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1 Introduction

Keywords: Risk aversion, Arrow-Pratt risk aversion, multivariate risk aversion, comparative risk
aversion.

Behavior under uncertainty and measurement of risk aversion are interesting yet challenging
topics. In this thesis, I have intended to give insights into the theory of risk aversion developed so far.
In the preliminary part, some useful definitions and theorems are given. In section 3, we start with
univariate risk aversion. The classical approach, the risk aversion measure r(x) = −u′′(x)/u′(x),
corresponding to von Neumann-Morgenstern utility function u, which is a function of wealth, by
Arrow [1] and Pratt [28] has made it possible to study questions involving the effect of risk aversion on
economic behavior. However, when the initial wealth is random or when there is some additional noise
in the risk, there are some further economic phenomena which cannot be directly explained by the
Arrow-Pratt risk measure. Therefore, Ross [33] has introduced the strong measure of risk aversion.
Also this problem was studied by Kihlstrom, Romer and Williams [19]. Pratt and Zeckhauser
studied this from an “axiomatic point of view”, and proposed “proper risk aversion”, which imposes
constraints on the utility functions. Moreover, “standard risk aversion”[20] was studied by Kimball.

In section 4, multivariate risk aversion is studied. When the utility function is commodity bun-
dles, we encounter several problems to generalize the univariate case. Kihlstrom and Mirman [17]
argued that a prerequisite for the comparison of attitudes towards risk is that the cardinal utilities
being compared represent the same ordinal preference. Keeney [16] has defined the conditional risk
premium (risk aversion) which fixes all attributes except a certain component. Extending Pratt’s
approximation of the univariate risk premium, Duncan [7] developed a multivariate risk aversion
matrix. Also, H. Levy and A. Levy [23] studied the multivariate case in an analogous way to the
Arrow’s univariate derivation. Moreover, Paroush [26] has investigated the relation between KM’s
risk aversion and the risk premium. Using the indirect utility function, Karni [15] has proposed
an approach to compare the risk averseness. Kihlstrom and Mirman [18] introduced the increasing,
decreasing and constant absolute and relative risk aversion in multidimensional case. Alternative
representations and interpretations of relative risk aversion using indirect utility functions and ex-
penditure functions were given by Hanoch [11].
In section 5, other approaches to study risk aversion and also some very interesting relations are
studied.

2 Preliminaries

2.1 Utility functions [9]

2.1.1 Linear utility on mixture sets

The essential features of the von Neumann-Morgenstern linear utility theory are given in this section.
Here, the lower case Greek letters will always denote numbers in [0, 1].

Definition 2.1 A set M is a mixture set [13] if for any λ and any ordered pair (x, y) ∈ M ×M
there is a unique element λx⊕ (1− λ)y in M such that

M1 1x⊕ 0y = x

M2 λx⊕ (1− λ)y = (1− λ)y ⊕ λx

4



M3 λ[µx⊕ (1− µ)y]⊕ (1− λ)y = (λµ)x⊕ (1− λµ)y

for all x, y ∈M and all λ and µ.

If P is a set of probability measures defined on an algebra A, and if P+ is the set of finite convex
combinations of measures in P (the convex hull of P), then P+ is a mixture set when λp⊕ (1−λ)q =
λp+ (1− λ)q.
We will say that u is a linear function on a mixture set M if it is a real-valued function for which
u(λx⊕(1−λ)y) = λu(x)+(1−λ)u(y) for all λ and x, y ∈M . Two linear functions u and v are related
by a positive affine transformation if there are real numbers a > 0 and b such that v(x) = au(x) + b
for all x ∈M .
� will always signify an asymmetric (x � y ⇒ not [y � x]) binary relation on a designated set, which
we denote for the time being as X. We define ∼ and � on X from � by
x ∼ y iff not (x � y) and not (y � x), x � y iff x � y or x ∼ y.
We say that � is an asymmetric weak order if it is x � z ⇒ (x � y or y � z) for all x, y, z ∈ X.

Since � is asymmetric, ∼ is reflexive (x ∼ x) and symmetric (x ∼ y ⇒ y ∼ x).
It can be verified that � is an asymmetric weak order if and only if, both � and ∼ are transitive.
Note also that if � is an asymmetric weak order then ∼ is an equivalence relation (reflexive, sym-
metric, transitive).

The axioms:

A1 � on M is an asymmetric weak order.

A2 For all x, y, z ∈M and 0 < λ < 1, if x � y then λx⊕ (1− λ)z � λy ⊕ (1− λ)z.

A3 For all x, y, z ∈M , if x � y and y � z then there are α, β ∈ (0, 1) such that αx⊕ (1− α)z � y
and y � βx⊕ (1− β)z.

From these three axioms A1, A2, A3, we can obtain the following:

J1 (x � y, λ > µ)⇒ λx⊕ (1− λ)y � µx⊕ (1− µ)y.

J2 (x � y � z, x � z)⇒ y ∼ λx⊕ (1− λ)z for a unique λ.

J3 (x � y, z � w)⇒ λx⊕ (1− λ)z � λy ⊕ (1− λ)w.

J4 x ∼ y ⇒ λx⊕ (1− λ)z ∼ λy ⊕ (1− λ)z.

