)
(5.17)

This allows the system to be written in the form Aφ = b where

A =



? ? 0 · · · 0
ε
2− 1

2

∆x1
−
( ε

2+ 1
2

∆x2
+

ε
2− 1

2

∆x1

) ε
2+ 1

2

∆x2
0

0
. . .

. . .
. . .

...

0
ε
i− 1

2

∆xi−1
−
( ε

i+1
2

∆xi
+

ε
i− 1

2

∆xi−1

) ε
i+1

2

∆xi
0

...
. . .

. . .
. . . 0

0
ε
N−1− 1

2

∆xN−2
−
( ε

N−1+ 1
2

∆xN−1
+

ε
2− 1

2

∆xN−2

) ε
N−1+ 1

2

∆xN−1

0 · · · 0 ? ?



b =



?

−ρi
(
x2+ 1

2
− x2− 1

2

)
+
(
P2+ 1

2
− P2− 1

2

)
...

−ρi
(
xi+ 1

2
− xi− 1

2

)
+
(
Pi+ 1

2
− Pi− 1

2

)
...

ρi

(
xN−1+ 1

2
− xN−1− 1

2

)
+
(
PN−1+ 1

2
− PN−1− 1

2

)
?


The value of the elements denoted with the place holder ? depend on the type of boundary
conditions that are enforced on the system and will be discussed hereafter.

The charge density ρ is currently assumed to be constant over each element, a exponential
interpolation between nodal values may be sensible considering the high gradients ∇n
present around the heterointerface.

5.2.2.2 Boundary conditions

Two boundary conditions must be speci�ed corresponding to the gate electrode and the
interface of the bulk GaN to the growth substrate. The gate contact is assigned a Dirichlet
boundary condition specifying the electrostatic potential as the di�erence between the
applied bias potential and the Schottky barrier height. The GaN/substrate interface is
assigned a Neumann boundary (the derivative of the potential directed normal to the
interface) condition of zero, implying that no electric �eld is present in a direction normal
to the boundary surface. This implies that no current �ows out of this contact. The
validity of using the latter boundary condition under nonequilibrium conditions is not
clear. A current does indeed �ow when a gate voltage is applied. Perhaps a zero Dirichlet
condition should be used.

31



The Dirichlet boundary condition at the gate contact is enforced by setting

1

∆x1
φ1 =

qVG − φb
∆x1

by replacing the appropriate ? matrix elements in A and b, where φb is the Schottky
barrier height and qVG the applied gate potential (both in eV). The Neumann boundary
condition at the opposing barrier is enforced by approximating the derivative as

1

∆xN−1
φN−1 −

1

∆xN
φN = 0

Alternatively, one could also apply a zero Dirichlet boundary condition at the substrate
boundary. At least one of the contacts should have a Dirichlet boundary condition for
the PDE to be well-posed.

5.2.2.3 Newton-Raphson method

The nonlinear Poisson system is solved using the classic Newton-Raphson method along
with an inexact line search to provide more robust convergence properties. A general
de�nition of the method is given here. The implementation for the Poisson equation is
rather straightforward (cf. runstructure.m).

Newton-Raphson method The Newton-Raphson method is surely the workhorse of
numerical methods, �nding application in countless applications. Its popularity stems
from its fast (quadratic) local convergence properties and relative ease of implementa-
tion. A geometrical interpretation of the Newton-Raphson method is shown in �gure 5.4.
Starting at an arbitrary point arbitrary point xi , a tangent is extended until it crosses
zero at point xi+1 where a new value, f (xi+1), is calculated. This process is repeated
until the point xn is found that satis�es |f (xn)| ≤ ε. This point corresponds to the root
of the function f(x) (within the set tolerance ε).

Figure 5.4: Geometrical representation of the Newton-Raphson method (taken from [41])

The Newton-Raphson method is derived algebraically from the Taylor expansion around
x

f(x+ δx) = f(x) + f ′(x)δx+
f ′′(x)

2
δx2 + O

(
δx3
)

(5.18)

By setting f(x + δx) = 0 and dropping higher order terms
(
O
(
δx2
))

one obtains an
estimate for the correction

δx = − f(x)

f ′(x)
(5.19)
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which can be expressed as

xi+1 = xi −
f(xi)

f ′(xi)
(5.20)

Ignoring the higher order derivatives yields useless corrections if the initial guess of the
root, x0, is too far from the actual root and includes local minima and maxima in the
interval.

The Newton-Raphson formula requires the e�cient evaluation of the function f(x) and
its derivative at each iteration step. It is highly desirable to have an analytic expression
for the derivative f ′(x) since a numerical evaluation would destroy the fast convergence
properties of the method, making the secant method a better alternative in the one-
dimensional case [41].

Fi (x̄+ δx̄) = Fi (x̄)−
N∑
j=1

∂Fij
∂xj

δxj (5.21)

Jij ≡
∂Fij
∂xj

(5.22)

F̄ (x̄+ δx̄) = F̄ (x̄)− J̄δx̄ (5.23)

setting F̄ (x̄+ δx̄) = 0 one obtains a correction vector

δx̄ = −J̄−1F̄ (x̄) (5.24)

such that
x̄i+1 = x̄i + δx̄ (5.25)

Building on the rapid local convergence behaviour of the Newton-Raphson method, the
method is extended by the inexact line search technique to improve its global convergence
properties.

Line search The goal of the Newton method is to �nd the value x̄ which yields F̄ (x̄) =
0. The correction values of (5.24) might direct the algorithm away from the root when
the current guess is far from the root and higher order terms become important. A
criterium must be established on whether to accept the calculated correction step or not.
A minimization of

f =
1

2
F̄ · F̄ =

1

2

∣∣F̄ ∣∣2 (5.26)

with each correction step provides a suitable criterium. The correction vector δx̄ is always
in the direction of descent for f. This is shown by the following argument

∇f · δx̄ =
(
F̄ · J̄

)
·
(
−J̄−1 · F̄

)
= −F̄ · F̄ ≤ 0 (5.27)

In a �rst attempt the full correction step δx̄ is used, if it does not minimize f the step size
is reduced by moving back until a point is reached where f is reduced. The best factor
of correction is found using a line search algorithm where the goal is to �nd λε(0, 1] such
that f(x̄ + λδx̄) is su�ciently reduced. What constitutes a su�cient reduction is set by
an adjustable parameter in the practical algorithm (runstructure.m/linesearch).

This approach minimizes f by minimizing F̄ using Newton steps. Since δx̄ is in a descent
direction one is guaranteed a reduction in f for anλ small enough.

5.2.2.4 Implementation

This section makes direct references to the code to show the implementation of the above
to solve Poisson's equation. The following functions relate to the implementation/solution
of Poisson's equation.
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genrhs.m generates the right-hand side of Poisson's equation (or its derivative w.r.t
potential) for a given charge.

genmatrixpoi.m generates the left-hand side (matrix A) of Poisson's equation. It re-
mains constant between iterations (independent of potential or charge); changes
with new boundary conditions (i.e. applied voltages).

gencharge.m generates the carrier densities (or the change between iterations) for a
given potential and eigenpairs.

runstructure.m the equations system is solved here and also the Poisson equation
through incorporated function newton and linesearch.

The polarization e�ect is added to Poisson's equation in genrhs.m using the total po-
larization values that are added in buildstructure.m using polarization values given in
ganmaterial.m. Since CGS units are used special care should be taken on the di�er-
ence in units in Poisson's equation since the units for the charge density and polarization
derivative di�er by a factor i.e. ~D = 4πρ + ∇~P . This should be con�rmed along with
the units of the polarization values. The formulas calculate the polarization in units of
C.m−2 which should be converted to Å−2 to match the units of the carrier density. This
is probably still not correct in the code.

The inverted behaviour of the simulator when doping values are changed (cf. Chapter 6)
may be caused by an error of sign somewhere in genmatrixpoi.m.

The Newton method is implemented within sub-functions of runstructure.m. The Ja-
cobian matrix is calculated easily from the matrix expression Aφ = b s.t.

J = A− ∂

∂φ
b (5.28)

where ∂
∂φb expresses the derivative of the charge density ρ which simply is subtracted

from the main diagonal of A.

5.2.3 Schrodinger's equation

5.2.3.1 Discretization by �nite di�erences

The Schrodinger equation is discretized using a �nite di�erence scheme. The Hamiltonian,
in the e�ective mass approximation, yields a sparse tridiagonal matrix, when applying the
�nite di�erence discretization. The main diagonal and the �rst sub-diagonals are given
as

di =
2

∆xi + ∆xi+1

(
1

mi∆xi
+

1

mi+1∆xi+1

)
(5.29)

sdi = − 2

mi∆xi (∆xi−1 + ∆xi) (∆xi + ∆xi+1)
(5.30)

yielding the Hamiltonian matrix

Ĥ = − ~2

2m0



d1 sd2 0 · · · 0

sd2 d2 sd3
. . .

...

0 sd3 d3
. . . 0

...
. . .