Proof (We give the proof of the first two items.)
J1. We observe that using M1, M2, M3, we have λx ⊕ (1 − λ)x = x. Using this result, we have
x � µx⊕ (1−µ)y, for µ > 0. Hence, λx⊕ (1− λ)y � µx⊕ (1−µ)y, by M1 if λ = 1, and by M2, M3
and A2 as follows if λ < 1:

λx⊕ (1− λ)y = (1− λ)y ⊕ (1− (1− λ))x =
= ((1− λ)/(1− µ))[(1− µ)y ⊕ (1− (1− µ))x]⊕ (1− ((1− λ)/(1− µ)))x =
= ((1− λ)/(1− µ))[µx⊕ (1− µ)y]⊕ (1− ((1− λ)/(1− µ)))x =
= ((λ− µ)/(1− µ))x⊕ (1− (λ− µ)/(1− µ))[µx⊕ (1− µ)y] �
� ((λ− µ)/(1− µ))[µx⊕ (1− µ)y]⊕ (1− (λ− µ)/(1− µ))[µx⊕ (1− µ)y] = [µx⊕ (1− µ)y].
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J2. Suppose first that x ∼ y, so y ∼ x � z. Then y ∼ x⊕ 0z = x by M1, and x⊕ 0z � µx⊕ (1−µ)z
for any µ < 1 by J1, so that y ∼ λx⊕ (1− λ)z for a unique λ. A similar proof applies when y ∼ z.
Finally, suppose that x � y � z. It then follows from A1, A3 and J1 that there is a unique λ ∈ (0, 1)
such that αx⊕ (1− α)z � y � βx⊕ (1− β)z for all α > λ > β.
We claim that y ∼ λx⊕ (1−λ)z. If λx⊕ (1−λ)z � y then λx⊕ (1−λ)z � y � z, and by M3 and A3,
λµx⊕ (1−λµ)z = µ[λx⊕ (1−λ)z]⊕ (1−µ)z � y for some µ ∈ (0, 1). Since λ ≥ λµ, it contradicts to
y � λµx⊕ (1−λµ)z. A similar contradiction is obtained if we suppose that y � λx⊕ (1−λ)z.Q.E.D.

Theorem 2.2 Suppose M is a mixture set. Then the following statements are equivalent:

a) A1, A2, A3 hold.

b) There is a linear function u on M that preserves �: for all x, y ∈M , x � y iff u(x) � u(y).

In addition, a linear order-preserving u on M is unique up to a positive affine transformation.

It should be noted that non-linear order preserving utility functions exist in abundance when axioms
A1-A3 hold. For if u satisfies (b), then every monotonic transformation of u also preserves �.
For the proof of this theorem, see [9, page 15].

2.1.2 Expected utility for probability measures

Let’s denote A as a Boolean algebra (closed under complementary and finite unions) for C that
contains the singleton {c} for each c ∈ C. P denotes a set of probability measures on a σ-algebra
A that contains every one point measure: if c ∈ C and p({c}) = 1 then p ∈ P. A subset A of X
is a preference interval if z ∈ A whenever x, y ∈ A, x � z and z � y. We say that P is closed
under the formation of conditional measures pA(B) = p(B ∩ A)/p(A),∀B ∈ A, if pA ∈ P whenever
p ∈ P, A ∈ A and p(A) > 0.
Axiom with finite additivity:

A0.1 A contains all preference intervals, and P is closed under countable convex combinations and
under the formation of conditional measures.

Since P is a mixture set, axioms A1-A3 in section 2.1.1 imply the existence of a linear, order preserving
utility function u on P. When u is defined on C from u on P through one-point measures, additional
axioms are needed to conclude that u(p) is equal to E(u, p), the expected value of u with respect to
p, for each p ∈ P.

A4 If p, q ∈ P, A ∈ A and p(A) = 1, then p � q if c � q for all c ∈ A, and q � p if q � c for all
c ∈ A.

Here c � q means that r � q when r({c}) = 1.

Theorem 2.3 Suppose A0.1, A1-A3, and A4 hold. Then there is a bounded real-valued function u
on C such that, for all p, q ∈ P, p � q iff E(u, p) > E(u, q), and such a u is unique up to a positive
affine transformation.

For the proof, see [9, page 26]. We can see from the proof that u is bounded. When the axiom A0.1
is weakened, u can be unbounded.
Axiom with countable additivity: When all measures in P are countably additive, A4 can be replaced
by a dominance axiom that uses d ∈ C in place of q ∈ P.
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A*4 If p ∈ P, A ∈ A, p(A) = 1 and d ∈ C, then p � d∗, where d∗ is a simple measure which assigns
probability 1 to consequence d, if c � d for all c ∈ A, and d∗ � p if d � c for all c ∈ A.

Theorem 2.4 The conclusions of theorem 2.3 remain true when its hypothesis A4 is replaced by
A∗4, provided that all measures in P are countably additive.

For the proof, see [9, page 29].

2.2 Other functions

Definition 2.5 A function u : Rn+ → R is said to be quasi-concave if the set {x ∈ R+
n : u(x) ≥ b} is

a convex set for any real number b.

Definition 2.6 Expenditure function. Let u : Rn+ → R+ be a continuous non-decreasing quasi-
concave utility function. Let P′ = (P1, ..., Pn) be some positive price vector. The expenditure function
C(u0,P) is defined as the optimal value to the problem of minimizing the cost of attaining at least a
utility level u0, given that the agent faces the price vector P:

C(u0,P) = min
x
{P′ · x|u(x) ≥ u0}.

The expenditure function is an increasing function of the utility level. For properties of the expen-
diture function, see [6].

Definition 2.7 Indirect utility function. Let u and P be defined as in Definition 2.6. The indirect
utility function V : Rn++ ×R+ → R is defined as follows:

V (P, I) = max
x
{u(x)|P′x ≤ I}.

The indirect utility is an increasing function of income.

2.3 Least concave utility function [4]

We assume that a concave representation of the preorder (a binary relation which is reflexive and
transitive) exists. Let X be a convex set in a real topological vector space E, and � be a complete
preorder on X. We say that a real-valued function u on X represents � if [x � y] is equivalent
to [u(x) ≥ u(y)], and we denote by U the set of continuous, concave, real-valued functions on X
representing �. The set U is preordered by a relation “v is more concave than u”defined by “there
is a real valued, concave function f on u(X) such that v = f ◦ u”. This definition is meaningful
since u(X) is an interval. The function f is strictly increasing; it is also continuous since it maps the
interval u(X) onto the interval v(X).

Theorem 2.8 If the set U is not empty, then U has a least element.

This result due to G. Debreu, for the proof see [4]. We observe that if u is more concave than v, and
v is more concave than u, then u is derived from v by an increasing linear transformation from R to
R. (u = f ◦ v and v = f−1 ◦ u, where both f and f−1 are concave.) Thus, if a preference pre-order
is representable by a continuous, concave, real-valued utility function, then a least concave utility
representing the pre-order is another instance of a cardinal utility.
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Let X be an open convex set of commodity vectors in E, and let P be the set of probabilities on
X. We identify each element x of X with the probability having {x} as support. Consider a risk
averse agent who preorders P by his preferences, and who satisfies the axioms of Blackwell-Girshick
[2]. This agent has a bounded von Neumann-Morgenstern utility v whose restriction v to X is a
concave, real-valued function representing the restriction � to X of his preferences on P. Since v is
bounded, v is continuous [3, ch. 2, sect. 2.10].

3 Univariate risk aversion

3.1 Arrow measure of risk aversion [1]

3.1.1 The theory of risk aversion

It has been common to argue that the individuals tend to display aversion to the taking of risks and
that risk aversion in turn is an explanation for many observed phenomena in the economic world.
A risk averter is defined as one who, starting from a position of certainty, is unwilling to take a bet
which is actually fair.
Let’s denote Y as wealth, U(Y ) as total utility of wealth Y . For simplicity, we here take wealth to
be a single commodity and disregard the difficulties of aggregation over many commodities. Let’s
assume that the utility of wealth is a twice differentiable function.
We call U ′(Y ) the marginal utility of wealth and U ′′(Y ) the rate change of marginal utility with
respect to wealth. We can always assume that wealth is desirable:

U ′(Y ) > 0. (3.1)

Suppose U(Y ) is bounded:

lim
Y→0

U(Y ) and lim
Y→∞

U(Y ) exist and are finite. (3.2)

Proposition 3.1 The utility function of a risk averter is characterized by the following: U ′(Y ) is
strictly decreasing as Y increases.

Let’s illustrate the above proposition.
Consider an individual with wealth Y0 who is offered a chance to win or lose an amount h at fair
odds. His choice is then between income Y0 with probability 1 and a random income taking on the
values Y0 − h and Y0 + h with probabilities 0.5 each. A risk averter by definition prefers the certain
income; by the expected utility hypothesis:

U(Y0) >
1
2
U(Y0 − h) +

1
2
U(Y0 + h),

with a little rewriting:
U(Y0)− U(Y0 − h) > U(Y0 + h)− U(Y0).

The utility differences corresponding to equal chances in wealth are decreasing as wealth increases.

Let’s try to justify the predominance of risk aversion over risk preference.
Suppose that, for some positive number ε, the total length of all the intervals on which U ′(Y ) ≥ ε is

8



infinite. Since U(Y ) is in any case increasing even on the remaining intervals, U(Y ) would have to
tend to infinity as Y approaches infinity. This is a contradiction to (3.2). Therefore, for any positive
number ε, we must have U ′(Y ) < ε for all but a set of intervals whose total length is finite. Hence,
with little exceptions, U ′(Y ) must be decreasing.

From Proposition 3.1, which is a necessary and sufficient condition for risk aversion, it is tempting
to use the rate of change of U ′(Y ) as a measure. However, the utility function is defined only up to
positive linear transformations. Therefore, we seek our measure to remain invariant under positive
linear transformations of the utility function.

The following are these type of measures:

Definition 3.2

RA(Y ) = −U
′′(Y )

U ′(Y )
absolute risk aversion (3.3)

RR(Y ) = −Y U
′′(Y )

U ′(Y )
relative risk aversion. (3.4)

Let’s see the simple behavioral interpretation of these two measures. Consider an individual with
wealth Y who is offered a bet which involves winning or losing an amount h with probabilities p and
1 − p respectively. The individual will be willing to accept the bet for values of p sufficiently large
(certainly for p = 1) and will refuse if p is small (certainly for p = 0; a risk averter will refuse the
bet if p = 1

2 or less). The willingness to accept or reject a given bet will in general also depend on
his present wealth Y .
Given the amount of the bet h and the wealth Y , by continuity, there will be a probability p(Y, h)
such that the individual is just indifferent between accepting and rejecting the bet. The absolute
risk aversion directly measures the insistence of an individual for more than fair odds, when bets are
small.

Proposition 3.3 For the small values of h and for fixed Y , the function p(Y, h) can be approximated
by a linear function of h:

p(Y, h) =
1
2

+
RA(Y )

4
h+ o(h2) (3.5)

where p(Y, h) is the probability which makes indifferent between the choices.

Proof. Since the individual is indifferent between the certainty of Y and the gamble of winning
h with probability p(Y, h) and losing h with probability 1 − p(Y, h), the expected utility theorem
implies,

U(Y ) = p(Y, h)U(Y + h) + [1− p(Y, h)]U(Y − h).

Expanding U(Y + h), we obtain U(Y + h) = U(Y ) + hU ′(Y ) + (h2/2)U ′′(Y ) + R1, where R1/h
2

approaches zero with h. Similarly, U(Y − h) = U(Y ) − hU ′(Y ) + (h2/2)U ′′(Y ) + R2, where R2/h
2

approaches zero with h. By substituting and simplifying we have U(Y ) = U(Y ) + (2p− 1)hU ′(Y ) +
(h2/2)U ′′(Y ) + R, where R = pR1 + (1 − p)R2, and therefore R/h2 approaches zero with h. If we
solve for p, we find p(Y, h) = 1/2 + (h/4)[−U ′′(Y )/U ′(Y )]− [R/2hU ′(Y )]. Q.E.D.
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If we measure the bets not in absolute terms but in proportion to Y , the absolute risk aversion
is replaced by the relative risk aversion. Denote the amount of bet by nY , where n is the fraction of
wealth at stake. If we let h = nY in (3.5) and use the definitions (3.3) and (3.4), we have,

p(Y, nY ) =
1
2

+
RR(Y )

4
n+ o(n2).