. . .
. . . sdN−2

0 · · · 0 sdN−2 dN−2


+
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−q



φ1 −∆E1
C 0 0 · · · 0

0 φ2 −∆E2
C 0

. . .
...

0 0
. . .

. . . 0
...

. . .
. . . φN−2 −∆EN−2

C 0

0 · · · 0 0 φN−1 −∆EN−1
C


(5.31)

By using a space-dependent value of the e�ective mass (in addition to the non-uniform
spatial grid) the Hamiltonian becomes non-symmetric and can thus no longer be Hermi-
tian. This would imply that the energy spectrum is no longer discrete. This matter may
need further investigation.

5.2.3.2 Boundary conditions

The Schrodinger equation requires boundary conditions to be speci�ed for the wave func-
tions. It is assumed that the wave functions vanish at the boundaries of the quantum
regions (i.e. the region in which the Schrodinger equation is solved). This leads to a
zero electron density at the boundaries. If the quantum region stretches over the entire
structure this boundary condition, although not completely physically realistic, does not
have any signi�cant impact on the simulation results or their evaluation. On the other
hand, if only a part of the device is speci�ed as a quantum region then a discontinuity in
the electron density will occur at the boundaries to the classical region. Possible treat-
ments of this aspect are discussed in section (5.3) but a disappearing wave function at
the boundary is used, nonetheless.

The vanishing electron density at the boundaries caused by the boundary condition in-
troduces a large gradient of the electron density ∇n, which may be problematic (in a
numerical sense) when this term occurs in the solution of the continuity equation e.g.
using the �nite di�erence scheme or the drift-di�usion formulation of current density.

A possible 'work-around' for the vanishing electron density at the edge of the computation
domain could be to extend the domain with extra 'arti�cial' nodes outside the domain
and to solve the SP system over this larger region but then neglecting these nodes again
for further computation. This is conceptually feasible but may prove challenging to
implement.

5.2.3.3 Implicitly restarted Arnoldi method

The Schrodinger equation presents an eigenvalue problem. The eigenpairs (eigenvector,
eigenvalue) are computed using the Implicitly Restarted Arnoldi Method (IRAM) of the
ARPACK library (facilitated through the MATLAB function eigs). The IRAM is a
member of the Krylov subspace projection methods, that are used for large scale eigen-
value problems, and is a generalization of the Lanczos method for the non-symmetric case
[42].

5.2.3.4 Inverse iteration

If the step change in φ is su�ciently small between iterations, the eigenpairs are not
recalculated anew but only slightly adapted using inverse iteration. The inverse iteration
method is a numerical algorithm used to solve eigenvalue problems for which good ap-
proximations of the eigenpairs exist, that will ensure (fast) convergence. In our case these
approximations would be the eigenpairs obtained in the previous iteration (for φk). After
solving the Poisson equation anew to obtain φk+1, if

∣∣φk+1 − φk
∣∣ < ρ (where ρ is some

tolerance), the change in the eigenvalues and eigenvectors is assumed to be su�ciently
small such that the new eigenpairs of the Schrodinger equation can be calculated by in-
verse iteration. This is substantially faster to compute than recomputing the eigenvalues
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from scratch, especially since good approximations of the eigenpairs are given by the ex-
isting eigenpairs of the previous iteration. Adopting the same notation as the Schrodinger
equation, the improved approximation of the eigenvector (wave function) is

ψk+1 =
(
H− EkI

)−1
ψk (5.32)

The corresponding eigenvalue is updated as

Ek+1 = Ek + ρ (5.33)

where the correction is given by

ρ =
ψk+1ψk

|ψk+1ψk+1|
(5.34)

5.2.3.5 Implementation

This section makes direct references to the code to show the implementation of the above
to solve Schrodinger's equation. Also refer to subsection (5.3.5) for related issues. The
following functions relate to the solution of the Schrodinger equation

genmatrix1D generates the Hamiltonian, for a given potential, for the Schrodinger
equation.

schrsolve organises the solution of Schrodinger equation passing variables and selecting
the appropriate solver.

schrtrack1D sets up the numerical problem for solution by inverse iteration.

inviter1 implements the inverse iteration that approximate the eigenpairs for the eigen-
value problem (Schrodinger equation).

schrsolv1D sets up the numerical problem by generating the Hamiltonian (genmatrix1D.m)
and solves it using IRAM.

Additional comments can be found in the respective �les.

The ∆EC value that appears in the Hamiltonian (5.31) does not appear as a material
parameter in the code. The energy reference for the system is the conduction band energy
in GaN i.e. EC(GaN) = 0, therefore ∆EC = EC(AlxGa1−xN).

The value of change in potential for which inverse iteration is used to solved the Schrodinger,
instead of IRAM, must be set in initaquila.m. The best value for this has not been
investigated.

5.2.4 Continuity equation

The continuity equation expressed in the form of (4.35) is simpli�ed for the one-dimensional
case, dropping the mobility term µn, as

d

dx

(
n
d

dx
EF

)
= 0 (5.35)

n (EF )xx + nx (EF )x = 0 (5.36)

where EF is understood to be the quasi-Fermi level for electrons EFn. The value of the
electron density n is also dependent on EF in a nonlinear fashion (cf. (4.70), (4.50)). Two
possible approaches exist to solve (5.35) to obtain a self-consistent solution in the system
of equations:
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1. Solve the nonlinear equation with n(EF ) using (say) the Newton-Raphson method
to iteratively obtain a solution.

2. Keep the electron density n �xed and solve the linear equation.

The latter approach, while simpler, probably will require more iterations to reach a self-
consistent solution of the system. The �rst approach is expected to result in faster
convergence of the system but this has not been veri�ed.

The solution of the SP system along with the continuity equation has not been successful,
hence all the attempted solution approaches to solving the continuity equation are listed
here. A discretization using �nite di�erences (both forward and central di�erence) and
�nite volumes has been attempted, as shown below. It is still unclear whether the reason
for the numerical problems (?) are in the discretization of the continuity equation or
rather its self-consistent solution in the coupled equation system.

5.2.4.1 Discretization by �nite di�erences

The discretizations using both a forward di�erence and a central di�erence scheme for
the �rst-order derivatives are given below, as implemented in dajmat.m.

Forward di�erence The derivative of the electron density is approximated by a for-
ward di�erence method.

2ni
∆xi + ∆xi−1

(
∂EF
∂x
|i+ 1

2
− ∂EF

∂x
|i− 1

2

)
+
ni+1 − ni

∆xi

EF (xi+1)− EF (xi)

∆xi
= 0 (5.37)

2ni
∆xi + ∆xi−1

(
EF (xi+1)− EF (xi)

∆xi
− EF (xi)− EF (xi−1)

∆xi−1

)
+

+
ni+1 − ni

∆xi

EF (xi+1)− EF (xi)

∆xi
= 0 (5.38)

Rewritten in a form suitable for matrix implementation

EF (xi−1)

(
2ni

∆xi−1 (∆xi −∆xi−1)

)
− EF (xi)

(
2ni

∆xi∆xi−1
+
ni+1 − ni

(∆xi)
2

)
+

+EF (xi+1)

(
2ni

∆xi (∆xi + ∆xi−1)
+
ni+1 − ni

(∆xi)
2

)
= 0 (5.39)

Central di�erence The approximation of the �rst term of (5.36) remains the same
as in (5.38). The derivative of n is also approximated using a central di�erence scheme,
using ni+ 1

2
= ni+1 − ni.

2ni
∆xi + ∆xi−1

(
EF (xi+1)− EF (xi)

∆xi
− EF (xi)− EF (xi−1)

∆xi−1

)
+

+
(EF (xi+1)− EF (xi)) (ni+1 − ni−1)

(∆xi + ∆xi−1)
2 = 0 (5.40)

Rewritten in a form suitable for matrix implementation

EF (xi−1)

∆xi + ∆xi−1

(
2ni

∆xi−1
− ni+1 − ni−1

∆xi + ∆xi−1

)
− EF (xi)

(
2ni

∆xi∆xi−1

)
+

+
EF (xi+1)

∆xi + ∆xi−1

(
2ni

∆xi−1
+

ni+1 − ni−1

∆xi + ∆xi−1

)
= 0 (5.41)
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5.2.4.2 Discretization by �nite volumes

The �nite volumes discretization of (5.35) avoids the evaluation of second order deriva-
tives. This discretization scheme is implemented in dajmat2.m.

x
i+1

2ˆ

x
i− 1

2

∇ · (n∇EF ) dx = 0 (5.42)

n
∂EF
∂x
|x

i+1
2

− n∂EF
∂x
|x

i− 1
2

= 0 (5.43)

ni+ 1
2

EF (xi+1)− EF (xi)

∆xi
− ni− 1

2

EF (xi)− EF (xi−1)

∆xi−1
= 0 (5.44)

the midpoint electron density is taken as a nodal average ni+ 1
2

= ni+1−ni

2 such that

ni+1 − ni
2

EF (xi+1)− EF (xi)

∆xi
− ni − ni−1

2

EF (xi)− EF (xi−1)

∆xi−1
= 0 (5.45)

This may be rewritten in a form suitable for matrix representation

ni − ni−1

2∆xi−1
EF (xi−1)−

(
ni+1 − ni

2∆xi
+
ni − ni−1

2∆xi−1

)
EF (xi)+

ni+1 − ni
2∆xi

EF (xi+1) = 0 (5.46)

Using a �xed value of n, the value of EF can be calculated by solving the linear system.
If the nonlinear dependence n(EF ) is considered the use of the Newton-Raphson was
attempted to solve the equation. All e�orts were unsuccessful and both the approach and
implementation (described in the following section) should be checked.