The behavior of these measures as Y changes is of interest. Two hypotheses are needed:

Hypothesis 3.4 The relative risk aversion RR(Y ) is an increasing function of Y .
The absolute risk aversion RA(Y ) is a decreasing function of Y .

If absolute risk aversion increased with wealth, it would follow that as an individual became wealth-
ier, he would decrease the amount of risky assets held. The hypothesis of increasing relative risk
aversion is saying that if both wealth and the size of the bet are increased in the same proportion,
the willingness to accept the bet should decrease.

Note that the variation of the relative risk aversion with changing wealth is connected with the
boundedness of the utility function.

Proposition 3.5 If the utility function is to remain bounded as wealth becomes infinite, then the
relative risk aversion cannot tend to a limit below one; similarly, for the utility function to be bounded
from below as wealth approaches zero, the relative risk aversion cannot approach a limit above one
as wealth tends to zero.

Proof. Let R be a number such thatRR(Y ) ≤ R for all Y ≥ Y0, for some Y0. U ′′(Y )/U ′(Y ) ≥ −R/Y .
Integrating from Y0 to Y yields, logU ′(Y )− logU ′(Y0) ≥ −R(log Y − log Y0)
or U ′(Y ) ≥ U ′(Y0)Y R

0 Y
−R for Y ≥ Y0.

Let C = U ′(Y0)Y R
0 > 0, and integrate both sides from Y0 to Y:

U(Y ) ≥ U(Y0) + [C/(1 − R)](Y 1−R − Y 1−R
0 ) if R 6= 1, and U(Y ) ≥ U(Y0) + C(log Y − log Y0) if

R = 1. If R ≤ 1, it is a contradiction to the boundedness of the utility function from above. Hence,
RR(Y ) > 1 for arbitrarily large Y values. In particular RR(Y ) can not converge to a limit less than
1. Similarly, we can see that RR(Y ) must be less than 1 for values of Y arbitrarily close to 0. Q.E.D.

Therefore, it is broadly permissible to assume that the relative risk aversion increases with wealth,
though the proposition does not exclude fluctuations.

3.1.2 Model

Now, we would like to apply these concepts to a specific model of choice between risky and secure
assets. It is assumed that the distribution of the rate of return is independent of the amount invested
(stochastic constant returns to scale). An individual with given initial wealth invests part of it in the
risky asset and the rest in the secure asset. The wealth at the end of the period is then a random
variable. Let’s denote:
X rate of return on the risky asset (a random variable)
A initial wealth
a amount invested in the risky asset
m amount invested in the secure asset A− a

10



Y final wealth
It follows from the definition that

Y = A+ aX. (3.6)

The decision of the individual is to choose a, the amount invested in the risky asset, so as to maximize:

E[U(Y )] = E[U(A+ aX)] = W (a) (3.7)

where 0 ≤ a ≤ A. (If the secure asset has a positive rate of return ρ, the model is essentially the
same, except that X is now interpreted as the difference between the rates of return on the risky
and secure assets and, in (3.6), A is replaced by A′ = A(1 + ρ).)
The first two derivatives of (3.7) with respect to a are:

W ′(a) = E[U ′(Y )X], W ′′(a) = E[U ′′(Y )X2].

It is risk averse, U ′′(Y ) < 0 for all Y , so W ′′(a) < 0 for all a. Therefore W ′(a) is a decreasing
function, W (a) must have one of the three following shapes.

• W (a) has its maximum at a = 0 and it is a decreasing function. A necessary and sufficient
condition is that W ′(0) ≤ 0. But if a = 0 then Y = A and U ′(Y ) = U ′(A), which is a positive
constant. Therefore, W ′(0) = U ′(A)E(X) ⇒ a = 0 if and only if E(X) ≤ 0. In equivalent
form, a > 0 if and only if E(X) > 0. It means he always takes some part of a favorable gamble.

• This is the case where the individual invests all his wealth in the risky asset. The condition is
W ′(A) ≥ 0 or E[U ′(A+AX)X] ≥ 0.

• When the first two cases do not hold, there is an interior maximum at which

W ′(a) = E[U ′(Y )X] = 0, (3.8)

implying the individual invests something but not all.

In the third case, the variation of the optimal solution, a, is of interest.
Let’s see the effects of shifts in A on a. Let’s assume a quadratic utility function, U(Y ) = a+bY +cY 2,
then with some simplification a = (d−A)E(X)

E(X2)
, where d is a constant.

We see clearly that investment in the risky asset would decrease as initial wealth, A, increases. Note
that for the quadratic utility function, risk aversion requires that c < 0. However, the absolute risk
aversion , RA(Y ) = 1/[(−b/2c)− Y ], is not decreasing.
More generally, for any utility function to see the dependence of a on A, we can differentiate (3.8)
with respect to A and derive

da

dA
= − E[U ′′(Y )X]

E[U ′′(Y )X2]
. (3.9)

Since U ′′(y) < 0, the sign of da/dA is the same as the one in the numerator. It can be shown that
decreasing absolute risk aversion implies that the numerator is positive, hence the amount of risky
investment increases with final wealth.

Next, let’s consider shifts in the distribution ofX. We can think of them as a family of transforma-
tions of the original random variable X, characterized by the value of the shift parameter, h. Then the
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equation (3.8) becomes E{U ′[Y (h)]X(h)} = 0 and dY/dh = a(dX/dh)+X(h)(da/dh). By differenti-
ating (3.8) with respect to h, we have E{[aU ′′(Y )X(h)+U ′(Y )](dX/dh)}+(da/dh)E{U ′′(Y )[X(h)]2} =
0. Therefore, da/dh has the same sign as E{[aU ′′(Y )X(h) + U ′(Y )](dX/dh)}.