5.2.4.3 Newton-Raphson method

The residual vector of the continuity equation takes the same form as the (numerical
implementation) of equation (5.35) since there are no recombination terms on the right-
hand side.

The calculation of the Jacobian depends on the chosen numerical scheme. The derivation
using the �nite volumes discretization (5.46) will be shown here. The discretization yields
a system of equations in the form

Ae = b (5.47)

where e here represents the vector of quasi-Fermi values EFn. The vector b = 0 except
for the boundary node values of the Fermi level.

Using the chain rule, the Jacobian will take the form

A
∂A

∂e
= 0 (5.48)

It is not clear whether this is indeed valid since the matrix A was derived assuming n to
be �xed and the equation to be linear. Now the dependence of A on EF is introduced by
n(EF ). We continue rewriting (5.46), with θi ≡ ni−ni−1

2∆xi−1
, as

θiEF (xi−1)− (θi+1 + θi)EF (xi) + θi+1EF (xi+1) = 0 (5.49)

This allows A to be written i.t.o. θi like
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A =


? 0 0
θ2 θ2 + θ3 θ3 0
0 θ3 θ3 + θ4 θ4 0

. . .
. . .

. . .
0 ?

 (5.50)

The required derivatives for the matrix ∂A
∂e are

∂Ai,i

∂ei
=

∂

∂ei
(θi + θi+1) (5.51)

∂Ai,i+1

∂ei
=

∂

∂ei
(θi+1) (5.52)

∂Ai−1,i

∂ei
=

∂

∂ei
(θi) (5.53)

Calculating the composing derivatives as

∂

∂ei
(θi+1) =

(
∂ni+1

∂ei
− ∂ni
∂ei

)
1

∆xi
(5.54)

= −∂ni
∂ei

1

∆xi
(5.55)

∂

∂ei
(θi) =

∂ni
∂ei
− ∂ni−1

∂ei
(5.56)

=
∂ni
∂ei

1

∆xi−1
(5.57)

The value of ∂ni

∂ei
denotes the derivative at node i, with a summation over all subbands,

as will become apparent from (4.70) rewritten here with the adopted notation

nq(φ) =
1

π

(
2m∗kBT

~2

)1/2∑
n

ψ2
nF−1/2

(
ei − En
kBT

)
(5.58)

= N2D
∑
n

ψ2
nF−1/2

(
ei − En
kBT

)
(5.59)

The derivative is calculated as

∂ni
∂ei

=
N2D

kBT

∑
n

ψ2
nF−3/2

(
ei − En
kBT

)
(5.60)

When utilizing the function genqcharge.m the vector e is passed returning a vector of
derivatives ∂ni

∂ei
. The constrained electron in the potential well do not contribute to the

gate current. Thus, when calculating the derivatives the bottom three or four subbands
must be neglected in the summation. Since these subbands provide a signi�cant contri-
bution to the electron density it is important to take the fact into account also in the
calculation of matrix A.

To complete the derivation we write

∂Ai,i

∂ei
=
∂ni
∂ei

(
1

∆xi−1
− 1

∆xi

)
(5.61)
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∂Ai,i+1

∂ei
= −∂ni

∂ei

1

∆xi
(5.62)

∂Ai−1,i

∂ei
=
∂ni
∂ei

1

∆xi−1
(5.63)

If a uniform grid is used where ∆xi−1 = ∆xi the terms on the main diagonal are zero.
This matrix was singular when implemented in MATLAB. Consequently, the Newton-
Raphson method could not be implemented successfully.

The Jacobian matrix requires many numerical evaluations; the secant method may be
better suited (refer to [41] for the implementation).

5.2.4.4 Boundary conditions

Dirichlet boundary conditions are enforced on both contact for the quasi-Fermi levels such
that the di�erence equals the applied potential

EFn(0)− EFn(L) = qVG (5.64)

5.2.4.5 Implementation

The following MATLAB functions relate to the (attempted) implementation of the nu-
merical solution of the continuity equation.

runstructure the implementation of the Newton iteration loop happens here (along with
the self-consistent solution of the other equations).

dajmat discretization of the continuity equation, for a �xed n, using the �nite di�erence
scheme.

dajmat2 discretization of the continuity equation, for a �xed n, using the �nite volumes
scheme.

genrhsJ generates the right-hand side of the continuity equation. If the recombination
term is neglected it is simply a zero vector with the boundary values replacing the
�rst and last elements in the vector.

cont_Jacobian calculates the discussed Jacobian matrix using derivatives that are cal-
culated by cont_derivative.m.

cont_current attempts to calculate the Fermi level by �rst calculating the current
density (with drift-di�usion equation) and then setting it equal to J = µnn∇EF .

The fact that a zero electron density results on the boundary nodes, because of the
boundary conditions used in Schrodinger's equation, causes problems when calculating
the electron density gradient ∇n near the boundaries. Large gradients result that may
hinder a numerical convergence when solving the continuity equation.

5.3 Code implementation

The code for this simulator was adapted from the AQUILA2 code - an open source
Schrodinger-Poisson solver for GaAs/AlGaAs structures - written in MATLAB. Various
additions, corrections and modi�cations have been made of which many are not explicitly
documented here. It is therefore recommended to use the latest version of the new
simulator - GaNQUILA - as a starting point/reference for future development work.

2available from http://www.mathworks.com/matlabcentral/�leexchange/3344
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5.3.1 Additions and modi�cations to AQUILA code

The most signi�cant modi�cations that were made to the AQUILA code are discussed
below. The a�ected/new MATLAB functions are indicated and should be referenced for
further comments.

5.3.1.1 Material parameters

The GaAs/AlGaAs material database was changed to GaN/AlGaN values (where avail-
able). The values for polarization-related constants were added; all material parameters
have been retained (only values were changed). This allows the GaAs and GaN databases
to be interchanged quite easily. The GaAs database would require the addition of dummy
polarization values and the call to the function ganmaterial.m should be changed to
gaasmaterial in all the a�ected functions. A consolidation of both material databases
into a single function with selection by a �ag as input argument should be considered if
a frequent change between materials is anticipated.

Some parameters/e�ects present for the GaAs material in the database have not been
adopted for the GaN material database:

• The direct-indirect band gap crossover point depending Al-content could not be
found for GaN. It is not evident if this e�ect exists for hexagonal (wurtzite) GaN.

• The non-parabolicity correction for Gamma electrons when calculating the Fermi
integrals in gencharge.m was also not found for GaN - it has been removed.

• The acceptor and donor ionization energies are kept at the same levels as for GaAs.
Currently all dopants are assumed to be fully ionized (which is reasonable at 300
K) so it does not matter. The consideration of surface states may require closer
attention to proper ionization energies.

5.3.1.2 Polarization e�ects

The polarization e�ects evident in wurtzite GaN have been added to the Poisson's equa-
tion. This was done using the �nite volumes scheme to avoid a discontinuity at the
heterointerface. The additional terms (spatial derivative of polarization ∇~P were added
in genrhspoi.m. Since the polarization value is assumed to be independent of the poten-
tial (electric �eld), the derivative w.r.t. potential (i.e. the Jacobian), used when solving
Poisson's equation using Newton's methods, remains unchanged. The derivative of the
RHS of Poisson's equation is called using an appropriate �ag in genrhspoi.m.

5.3.1.3 Continuity equation

The framework for a self-consistent solution of the SP system with the continuity equation
has been added to simulate heterostructure in non-equilibrium condition. This included
the numerical scheme to discretize the equation (dajmat.m, dajmat2.m) and the integra-
tion into equation system to obtain a solution self-consistent with the Schrodinger and
Poisson equations. As noted before, this implementation has not been successful and
requires re-investigation.

5.3.1.4 Simpli�cations for 1D problem

The original AQUILA code was written to also work for 2-dimensional problems. The
GaNQUILA code was developed with only 1-dimensional problems in mind; the function-
ality in 2-D has not been tested in any way. Some segments of code have been reduced to

41



only represent the 1-D case to improve readability of the code but some artifacts of the
2-D implementation may still remain. e.g. having indices for both x and y directions.
Should a 2-D version be desired (again) the original AQUILA code should be reviewed
to identify the necessary additions.