Let’s take an additive shift, X(h) = X + h. Then from dX/dh = 1 and (3.9), da/dh has the
same sign as da/dA. Therefore, for an additive shift in the probability distribution of rates of return,
the demand for the risky asset increases with the shift parameter if the demand for the risky asset
increases with wealth.

Let’s take X(h) = (1 + h)X. Then dX/dh = X and da/dh has the same sign as
E[aU ′′(Y )X2] + E[U ′(Y )X]. Since a is the optimal solution, E[U ′(Y )X] = 0. Therefore, da/dh is
negative.
But a much stronger statement is made by Tobin, see [36].

Proposition 3.6 If a is the demand for investment goods when the return is a random variable X,
then a/(1 + h) is the demand when the return is the variable (1 + h)X.

Proof. Let a(h) be the optimum investment in risky assets when the return is X(h), and let a = a(0).
Then E{U ′[Y (h)](1 + h)X} = 0, E[U ′(Y )X] = 0. Let a′ = a(h)(1 + h) and Y ′ = A + a′X. Then
Y ′ = A+ a(h)X(h) = Y (h). Therefore, E[U ′(Y ′)X] = 0, which implies that a′ is optimal when the
return variable is X. That is, a′ = a⇒ a(h) = a/(1 + h).Q.E.D.

Finally, we consider a multiplicative shift about an arbitrary center X̃. Then
X(h) = (X̃) + (1 + h)(X − X̃) = (1 + h)X − hX̃. Therefore, it can be regarded as a multiplicative
shift about the origin, followed by a downward additive shift hX̃.
Using the previous results, we can see that a multiplicative shift about a non-negative center dimin-
ishes the demand for risky assets in even greater proportion than the shift itself.
On the other hand, for X̃, the demand for risky assets decreases in smaller proportion and might
even increase.

3.2 Pratt measure of risk aversion [28]

Definition 3.7 Consider a decision maker with assets x and utility function U . Risk premium π is
the real number such that receiving a risk z̃ or receiving a non-random amount E(z̃)−π is indifferent.
As it depends on x and on the distribution of z̃, it will be denoted π(x, z̃).

By the properties of the utility,

U(x+ E(z̃)− π(x, z̃)) = E{U(x+ z̃)}. (3.10)

We will consider the situations where E{U(x + z̃)} exists and is finite. Then π(x, z̃) exists and is
uniquely defined by (3.10). It follows immediately from (3.10) that, for any constant µ,

π(x, z̃) = π(x+ µ, z̃ − µ).

Definition 3.8 The cash equivalent, πa(x, z̃) = E(z̃)−π(x, z̃), is the smallest amount for which the
decision maker would not choose z̃, if he had it. It is given by U(x+ πa(x, z̃)) = E{U(x+ z̃)}.
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Definition 3.9 The bid price, πb(x, z̃), is the largest amount the decision maker will pay to choose
z̃. It is given by U(x) = E{U(x+ z̃ − πb(x, z̃))}.

For an unfavorable risk z̃, it is natural to consider the insurance premium πI(x, z̃) such that the
decision maker is indifferent between facing the risk z̃ and paying the non-random amount πI(x, z̃).
Since paying πI is equivalent to receiving −πI , we have πI(x, z̃) = −πa(x, z̃).

Proposition 3.10 Let’s denote the risk by z̃ and its variance by σ2
z . We assume that the third

absolute central moment of z̃ is of smaller order than σ2
z .

π(x, z̃) =
1
2
σ2
zr(x+ E(z̃)) + o(σ2

z),

where r(Y ) = −U ′′(Y )
U ′(Y ) is the absolute risk aversion.

Proof. At first let’s consider the risk neutral case, where E(z̃) = 0. Expanding the equation
(3.10) around x on both sides gives U(x− π) = U(x)− πU ′(x) +O(π2),
E{U(x+ z̃)} = E{U(x) + z̃U ′(x) + 1

2 z̃
2U ′′(x) +O(z̃3)}.

By simplifying the equation, π(x, z̃) = 1
2σ

2
zr(x) + o(σ2

z). Q.E.D.

A sufficient regularity condition for the above equation is that U has a third derivative which is
continuous and bounded over the range of all z̃.
Since π(x, z̃) = π(x+ µ, z̃ − µ), for µ = E(z̃): π(x, z̃) = 1

2σ
2
zr(x+ E(z̃)) + o(σ2

z).
Thus the risk premium for a risk z̃ with mean E(z̃) and small variance is approximately r(x+E(z̃))
times half the variance of z̃.

Proposition 3.11 The utility function, U(x), is equivalent to
∫
e−
∫
r by a positive linear transfor-

mation, where r(x) = −U ′′(x)
U ′(x)

Proof. −
∫
r(x) = logU ′(x) + c. Exponentiating and integrating again, we have ecU(x) + d,

which is the positive linear transformation of U(x). Therefore, U(x) ∼
∫
e−
∫
r.Q.E.D.

We observe that the absolute risk aversion function r associated with any utility function U
contains the essential information about U , while eliminating some information of secondary impor-
tance.

3.2.1 Comparative risk aversion

Let U1 and U2 be utility functions with absolute risk aversion functions r1 and r2 respectively. If,
at a point x, r1(x) > r2(x), then U1 is locally more risk averse than U2 at the point x; that is,
the corresponding risk premia satisfy π1(x, z̃) > π2(x, z̃) for sufficiently small risks z̃. The following
theorem says that the corresponding global properties also hold.

Definition 3.12 In the specific case where the risk is to gain or lose a fixed amount h > 0 with
corresponding probabilities P (z̃ = h) and P (z̃ = −h), let U(x) = E{U(x + z̃)} and z̃ = ±h. Let’s
denote by p(x, h) the probability premium, p(x, h) = P (z̃ = h)− P (z̃ = −h).
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Such risk is neutral if h and −h are equally probable, so P (z̃ = h) − P (z̃ = −h) measures the
probability premium of z̃. Note that P (z̃ = h) is the same as P (Y, h) in section 3.1, equation (3.5).