5.3.1.5 Plotting functions

Plotting functions have been extended with plot_this.m, someplot.m and bandeng_compare.m.
These functions generate various plots but must be modi�ed to meet needs e.g. axis limits.

5.3.2 Assumptions and simpli�cations

There are several simplifying assumptions that have been made in the simulator, as
detailed below.

5.3.2.1 Polarization-induced sheet charge

Apart from at the AlGaN/GaN heterointerface, there are also induced sheet carrier
charges at the top (gate contact) and bottom (GaN/nucleation layer interface) inter-
faces due to the discontinuity in the polarization values that occur there. These sheet
charges are neglected.

If the GaN bulk is thick enough (> 100 nm - as is usually the case) the sheet charge
that forms at the interface between the GaN layer and the nucleation layer gets shielded
by free carriers in the GaN bulk. Similarly, the induced charge at the top interface is
shielded by charge in the metal gate contact.

These polarization-induced sheet charges are expected to be positive and thus would also
require the consideration of holes in the simulator.

5.3.2.2 Surface states

Surface states are not considered but they may be of importance as they act as a 'source'
of electrons (similar to dopants). Thus, the doping of the structure layers is not the only
source of electrons contributing to the 2DEG. The respective importance of each is not
clear (cf. [32]).

5.3.2.3 Carrier types considered

The HEMT is considered a unipolar device i.e. only electrons are considered. Furthermore
only the Γ electrons are considered, as the nearest valley in GaN lies more than 2 eV
higher which makes any contribution by electrons in these valleys to the total electron
distribution insigni�cant [43].

5.3.3 Units and scaling of equations

The semiconductor equations, as employed in the code, have not been scaled. No numer-
ical over�ow issues have become apparent in MATLAB because of this but a scaling may
be sensible to improve the algorithms e�ciency.

The CGS unit system is used for the equations/constants in the code. Dimensions are
expressed in Ångstroms and energies and potentials in electronvolts. One should remem-
ber to convert the values to the appropriate units for output e.g. the calculated densities
returned from gencharge.m are expressed in Å−3 and should be multiplied with a factor
of 1024 to be expressed in the commonly used density unit for semiconductors of cm−3.

42



5.3.4 Initial values of variables

All variables are initialised to zero or their equilibrium values, as applicable.

An initial guess for the potential φ is needed. By default φi = 0 is used but by providing
a better guess the system reaches convergence in less iterations. For this purpose the
previous simulation result is normally used as it should provide a good guess for the next
time iteration with small changes in the applied gate voltage. An initial value for the
potential can be speci�ed using startpotential.m but it has not been found to show
e�ect.

The Arnoldi (IRAM) method (through the eigs.m function) used to solve the Schrodinger
equation allows a guess to be given for the wave functions when the iteration process is
started; a sinusoid is used as an initial guess for the wave functions.

The Fermi level is assumed to be in the middle of the energy bandgap (as is the case in
equilibrium).

5.3.5 Consideration of the quantum region

This subsection discusses various aspects that should be considered when/how a 'quantum
region' is speci�ed where the Schrodinger is solved.

5.3.5.1 Extent of the quantum region

Solving the SP system has a high computational cost (compared to only solving Poisson's
equation). Therefore, the Schrodinger-Poisson system is only solved in regions where
quantum behaviour is expected - within the region of the quantum well formed at the
heterointerface - and only the Poisson equation is used in the remaining parts of the
structure. This approach saves much computational time and has been often implemented
[44, 45]. This approach, however, requires special consideration of the coupling between
the quantum and classical regions (see subsection 5.3.5.2).

The best convergence behaviour, however, has been found when considering a quantum
region covering the entire device structure with a su�cient number of subbands to account
for all the signi�cant electron contributions. This avoids the coupling problem which is
thought to hinder numerical convergence. This topic is discussed, nonetheless, as it might
be of interest.

5.3.5.2 Coupling of quantum and classical regions

The original AQUILA code makes the assumption that all charge within the quantum
region is contributed only by electrons in the quantized energy bands and that all charge
outside the quantum region is purely classical. However, not all electrons in the (user-
de�ned) quantum region are necessarily su�ciently con�ned by the potential well and
there may be electrons (above a certain energy level) that behave classically. The orig-
inal AQUILA does not account for this. In its implementation the Poisson equation is
solved over the entire domain to obtain φ and n. The value of n is then replaced in
the quantum region by those calculated from solving the SP system. The continuity of
the electron density is thereby lost at the boundaries between the classical and quantum
regions since the Schrodinger equation is solved with the boundary condition of vanishing
wave functions (implying zero electron density) at the edge of the quantum region. To
achieve continuity the electron density obtained from the Poisson equation, should serve
as a boundary condition when solving the Schrodinger equation. This boundary condi-
tion is not implementable when considering more than one subband (which is the always
the case for a practical device structure). There are several approaches to solving this
problem, as will be discussed below.
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5.3.5.3 Classical correction to quantum regions

Another approach has been adopted by [35, 40] where the charge in the quantum re-
gion is not considered to be solely of a quantum nature. Only the electrons within the
potential well show two-dimensional (quantized) behaviour, while the electrons with an
energy above Elim (refer to �gure 5.5) are considered in a classical sense and assume
three-dimensional behaviour again since their energy levels are not quantized but form a
continuum of values. It has been suggested that all subbands should be considered quan-
tized up to the point where their eigenenergies di�er by less than kT from the next value
(just to set a reasonable transition point between quantized and unconstrained electron
behaviour).
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Figure 5.5: Seperation of 2D and 3D behaviour of electrons in quantum well. Electrons
above level Elim are considered unconstrained (3D); below they are considered quantized
(2D).

The classic 3D electron density, as calculated in (4.50), calculates the integrals from the
conduction band energy EC . For the case of the classical electron density contribution
in the quantum region this integral should be calculated from max(Elim, EC) instead,
making the subsequent use of the Fermi integrals no longer valid. There are methods
suggested in [44] to make corrections to the integrals.

The limits of the integral in (4.55) must also be changed to avoid a contribution by both
the classical and the quantum electron density integrals for energies above Elim. The
upper bound of the integral needs to be replaced ∞→ Elim. This is the same as writing

Elimˆ

E

dx =

∞̂

E

dx−
∞̂

Elim

dx (5.65)

The Schrodinger equation is solved for (ψn, En) over all the subbands considered and the
quantum charge density is then calculated for the quantum well region.
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The use of a 'classical correction' in the quantum regions allows much less subbands to
be used and also a smooth coupling between quantum and classical regions. This has,
however, been found to introduce numerical instabilities in the solution of the SP system.
This is thought to be because the intersection of the energy values, where EC = Elim,
does not necessarily coincide with a node point causing a non-smooth jump in density to
the next node.

5.3.5.4 The appropriate number of subbands

The question arises how many subbands should be considered to capture all the signi�cant
contributions to the quantum electron density in the quantum region. This depends on
the speci�c device structure considered and cannot be predicted reliably a-priori. The
best approach is to simulate the device and plot the wave functions along with their
corresponding contributions to the total quantum electron density and then increase or
decrease the number of subbands accordingly. In all cases enough subbands should be
computed such that the highest eigenenergy (above the conduction band) is always above
the Fermi level. By the nature of the Fermi-Dirac statistics, the probability of subbands
above the Fermi level being occupied decreases exponentially and thus quickly becomes
negligible. For the heterostructures considered here, three subbands have been found
to capture most of the quantum e�ects around the heterointerface as can be seen from
results (Chapter 6).

5.3.5.5 Boundary condition

The assumption of a vanishing wave function (ψ = 0) on the boundary of the quantum
region is only physically valid if the energy of the highest subband lies below EC at the
quantum boundary (since no states exist in the energy bandgap). If the entire device
is covered by a quantum region without any 'classical correction' this can never hold
true for all subband energies. In the case where the quantum region only surrounds the
heterointerface and a 'classical correction' is used, the value of Elim should be chosen
such that it lies below EC at the boundary of the quantum region (NOTE: remember to
calculate the 'classical correction' integrals from max(EC , Elim)).

5.3.6 Fixes for nonequilibrium calculation

A work-around for implementing applied gate voltages without being able to solve the
continuity equation is to manually adjust the Fermi level in the structure in certain
regions by using the addbias.m command in GaNQUILA. This is of course extremely
rudimentary. One could increase the Fermi level, by an amount equal to the applied gate
voltage, in the region from the gate contact up to some distance (say 150 Å) after the
heterointerface. The actual Fermi level will decrease more gradually so this approximation
will probably overestimate the e�ect of the applied voltage further from the surface of
the device.

The reason for non-convergence when solving the continuity equation has not been pin-
pointed. Firstly the numerical solution of the continuity equation in a simple test struc-
ture should be established. After this has been established it can be integrated with the
Poisson and Schrodinger equations. The iterative solution, along with the SP system,
may require some numerical damping and can become computationally expensive.

It is commonly recommended to increase the gate voltage in steps smaller than 25 mV to
retain numerical stability. This requires a great number of iterations when a large gate
voltage is applied. Additionally the self-consistent solution of the continuity equation
with a damped iterative technique quickly drives up the computational cost. Once the
simulator shows satisfactory results one must save the output at various voltages to be
used in a lookup table for use in the quasi-2D simulator.
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5.4 Alternative simulators

An overview is given of freely available simulation software that may be used for compar-
ison/validation of the results of the developed simulator.

5.4.1 BandEng

The BandEng software is a freely available3 software for simulating the carrier distri-
butions in 1-dimensional heterostructures, taking polarization e�ects into account. The
software was developed by M. Grundmann as part of his PhD thesis at the University
of California Santa Barbara (UCSB) in the research group of Prof. Mishra investigating
GaN HEMT structures.

The simulator is often used for validation of results but lacks complete documentation. It
is not clear what methods/equations were used in the implementation of the simulator.
The only possible source of this information may be the dissertation of Grundmann but
access to it must be requested; the author could not be contacted directly.

5.4.1.1 Using BandEng for validation

The BandEng simulator has been used to generate validation results for the GaNQUILA
simulator. There are several important things to note to make the comparison of results
between the simulators possible

The material database of BandEng can be edited for most material parameters and has
been adapted to re�ect the material parameters used in GaNQUILA. The piezo-electric
polarization is calculated in GaNQUILA using (4.17) but BandEng probably uses (4.18)
since the parameters C13, 33 appear in the material database. In principle there should
be no di�erence in the result between the two formulations.

The temperature dependence of the energy bandgap (subsection 4.1.1) is not taken into
account in BandEng, therefore this model must be deactivated in ganmaterial.m to
match the bandgap values of BandEng.

The energy reference level in GaNQUILA is the conduction band energy EC(GaN) whereas
in BandEng the Fermi level serves as reference (as is common). The values must be read-
justed to match (for plotting; bandeng_compare.m).

The contact potentials must be speci�ed in BandEng to match the ones in GaNQUILA
i.e. a zero Neumann condition on the GaN bulk and a Schottky barrier (of appropriate
height for the Al-content) at the AlGaN boundary.

The dopants in BandEng can be set to be fully ionized (under Setup menu); in GaNQUILA
this is set in initaquila.m. If partially ionized dopants are considered in the future the
ionization energies in material database must be homogenised.

The results of BandEng can be exported to a text �le that is read and plotted in
bandeng_plot.m. For a comparative plot with GaNQUILA results use bandeng_compare.m.

5.4.2 nextnano

The nextnano software is available as a free download after registration on the website4.
The website provides extensive tutorials on the use of the software and general topics of
computational microelectronics. The nextnano simulator is very extensive. It has not
been tested for the simulation of the heterostructures considered.

3available from my.ece.ucsb.edu/mgrundmann/bandeng.htm
4www.nextnano.org
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5.4.3 1D Poisson/Schrodinger

This simulator was developed by Greg Snider at the University of Notre Dame. It has
a text interface and requires an external plotting program. Polarization in nitrides is
taken into account but the details of the implementation are not clear. The user manual
provides some reference papers detailing the equations of the simulator. This simulator
has not been used for validation.

The simulator also assumes thermal equilibrium and applied gate voltages are imple-
mented only by specifying a Schottky barrier of 'appropriate' height. This assumption,
as is the case for our simulator, is only valid for negligible current.
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Chapter 6

Results

This chapter discusses several representative examples of the simulation results obtained
by the developed simulator, GaNQUILA. Firstly, the qualitative behaviour of the simula-
tor is investigated with respect to the change of various device and numerical parameters.
Using the BandEng simulator as a comparison, the GaNQUILA simulation results are
validated for a selection of test structures.

Test structures

Except if mentioned otherwise, all the following simulation results are for a AlxGa1−xN/
GaN heterostructure, where the Al-content is denoted by x. A Schottky barrier is assumed
at the left gate contact; no applied voltage bias. A zero derivative of potential is imposed
on the right 'contact' boundary.

A compact notation to denote the various test structures and their parameters is adopted
here. The GaN bulk layer is assumed to have a constant background doping of ND =
1015 cm−3and a thickness of 1000 Å(thick enough to make the Neumann boundary condi-
tion plausible). The doping and thickness of the AlxGa1−xN layer is denoted by a letter
(A-D) and a number (0-3), respectively. The nomenclature is de�ned in table 6.1; the
Al-content is appended at the end e.g. B2_x0.3 would describe a 250 Å Al0.3Ga0.7N
layer doped with ND = 1017 cm−3. This nomenclature is also used to name �les (cf.
bandeng_compare.m). The latter structure, B2_x0.3, is used as the 'standard' structure
to investigate various e�ects since it represents dimensions and doping commonly found
in GaN HEMT heterostructures.

Table 6.1: The nomenclature adopted to describe the doping and dimensions of test
structures.

Doping [cm−3] Layer thickness [Å]
A 1015 50 0
B 1017 150 1
C 1018 250 2
D 1019 350 3

Plot classical vs quantum densities

A comparison between the classical solution (solving Poisson's equation) and the quantum
solution (solving the SP system) is illustrated in �gure 6.1. It can be seen that the
consideration of quantum e�ects, by solving the Schrodinger equation, reduces the peak
value of the electron density and 'spreads' the 2DEG. This is because of the spatial
probability distribution that the wave functions introduce, as depicted in �gure 6.2.
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The electron density can be seen to drop to zero at the boundaries when the entire struc-
ture is considered a quantum region (with no classical correction), whereas the density is
non-zero in the classical case.
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Figure 6.1: Comparison between the classical and quantum electron densities, shown in
red and blue, respectively for test structure B2_x0.3.
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Contributions of subbands to the quantum density

Figure 6.3 shows the contribution of the lowest three subbands to the electron density in
the quantum well region. It is evident that these subbands make the signi�cant contri-
bution to the electron density inside the quantum well region. The higher subbands are
too far above the conduction band energy to have a signi�cant probability of occupation,
due to the Fermi-Dirac statistics.

Figure 6.4 shows the energy values of the subbands which can be seen to converge to a
continuum of values i.e. an energy separation less than kT above the 5th subband. This
would be the point from where the electrons could be again considered unconstrained (3D
behaviour) and the 'classical correction' applied.
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Figure 6.3: The electron density contributed by the three lowest subbands in the quantum
well superimposed on a plot of the energy bands.

E�ects on computation time of subbands and 'classical correction'

Table 6.2 allows an interpretation of the e�ects that the number of subbands and the
'classical correction' have on the computation time and charge densities. The results
shown in table 6.2 are for the test structure B2_x0.3 but the same trends should apply
to other structures.

When only quantum charge is considered (without a 'classical correction') one has to use
many subbands (at least 20) to cover a su�cient range of energy to cover the energy
bands' bending to achieve convergence. There is not a signi�cant increase in computation
time when adding additional subbands (20 vs. 50) since the wave functions remain mostly
unchanged sinusoidal waves that stretch over the length of the device. This is explained
by the fact that the eigenvalue problem (Schrodinger's equation) is solved using an iter-
ative technique (IRAM) using the sinusoidal solution as an initial guess. Thus, only few
iterations are need from this initial guess to �nd the correct solution.

When 10 or less subbands are used the 'classical correction' must always be used since the
10 subbands do not cover a su�cient energy range to achieve a convergent result. Because
of the numerical destabilisation that occurs if the top subband crosses the conduction band
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energy (cf. section 5.3.5) the Schrodinger-Poisson system fails to converge to a plausible
solution when four to nine subbands are used with a classical correction; if three subbands
are used their e�ect is restricted to the quantum well and convergence is achieved.

The computation parameters do not a�ect the charge densities substantially since they
remain within an order of magnitude of each other in all (converging) cases. There is no
change in the results when increasing the number of subbands from 20 to 50. There is
negligible change between the results of three and ten subbands (with correction).

The full quantum approach provides the most accurate results (when compared to Ban-
dEng - shown later) but the computational advantage of the quantum-classical model
may be bene�cial if this simulator is eventually coupled to a transport model (see section
4.3) but the underlying reason for the discrepancies must be investigated.

Table 6.2: CPU time, peak electron density and integrated sheet density for structure
B2_x0.3 using di�erent number of subbands and 'classical correction' (where marked
with c).

Number of subbands CPU time [s] nmax [cm−3] ns [cm−3]

3 (c) 1.92 2.63× 1019 8.78× 1012

7 (c) no convergence
10 (c) 6.47 2.76× 1019 9.07× 1012

10 no convergence
20 21.9 4.48× 1019 1.13× 1013

50 28.6 4.48× 1019 1.34× 1013
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Figure 6.4: Subband energies superimposed on the conduction band. The energies of the
subbands are no longer quantized above the 5th subband where they become 'continuous'.
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The e�ect of the width of the quantum region (QBOX)

The placement of the QBOX, signifying the region where quantum e�ects are considered,
requires some experimentation to establish the position that yields the best convergence.
As a general guideline, the QBOX should extend from the gate (surface) to at least
150 Åbehind the heterointerface. The appropriate placement is also dependent on the
number of subbands which have been selected: when no 'classical correction' is used in
the quantum region (QBOX) a su�cient number of subbands (∼ 20) must be considered.
However, the use of a mixed classical-quantum approach and the 'classical correction' in
the QBOX has sometimes been found to be problematic for both convergence and results.