Proposition 3.13 For the case z̃ = ±h and h > 0, the probability premium can be approximated
p(x, h) = 1

2hr(x) +O(h2) where r(x) is the absolute risk aversion.

Proof. Since p(x, h) = P (z̃ = h)− P (z̃ = −h), we have P (z̃ = h) = 1
2 [1 + p(x, h)],

P (z̃ = −h) = 1
2 [1 − p(x, h)]. Moreover, U(x) = E{U(x + z̃)} = 1

2 [1 + p(x, h)]U(x + h) + 1
2 [1 −

p(x, h)]U(x− h).
When U is expanded around x, the above equation becomes U(x) = U(x) + hp(x, h)U ′(x) +
1
2h

2U ′′(x) +O(h3). Therefore, solving for p(x, h), we find p(x, h) = 1
2hr(x) +O(h2).

Theorem 3.14 Let ri(x), πi(x, z̃) and pi(x) be the absolute risk aversion, the risk premium and the
probability premium corresponding to the utility function Ui, i = 1, 2. Then the following conditions
are equivalent, in either the strong form (indicated in brackets), or the weak form (with the bracketed
part omitted):

a) r1(x) ≥ r2(x) for all x [and > for at least one x in every interval].

b) π1(x, z̃) ≥ [>]π2(x, z̃) for all x and z̃.

c) p1(x, h) ≥ [>]p2(x, h) for all x and all h > 0.

d) U1(U−1
2 (t)) is a [strictly] concave function of t.

e) U1(y)−U1(x)
U1(w)−U1(v) ≤ [<] U2(y)−U2(x)

U2(w)−U2(v) for all v, w, x, y with v < w ≤ x < y.
The same equivalence holds for the interval, if x, x + z̃, x + h, x − h, U−1

2 (t), v, w, y all lie in the
specified interval.

Proof To show that (b) follows from (d), using equation (3.10), we have
πi(x, z̃) = x+ E(z̃)− U−1

i (E{Ui(x+ z̃)}). Then

π1(x, z̃)− π2(x, z̃) = U−1
2 (E{t̃})− U−1

1 (E{U1(U−1
2 (t̃))}), (3.11)

where t̃ = U2(x+ z̃).
If U1(U−1

2 (t)) is [strictly] concave, then by Jensen’s inequality E{U1(U−1
2 (t̃))} ≤ [<]U1(U−1

2 (E{t̃})).
Substituting equation (3.11) to the above inequality, we obtain (b).

To show that (d) follows from (a), note that d
dtU1(U−1

2 (t)) = U ′1(U−1
2 (t))

U ′2(U−1
2 (t))

which is [strictly] decreasing

if and only if logU ′1(x)/U ′2(x) is.
Moreover, d

dt log U ′1(x)
U ′2(x)

= r2(x)− r1(x). After some simplification, it immediately follows that a⇒ d.

To show that (a) implies (e), integrate (a) from w to x, obtaining − log U ′1(x)
U ′1(w)

≥ [>] − log U ′2(x)
U ′2(w)

for

w < x, which is equivalent to U ′1(x)
U ′1(w)

≤ [<] U
′
2(x)

U ′2(w)
for w < x. This implies U1(y)−U1(x)

U ′1(w)
≤ [<]U2(y)−U2(x)

U ′2(w)

for w ≤ x < y, as may be seen by applying the Mean Value Theorem to the difference of the two
sides of the inequality regarded as a function of y.
Condition (e) follows by using the Mean Value Theorem taking now w as variable.
We have proved that a ⇒ d ⇒ b and a ⇒ e ⇒ c. Therefore, it is sufficient to show that b ⇒ a and
c ⇒ a, or equivalently that not (a) implies not (b) and (c). But this follows from what has already
been proved, for if the weak [strong] form of (a) does not hold, then the strong [weak] form of (a)
holds on some interval with U1 and U2 interchanged, so the weak [strong] forms of (b) and (c) do not
hold. Q.E.D.
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3.2.2 Increasing and decreasing risk aversion

Consider a decision maker who (i) attaches a positive risk premium to any risk, but (ii) attaches a
smaller risk premium to any given risk the greater his assets x.

(i) π(x, z̃) > 0 for all x and z̃;

(ii) π(x, z̃) is strictly decreasing function of x for all z̃.

We will call a utility function to be risk averse if the weak form of (i) holds, that is, if π(x, z̃) ≥ 0
for all x and z̃; it is well known that this is equivalent to concavity of U , and hence U ′′ ≤ 0 and to
r ≥ 0. A utility function is strictly risk averse if it is strictly concave.

Theorem 3.15 The following conditions are equivalent.

a’) The absolute risk aversion function r(x) is [strictly] decreasing.

b’) The risk premium π(x, z̃) is a [strictly] decreasing function of x for all z̃.

c’) The probability premium p(x, h) is a [strictly] decreasing function of x for all h > 0.

For the proof, see [28, page 130]. The same equivalence holds if “increasing”is substituted for
“decreasing”. Also, for a given interval, the theorem holds, if x, x + z̃, x + h, x − h all lie in the
specified interval.

3.2.3 Operations which preserve decreasing risk aversion

Definition 3.16 A utility function is called [strictly] decreasingly risk averse if its local risk aversion
function r is [strictly] decreasing and nonnegative.

By theorem 3.15, conditions (i) and (ii) are equivalent to the utility being strictly decreasingly risk
averse.

Theorem 3.17 Suppose a > 0. U1(x) = U(ax+ b) is [strictly] decreasingly risk averse for x0 ≤ x ≤
x1 if and only if U(x) is [strictly] decreasingly risk averse for ax0 + b ≤ x ≤ ax1 + b.