Table 6.3 shows a comparison between the computation time of three di�erent heterostruc-
tures using either a quantum region that covers the entire device, or a combination be-
tween quantum and classical regions. The combination of classical and quantum regions
presents roughly a 50% saving in computation time when compared to the full quantum
approach; there is no di�erence in the obtained charge densities (a QBOX with 50 sub-
bands, extending 150 Åbehind the heterointerface was used in the 'mixed' case). A further
advantage of the classical-quantum approach is that one avoids zero electron densities at
right structure extremity, but a discontinuity in the electron density is introduced at the
quantum/classical interface when no 'classical correction' is used.

Figures 6.7 and 6.6 show the result (for test structure B2_x0.3) of a QBOX extending
from the surface to 150 Åbehind the heterointerface with three subbands and a 'classical
correction' and 50 subbands without a correction, respectively; �gure 6.5 shows the result
for a QBOX extending over the entire device with 50 subbands. It is evident that the
best agreement to the full quantum treatment is achieved when no 'classical correction'
is used in the QBOX, however a discontinuity in the electron density at the transition
to the classical region results. Although, unphysical it does not a�ect the peak electron
density and integrated sheet electron density appreciably.

To reduce the computation time one has the choice of limiting the quantum region either
spatially, or 'energetically' i.e. restricting the number of subbands and using a 'classical
correction'. Both approaches pose some problems. The classical correction impacts the
accuracy and the use of a spatial classical-quantum separation introduces problems at the
transition point between the regions.

Remark1: The lastly mentioned discontinuity does not a�ect the charge density results
appreciably but the discontinuity at the quantum/classical interface will surely cause
problems when solving the continuity equation for the quasi-Fermi level if gradients
of the electron density (or their numerical equivalents) are considered.

Remark2: It has been found that the use of the 'classical correction' in the QBOX with
50 subbands yields lower electron densities, similar to when only three subbands are
considered. This is a clear indication that there is a problem with calculating the
charge integrals of the correction terms. The use of the 'classical correction' should
therefore be re-investigated.

Table 6.3: Comparison of computation time in seconds between a full quantum region
and quantum-classical approach.

Structure Full quantum Quantum-Classical
C1_x0.1 21.6 9.5
B2_x0.3 28.6 13.2
A3_x0.2 30.6 13.8
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Figure 6.5: A QBOX covering the entire device domain with 50 subbands for structure
B2_x0.3. A peak electron density of nmax = 4.7 × 1019 cm−3 and a sheet electron ns =
1.4× 1013 cm−2are found.

0 200 400 600 800 1000 1200
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

E
le

c
tr

o
n
 d

e
n
s
it
y
 [
c
m

−
3
]

Depth [Angstrom]

← n
max

 =2.7E19

0 200 400 600 800 1000 1200
−5

−4

−3

−2

−1

0

1

2

E
n
e
rg

y
 [
e
V

]

Depth [Angstrom]

Energy bands (green) and electron density (blue)

Figure 6.6: A QBOX extending from the surface to 400 Å, 150 Åbehind the heterointer-
face, with 3 subbands and a 'classical correction'. A smooth transition to classical region
is evident but the charge densities deviate from the full quantum treatment. A peak
electron density of nmax = 2.7× 1019 cm−3 and a sheet electron ns = 8.8× 1012 cm−2are
found.

53



E�ect with(out) a AlN barrier layer

The e�ect of the addition of a AlN barrier layer is investigated here by considering a
AlGaN/AlN/GaN heterostructure. The polarization due to this interface(s) should also
be taken into account by calculating the strain (cf. section 4.1.6). Some simulation results
with an Al0.8Ga0.2N barrier layer are shown in �gure 6.8. The high Al-content causes
very strong band bending which is probably not correct. An overlap of the energy levels
of the valence and conduction bands occurs at the AlN/GaN interface which may make
quantum tunnelling (and recombination) e�ects no longer negligible. This would require
the consideration of holes when solving the equations.

Compared to the same structure without the AlN barrier layer (cf. �gure 6.5), a stronger
spatial con�nement of the 2DEG is evident due to the barrier layer. The large energy
bandgap of the AlN increases the potential barrier that electrons in the quantum well
must transcend and thus decreases their probability of being able to leave the quantum
well. Furthermore, the peak electron density is increased due to the larger di�erence in
spontaneous polarization between AlN and GaN (vs. AlxGa1−xN and GaN where x < 1)
and the increased piezoelectric polarization due to the increased strain caused by the
increased mismatch in lattice constants.

E�ect of the thickness of the AlGaN supply layer

If the AlGaN layer is too thin, for su�cient bending of the energy bands to occur, no
2DEG forms at the heterointerface. What constitutes 'too thin' also depends on the
Al-content as can be seen when comparing �gure 6.9 and �gure 6.10. A thicker AlGaN
layer allows more band-bending to occur - also for low Al-content layers - as is evident
from �gure 6.11. Notwithstanding, an increase of the AlGaN layer thickness reduces the
control that the gate potential has on the 2DEG since there are unionized donor dopants

0 200 400 600 800 1000 1200
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

E
le

c
tr

o
n
 d

e
n
s
it
y
 [
c
m

−
3
]

Depth [Angstrom]

← n
max

 =4.5E19

0 200 400 600 800 1000 1200

−6

−4

−2

0

2

4

E
n
e
rg

y
 [
e
V

]

Depth [Angstrom]

Energy bands (green) and electron density (blue)

Figure 6.7: A QBOX extending from the surface to 400 Å, 150 Åbehind the heteroint-
erface, with 50 subbands and no 'classical correction'. A discontinuity in the transition
to the classical region is evident but the charge densities match the ones obtained by full
quantum treatment very well. A peak electron density of nmax = 4.5× 1019 cm−3 and a
sheet electron ns = 1.3× 1013 cm−2are found.
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in the middle of the AlGaN layer that provide shielding. The latter e�ect cannot be made
clear by the simulator currently, since only the thermal equilibrium case can be simulated.
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Figure 6.8: A Al0.3Ga0.7N/Al0.8Ga0.2N/GaN heterostructure showing increased peak
electron density and spatial isolation of the 2DEG.
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Figure 6.9: Test structure A0_x0.2 (a 50 ÅAl0.2Ga0.8N layer) showing insu�cient bend-
ing of energy bands to form a 2DEG.
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Figure 6.10: Test structure A0_x0.3 (a 50 ÅAl0.3Ga0.7N layer) showing increased bending
of the energy bands with increased Al-content forming a 2DEG.
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Figure 6.11: Test structure A3_x0.1 (a 350 ÅAl0.1Ga0.9N layer) showing the formation
of a 2DEG despite the low Al-content.
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E�ect of doping concentration

An increase in the peak density value of the 2DEG and the total integrated sheet electron
density is expected if the donor concentration is increased, the opposite e�ect is evident
in simulation results. The e�ect of the doping concentration is not re�ected correctly by
the simulator. The problem only becomes evident for high doping concentrations that
approach the (equivalent) density of the polarization induced charge; the polarization
e�ects 'disguise' this e�ect otherwise.

Inconsistencies are also evident from the bending of the energy bands: the conduction
band should bend towards the conduction band (like a positive parabola) as the donor
concentration in the AlGaN layer is increased. The opposite is evident in the simulator
when comparing the �gures 6.12 and 6.13. This behaviour remains the same in both cases
when solving the SP system and when solving only the Poisson equation. This indicates
that the problem is caused by incorrect values of the electrostatic potential (as solved by
Poisson's equation).

Remark: Some papers have considered the solution of the charge neutrality condition
for GaN heterostructures to investigate the e�ects of doping in heterostructure [31].
The value of this is not well understood. The polarization e�ects present in Wurtzite
crystals a�ect only the distribution of free charge carriers but does not actually act
as a 'source' of electrons as doping does.
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Figure 6.12: Test structure B2_x0.1 with a doping of ND = 1017 cm−3 showing a slight
upward bending of the energy band. A peak electron density of nmax = 5.1× 1018 cm−3

and the sheet electron density ns = 2.6× 1012 cm−3.

Comparison to published results

A direct comparison to published experimental/simulation results for GaN HEMTs has
been avoided but the results where studied to help interpret the behaviour of the GaN-
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QUILA results.

A sensible comparison to published experimental results of GaN HEMT structures is
very di�cult since the signi�cant polarization e�ects in GaN depend strongly on the
preparation of the test structure(s). One can, however, gain insight on the what the
qualitative behaviour behaviour of the device should be under various conditions. If own
experimental measurements can be performed, a 'calibration' of the simulator is needed.
This is done by adjusting the process-dependent material parameters (within a plausible
physical range) to reproduce the experimental results with the simulator.

A comparison to published simulation results may be more sensible but the complete
device dimension, doping, material parameters etc. are seldomly given in full detail
which, again, makes only a qualitative comparison sensible.

Comparison to BandEng results

For comparison to the results of the BandEng simulator, the material parameters in the
database were matched to those used in GaNQUILA (to the extent possible). The only
notable absence is the lack of a temperature dependent bandgap in BandEng; this model
was switched o� in GaNQUILA for comparison purposes.

Table 6.4 ( on page 60) shows a comparison of the charge densities for various test struc-
tures. A good agreement, although not exact, between the simulators is evident for most
test structures. The best agreement is achieved for high Al-content where the polarization-
induced charge is dominant. A notable exception is A3_x0.3 (�gure 6.14): it appears
as if BandEng converges to an incorrect result as seems irregular compared to its other
results - the band-bending is much too strong.

The problem of the incorrect band-bending in GaNQUILA with increased donor doping
becomes evident again here when comparing structures with low Al-content (x=0.1) and
high doping (1018 cm−3) e.g. C1_x0.1. Figure 6.15 shows the incorrect band-bending
very well. This is the underlying reason for the di�erence in electron densities.
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Figure 6.13: Test structure C2_x0.1 with a doping of ND = 1018 cm−3 showing a clear
upward bending of the energy band. A peak electron density of nmax = 2.6× 1018 cm−3

and the sheet electron density ns = 1.6× 1012 cm−3.
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In all cases both the peak electron density and the integrated electron sheet density are
underestimated by GaNQUILA. The primary reason for this is believed to be the lastly
discussed wrong bending of the energy bands, the calculation of the polarization charge
may be another. The neglect of the cross-correlation term Vxc in the Hamiltonian of
Schrodinger's equation could also explains the reduced peak density value but only to a
negligible extent (as noted in [31] where a di�erence of 5×1018 occurs for a of peak value
5.5× 1019 ).
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Figure 6.14: Test structure A3_x0.3 showing an irregular result from BandEng.
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Figure 6.15: Comparison to BandEng for test structure C1_x0.1 showing a clear error
of the band-bending of GaNQUILA (in red).

Table 6.4: Comparison of the peak electron densities and integrated electron densities of
GaNQUILA and BandEng for various test structures.

Structure nmax[cm−3] ns[cm−2] Simulator
C1_x0.1 3.87× 1018 2.07× 1012 BE

7.66× 1017 6.91× 1011 GQ
C1_x0.2 2.12× 1019 7.28× 1012 BE

1.40× 1019 5.25× 1012 GQ
C1_x0.3 4.95× 1019 1.28× 1013 BE

3.51× 1019 1.05× 1013 GQ
B2_x0.3 5.71× 1019 1.59× 1013 BE

4.48× 1019 1.34× 1013 GQ
B2_x0.2 2.58× 1019 8.61× 1012 BE

2.18× 1019 7.75× 1012 GQ
A3_x0.2 2.81× 1019 9.36× 1012 BE

2.36× 1019 8.79× 1012 GQ
A3_x0.3 5.26× 1020 4.03× 1014 BE

4.68× 1019 1.45× 1013 GQ
B3_x0.1 8.22× 1018 3.82× 1012 BE

6.53× 1018 3.26× 1012 GQ
A2_x0.1 6.04× 1018 2.93× 1012 BE

5.39× 1018 2.71× 1012 GQ
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Chapter 7

Conclusion

7.1 Summary

The simulation of the electron distribution in GaN/AlGaN heterostructures was inves-
tigated for the use in a quasi-2D GaN HEMT simulator. The numerical solution and
implementation of a one-dimensional Poisson-Schrodinger system was discussed, as well
as the solution of the continuity equation in the nonequilibrium case. The simulator was
implemented in MATLAB using the existing AQUILA code for GaAs/AlGaAs as a basis.

The developed simulator demonstrates the correct qualitative behaviour under the change
of various,but not all, device parameters. The e�ect of (high) doping concentrations in
the supply layer is not re�ected correctly. Generally, a good agreement to the results
generated by the BandEng software exists, for simple AlGaN/GaN heterostructures in
the thermal equilibrium case. The nonequilibrium case (with an applied gate voltage)
has not been solved in a satisfactory manner. The numerical solution of the continuity
equation together with the Schrodinger-Poisson system has failed. There is no convergence
of the Fermi level and the obtained results are not plausible and cannot be used. This
matter should be re-investigated.

7.2 Recommendations

This report has summarized the essential aspects that are needed to develop the intended
simulator. It may prove fruitful to rewrite the entire simulation code from a clean slate
to re-check the details of the code and to improve the general software architecture.
Detailed attention needs to be given to numerical aspects e.g. equation scaling and
matrix conditioning and the consequent e�ciency of algorithms. These aspects have not
been investigated properly up to now.

With a proper numerical treatment of the system of equations a convergence for the
nonequilibrium case should be attainable using the approach sketched in this report. The
solution of the nonequilibrium case is an essential feature for the eventual integration in
the quasi-2D simulator. Furthermore, the presented alternative simulators do not account
for the nonequilibrium case either, making its addition to GaNQUILA a valuable addition
to the existing o�ering in free simulators. There are two essential problems that must be
addressed before solution of the continuity equation is again attempted:

• Error in Poisson's equation causing incorrect band-bending with increased doping;

• The 'classical correction' term essential for a smooth coupling of classical and quan-
tum regions and/or electrons. without causing discontinuities electron densities
and/or zero electron densities at the boundaries of quantum region(s).
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The primary goal should be to ensure the correct qualitative behaviour of the simulator
to results reported in literature. Once this has been established the quantative behaviour
can be further improved using suggested softwares as comparisons. There are several
further additions and improvements that can be made to the simulator once the basic
equations can be solved in a numerically robust manner.

The rigorous veri�cation of the numerical solutions of the individual equations is strongly
recommended to better seperate the convergence issues of the equations from those of the
system. A selection of simple test structures should be designed for which the solution
is well known or an exact analytic solutions exist. These structures can then be used
to validate the numerical solution of equations and identify problems more e�ectively.
Possibilities may be a n+n junction to test potential or quasi-Fermi levels; a triangu-
lar potential well, for which an exact solution is known, to test the numerical code of
Schrodinger's equation.

Currently, all electrons are calculated in a quantum manner without a 'classical correction'
(section (5.3.5.3)) to ensure better convergence of the SP system. It would be bene�cial
to separate the calculation and treatment of 3D and 2D electrons more rigorously since
only 3D electrons should be considered for the gate current and it also o�ers reduced
computation time. The results obtained with the current 'classical correction' have shown
some inconsistencies. This matter should be thoroughly investigated both in theory and
code - a good starting point is given by Takano [35].

The accurate simulation of multilayer heterostructures, like GaN/AlGaN/GaN, should
also be pursued since they are becoming more common in GaN HEMTs. The method with
which the strain in the layer(s) is currently calculated is not expected to accurately handle
multilayer structures. The most accurate method would be to minimize the total strain
in the structure using a conjugate gradient method, for instance, and then calculating the
polarization e�ects from this using strain tensors.

Further additions the GaNQUILA simulator may include:

• The expansion of the Hamiltonian in Schrodinger's equation to incorporate cross-
correlation e�ects which may be important to account for scattering e�ects outside
the quantum well.

• The consideration of surface states - they play an important role in the ungated
sections of the HEMT to supply the free electrons needed to form the 2DEG. Us-
ing the �nite volumes scheme they can incorporated using aδ-doping layer on the
surface.

• The investigation of the electro-mechanical coupling that exists between the electric
�eld and the stress tensor by introducing an additional equation to the system.

• The consideration of electrothermal e�ects that are important in high-power devices
by introducing a heat (phonon) transport equation.

• The addition of C-V pro�ling to the simulator by calculating the charge at several
voltages and calculating dC = dQ

dV (once the non-equilibrium case can be solved).

For further queries or support, the author can be contacted <pellinghaus@ieee.org>.

62



Bibliography

[1] H. Morkoç, Handbook of Nitride Semiconductors and Devices: Electronic and Optical
Processes in Nitrides Vol. 1: Materials Properties, Physics and Growth. Weinheim:
Wiley-VCH, 2008.

[2] A. Ashok, D. Vasileska, S. Goodnick, and O. Hartin, �Importance of the gate-
dependent polarization charge on the operation of GaN HEMTs,� Electron Devices,
IEEE Transactions on, vol. 56, pp. 998 �1006, May 2009.

[3] J. Pankove, E. Miller, and J. Berkeyheiser, �GaN electroluminescent diodes,� in
Electron Devices Meeting, 1971 International, vol. 17, p. 78, 1971.

[4] S. Nakamura, �GaN growth using GaN bu�er layer,� Japanese Journal of Applied
Physics, vol. 30, no. Part 2, No. 10A, pp. L1705�L1707, 1991.