Proof. This follows from the formula r1(x) = ar(ax+ b). Q.E.D.

Theorem 3.18 If U1(x) is decreasingly risk averse for x0 ≤ x ≤ x1, and U2(x) is decreasingly risk
averse for U1(x0) ≤ x ≤ U1(x1), then U(x) = U2(U1(x)) is decreasingly risk averse for x0 ≤ x ≤ x1,
and strictly so unless one of U1 and U2 is linear from some x on and the other has constant risk
aversion in some interval.

Proof. We have logU ′(x) = logU ′2(U1(x))+logU ′1(x). Therefore r(x) = r2(U1(x))U ′1(x)+r1(x). The
functions r2(U1(x)), U ′1(x) and r1(x) are positive and decreasing, therefore so is r(x). Furthermore,
U ′1(x) is strictly decreasing as long as r1(x) > 0, so r(x) is strictly decreasing as long as r1(x) and
r2(U1(x)) are both positive. If one of them is 0 for some x, then it is 0 for all larger x, but if the
other is strictly decreasing, then so is r. Q.E.D.
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Theorem 3.19 If U1, ..., Un are decreasingly risk averse on an interval [x0, x1], and c1, ..., cn are
positive constants, then U =

∑n
1 ciUi is decreasingly risk averse on [x0, x1], and strictly so except on

subintervals (if any) where all Ui have equal and constant risk aversion.

Proof. The general statement follows from the case U = U1 + U2.
For this case r = −U ′′1 +U ′′2

U ′1+U ′2
= U ′1

U ′1+U ′2
r1 + U ′2

U ′1+U ′2
r2;

r′ = U ′1
U ′1+U ′2

r′1 + U ′2
U ′1+U ′2

r′2 + U ′′1 U
′
2−U ′1U ′′2

(U ′1+U ′2)2
(r1 − r2) = U ′1r

′
1+U ′2r

′
2

U ′1+U ′2
− U ′1U

′
2

(U ′1+U ′2)2
(r1 − r2)2.

We have U ′1 > 0, U ′2 > 0, r1 ≤ 0 and r2 ≤ 0. Therefore r′ ≤ 0, and r′ < 0 unless r1 = r2 and r′1 = r′2.
Q.E.D.

3.2.4 Relative risk aversion

So far, we have been concerned with risks that remained fixed while assets varied. Let us now view
everything as a proportion of assets.

Definition 3.20 Let π∗(x, z̃) be the proportional risk premium corresponding to a proportional risk
z̃; that is, a decision maker with assets x and utility function U would be indifferent between receiving
a risk xz̃ and receiving the non-random amount E(xz̃)− xπ∗(x, z̃).

From definition, π∗(x, z̃) = 1
xπ(x, xz̃).

Using the risk premium properties, we have π∗(x, z̃) = 1
2σ

2
zr
∗(x+xE(z̃))+o(σ2

z), where r∗(x) = xr(x)
is the relative risk aversion.

Similarly, we can define the proportional probability premium p∗(x, h) = p(x, xh), corresponding
to a risk of gaining or losing a proportional amount h.
Moreover, a utility function is [strictly] increasingly or decreasingly proportionally risk averse if it
has a [strictly] increasing or decreasing local proportional risk aversion function.

Theorem 3.21 The following conditions are equivalent.

a”) The relative risk aversion function r∗(x) is [strictly] decreasing.

b”) The proportional risk premium π∗(x, z̃) is a [strictly] decreasing function of x for all z̃.

c”) The proportional probability premium p∗(x, h) is a [strictly] decreasing function of x for all h > 0.

The same equivalence holds if “increasing”is substituted for “decreasing”. Also, for a given interval,
the theorem holds, if x, x+ z̃, x+ h, x− h all lie in the specified interval.

3.3 Some stronger measures of risk aversion [33]

For simplicity, we will assume that all utility functions are strictly monotone and concave in C3. The
statement “A is more risk averse than B in the Arrow-Pratt sense”is denoted by A ⊇AP B.

Definition 3.22 The relationship A ⊇AP B holds if and only if (∀x)

−A
′′(x)
A′(x)

≥ −B
′′(x)

B′(x)
.
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Unfortunately, in situations where only incomplete insurance is available, the Arrow-Pratt mea-
sure is not strong enough to support the economic intuition. The example below illustrates a case
where A ⊇AP B, but B’s premium exceeds A’s.

Example 3.23 Suppose that wealth is distributed by the lottery

w̃ =
{
w1 with probability p
w2 with probability 1-p

and suppose that the lottery for decision ε̃ (E{z̃} = 0) is

ε̃ =


0, if w̃ = w2

ε with probability 1
2 if w̃ = w1

−ε with probability 1
2 if w̃ = w1

Hence,

w̃ + ε̃ =

1
2

↗ w1 − ε
p

↗
1
2→ w1 + ε

1−p
↘ w2

(3.12)

Now, for small ε we can take a Taylor approximation to derive
E{U(w̃+ ε̃)} = p{1

2U(w1− ε) + 1
2U(w1 + ε)}+ (1− p)U(w2) ≈ pU(w1) + (1− p)U(w2) + 1

2pU
′′(w1)ε2,

and E{U(w̃ − πU )} = pU(w1 − πU ) + (1− p)U(w2 − πU ) ≈
≈ pU(w1) + (1− p)U(w2)− [pU ′(w1) + (1− p)U ′(w2)]πU . Combining these relations, we have

πU ≈ −
1
2pU

′′(w1)ε2

pU ′(w1) + (1− p)U ′(w2)
. (3.13)

Now, let A and B be two utility functions with A ⊇AP B, but

−A
′′(w1)
A′(w2)

< −B
′′(w1)

B′(w2)
.