[5] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, �Hole compensation mechanism of
p-type GaN �lms,� Japanese Journal of Applied Physics, vol. 31, no. Part 1, No. 5A,
pp. 1258�1266, 1992.

[6] S. Nakamura, T. Mukai, and M. Senoh, �High-power GaN p-n junction blue-light-
emitting diodes,� Japanese Journal of Applied Physics, vol. 30, no. Part 2, No. 12A,
pp. L1998�L2001, 1991.

[7] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, �High electron mobil-
ity transistor based on a GaN-AlxGa1−xN heterojunction,� Applied Physics Letters,
vol. 63, no. 9, pp. 1214�1215, 1993.

[8] M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, �Metal semiconductor
�eld e�ect transistor based on single crystal GaN,� Applied Physics Letters, vol. 62,
pp. 1786 �1787, Apr 1993.

[9] J. Pankove, S. Chang, H. Lee, R. Molnar, T. Moustakas, and B. Van Zeghbroeck,
�High-temperature GaN/SiC heterojunction bipolar transistor with high gain,� in
Electron Devices Meeting, 1994. IEDM '94. Technical Digest., International, pp. 389
�392, Dec 1994.

[10] H. Morkoç, Handbook of Nitride Semiconductors and Devices: Electronic and Optical
Processes in Nitrides Vol. 3: GaN-based optical and electronic devices. Weinheim:
Wiley-VCH, 2009.

[11] M. Micovic, N. Nguyen, P. Janke, W.-S. Wong, P. Hashimoto, L.-M. McCray, and
C. Nguyen, �GaN/algan high electron mobility transistors with f tau; of 110 ghz,�
Electronics Letters, vol. 36, pp. 358 �359, Feb 2000.

[12] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J.
Scha�, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and
J. Hilsenbeck, �Two-dimensional electron gases induced by spontaneous and piezo-
electric polarization charges in n- and ga-face AlGaN/GaN heterostructures,� Journal
of Applied Physics, vol. 85, pp. 3222 �3233, Mar 1999.

63



[13] J. Piprek, Nitride Semiconductor Devices : Principles and Simulation. Weinheim:
Wiley-VCH, 2007.

[14] Y. Developpement, �GaN rf market analysis '08,� 2008.

[15] K. Gurnett and T. Adams, �Native substrates for GaN: the plot thickens,� III-Vs
Review, vol. 19, no. 9, pp. 39 � 41, 2006.

[16] J. Brown, R. Borges, E. Piner, A. Vescan, S. Singhal, and R. Therrien, �AlGaN/GaN
hfets fabricated on 100-mm GaN on silicon (1Â 1Â 1) substrates,� Solid-State Elec-
tronics, vol. 46, no. 10, pp. 1535 � 1539, 2002.

[17] C. C. Kim, J. H. Je, M. S. Yi, D. Y. Noh, F. Degave, and P. Ruterana, �Microstructure
of GaN nucleation layer during initial stage mocvd growth,� Materials Science and
Engineering B, vol. 82, no. 1-3, pp. 108 � 110, 2001.

[18] O. Ambacher, �Ga(n)laktisch,� Aktuelle Technik, pp. 56 �58, Mar 2011.

[19] Y.-S. Lee and Y.-H. Jeong, �A high-e�ciency class-e GaN HEMT power ampli�er for
wcdma applications,� Microwave and Wireless Components Letters, IEEE, vol. 17,
pp. 622 �624, Aug. 2007.

[20] T. Mimura, �The early history of the high electron mobility transistor (hemt),� Mi-
crowave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 780 �782, Mar
2002.

[21] Y.-F. Wu, B. Keller, P. Fini, S. Keller, T. Jenkins, L. Kehias, S. Denbaars, and
U. Mishra, �High al-content AlGaN/GaN modfets for ultrahigh performance,� Elec-
tron Device Letters, IEEE, vol. 19, pp. 50 �53, Feb 1998.

[22] H. Ilati, M. R. Ashra�, and S. Khorasani, �Simulation and optimization of nanoscale
HEMTs with �nite elements method,� ArXiv e-prints, Feb 2011.

[23] W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, �A comparative study of
surface passivation on AlGaN/GaN HEMTs,� Solid-State Electronics, vol. 46, no. 9,
pp. 1441 � 1444, 2002.

[24] J. BernÃ½t, P. Javorka, A. Fox, M. Marso, H. LÃ×th, and P. Kordos, �E�ect of sur-
face passivation on performance of AlGaN/GaN/si HEMTs,� Solid-State Electronics,
vol. 47, no. 11, pp. 2097 � 2103, 2003.

[25] R. Doe, �Electronic archive: New semiconductor materials. characteristics and prop-
erties type @ONLINE,� Sep 2011.

[26] M. Suzuki, T. Uenoyama, and A. Yanase, �First-principles calculations of e�ective-
mass parameters of aln and GaN,� Phys. Rev. B, vol. 52, pp. 8132�8139, Sep 1995.

[27] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, �Schot-
tky barrier properties of various metals on n-type GaN,� Semiconductor Science and
Technology, vol. 11, no. 10, p. 1464, 1996.

[28] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, �Dependence
of ni/AlGaN schottky barrier height on al mole fraction,� Journal of Applied Physics,
vol. 87, no. 2, pp. 801�804, 2000.

[29] A. Anwar, E. Faraclas, and K. Smith, �Schottky barrier height in GaN/AlGaN het-
erostructures,� in Semiconductor Device Research Symposium, 2005 International,
pp. 221 �222, Dec. 2005.

[30] Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynn, and G. R. Brandes, �Barrier heights
of schottky contacts on strained AlGaN/GaN heterostructures: Determination and
e�ect of metal work functions,� Applied Physics Letters, vol. 82, no. 24, pp. 4364�
4366, 2003.

64



[31] B. Jogai, �Free electron distribution in AlGaN/GaN heterojunction �eld-e�ect tran-
sistors,� Journal of Applied Physics, vol. 91, no. 6, pp. 3721�3729, 2002.

[32] J. A. C. PÃ c©rez, �On the signi�cance of the surface states in isolated alxga1-xn/GaN
heterostructures,� Solid-State Electronics, vol. 49, no. 4, pp. 612 � 617, 2005.

[33] A. Ashok, D. Vasileska, S. Goodnick, and O. Hartin, �Importance of the gate-
dependent polarization charge on the operation of GaN HEMTs,� Electron Devices,
IEEE Transactions on, vol. 56, pp. 998 �1006, may 2009.

[34] S. Sze and K. Ng, Physics of semiconductor devices. Wiley-Interscience publication,
Wiley-Interscience, 2007.

[35] C. Takano, Z. Yu, and R. Dutton, �A nonequilibrium one-dimensional quantum-
mechanical simulation for algaas/gaas HEMT structures,� Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 9, pp. 1217 �1224,
Nov 1990.

[36] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, �Quasi two-dimensional modeling
of GaN-based modfets,� physica status solidi (a), vol. 188, no. 1, pp. 251�254, 2001.

[37] A. Asgari, M. Kala�, and L. Faraone, �A quasi-two-dimensional charge transport
model of AlGaN/GaN high electron mobility transistors (HEMTs),� Physica E: Low-
dimensional Systems and Nanostructures, vol. 28, no. 4, pp. 491 � 499, 2005.

[38] R. Singh and C. Snowden, �A quasi-two-dimensional HEMT model for dc and mi-
crowave simulation,� Electron Devices, IEEE Transactions on, vol. 45, pp. 1165 �
1169, Jun 1998.

[39] A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, �Iteration scheme for the so-
lution of the two-dimensional schrodinger-poisson equations in quantum structures,�
Journal of Applied Physics, vol. 81, pp. 7880 �7884, Jun 1997.

[40] A. Pacelli, �Self-consistent solution of the schrodinger equation in semiconductor de-
vices by implicit iteration,� Electron Devices, IEEE Transactions on, vol. 44, pp. 1169
�1171, Jul 1997.

[41] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes
in C (2nd ed.): the art of scienti�c computing. New York, NY, USA: Cambridge
University Press, 1992.

[42] D. C. Sorensen, �Implicitly restarted arnoldi/lanczos methods for large scale eigen-
value calculations,� in IN, pp. 23�25, Kluwer, 1995.

[43] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, �Iii?nitrides: Growth,
characterization, and properties,� vol. 87, no. 3, pp. 965�1006, 2000.

[44] E. A. B. Cole, T. Boettcher, and C. M. Snowden, �Corrections to the calculation
of bulk electron densities in quantum wells of HEMTs,� Semiconductor Science and
Technology, vol. 12, no. 1, p. 100, 1997.

[45] A. Spinelli, A. Benvenuti, and A. Pacelli, �Self-consistent 2-d model for quantum ef-
fects in n-mos transistors,� Electron Devices, IEEE Transactions on, vol. 45, pp. 1342
�1349, Jun 1998.

65