For example, for sufficiently large w1−w2, for the following functions A = −e−aw, B = −e−bw; a > b,
we have the above properties. It follows from (3.13), that if p is small enough, we will have πA < πB.
Even though A is uniformly more risk averse than B, the lottery places low likelihood on the event,
w̃ = w1, in which the insurance is relevant. The premium is determined by a tradeoff between the
benefits of insurance at one wealth level, w1, and the costs at another, w2.

Definition 3.24 A is strongly more risk averse than B, written A ⊇ B, if and only if

inf
w

A′′(w)
B′′(w)

≥ sup
w

A′(w)
B′(w)

.

Letting λ be a constant that separates inf A′′/B′′ from supA′/B′ we can equivalently define A ⊇ B
as follows.
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Definition 3.25 We have A ⊇ B if and only if ∃λ, (∀w1, w2)

A′′(w1)
B′′(w1)

≥ λ ≥ A′(w2)
B′(w2)

The ordering A ⊇ B is independent of any arbitrary scaling of A and B. In the above equivalent
definition, though, the choice of separating constant λ is dependent on the scaling of A and B.

Theorem 3.26 If A ⊇ B then A ⊇AP B, but the converse is not true.

Proof. The implication follows immediately from rearranging the definition. The counter example
can be verified for A(w) = −e−aw and B(w) = −e−bw, with a > b and large enough w1 − w2.

Theorem 3.27 The following three conditions are equivalent

(i) ∃λ > 0,∀x, y
A′′(x)
B′′(x) ≥ λ ≥

A′(y)
B′(y) .

(ii) (∃G,λ > 0), G′ ≤ 0, G′′ ≤ 0, A = λB +G.

(iii) (∀w̃, ε̃), E{ε̃|w̃} = 0,
E{A(w̃ + ε̃)} = E{A(w̃ − πA)} and E{B(w̃ + ε̃)} = E{B(w̃ − πB)} imply that πA ≥ πB.

Proof.
(i) ⇒ (ii). Define G by A = λB + G , where A and B are scaled to satisfy (i). Differentiating, we
obtain G′ = A′ − λB′ ≤ 0 and A′′

B′′ = λ+ G′′

B′′ ≥ λ implies that G′′ ≤ 0.
(ii)⇒ (iii) The following chain uses the nonincreasing property of G:
E{A(w̃ − πA)} = E{A(w̃ + ε̃)} = E{λB(w̃ + ε̃) +G(w̃ + ε̃)}
≤ E{λB(w̃+ ε̃)}+E{G(w̃)} = E{λB(w̃− πB)}+E{G(w̃)} ≤ E{λB(w̃− πB)}+E{G(w̃− πB)} =
= E{A(w̃ − πB)}. Since A is monotone, πA ≥ πB.
(iii) ⇒ (i). Let’s choose the lottery (3.12). Using (3.13), we can see that, for small enough ε,
πA ≥ πB for all lotteries only if (∀x, y, p)

− pA′′(x)
pA′(x) + (1− p)A′(y)

≥ − pB′′(x)
pB′(x) + (1− p)B′(y)

.

If A′′(x)
B′′(x) ≤

A′(y)
B′(y) for some x and y, then for p sufficiently small we have a contradiction. Q.E.D.

Theorem 3.27 provides a constructive technique for such pair of utility functions.
Let B be a utility function and choose G to be a decreasing concave function. Now, A as defined
by (ii) will be a utility function strongly more risk averse than B, as long as it is monotone. For
example, we can take A(x) = x− e−x and B(x) = x− be−1, 0 < b < 1.

Notice that if B′(x) → 0 as x approaches the upper limit of the domain of B, then there is no
utility function more risk averse than B, since G′ < 0 implies that B′+ λG′ is negative for all λ and
x sufficiently large. Of course, more risk averse functions than B can be found on restricted domains.
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3.3.1 Application 1

A number of problems of uncertain choice involve tradeoffs between “return”and “risk”. One way
of formalizing this is to consider a choice between two lotteries, x̃ and ỹ, where ỹ is distributed as x̃
plus a “return”ṽ ≥ 0 and an additional risk ε̃, where E{ε̃|x̃+ ṽ} = 0. If an individual chooses x̃ over
ỹ then implicitly he is judging that the return ṽ does not justify bearing the additional risk ε̃. In
effect, the return-risk tradeoff is not sufficiently favorable. Similarly, intuition would suggest that if
the agent B finds such a tradeoff unacceptable then so must do any agent A, who is more risk averse
than B. While this is not true for Arrow-Pratt ordering, the strong measure of risk aversion justifies
the above case. Let A ⊇ B. Now, if E{B(x̃)} > E{B(ỹ)} then
E{A(x̃)} = λE{B(x̃)}+ E{G(x̃)} > E{B(ỹ)}+ E{G(x̃+ ṽ)} = E{B(ỹ)}+ E{G(ỹ)} = E{A(ỹ)}.

3.3.2 Application 2

In simple portfolio problems it seems natural to hope that more risk averse individuals will take less
risky positions. This intuition is not supported by the Arrow-Pratt risk aversion measurement but
by strong risk aversion measurement.
Consider the two assets portfolio problem where x̃ and ỹ denote the returns on the two risky assets.
If α denotes the proportion of total wealth, w, invested in x̃ then the total return is given by

w̃ = w[(1− α)x̃+ αỹ] = w[x̃+ αz̃],

where z̃ = ỹ − x̃.
The first order condition for the utility function B, is given by E{B′(w̃)(z̃)} = 0. Below we normalize
w = 1 and we will assume that ỹ is an asset that offers a higher return, but a greater risk than x̃,
i.e., E{z̃|x} ≥ 0,∀x.
In this situation, we expect that if A is more risk averse than B, then A will hold less of ỹ than B.
If α is A’s optimal portfolio and β denotes B’s optimum, then we would expect α < β.
To see that, this result does not follow from Arrow-Pratt measure, let A = G(B), where G is
monotone and concave. Differentiating, we have
∂
∂αE{A(w̃α)}|α=β = E{A′(w̃β)z̃} = E{G′(w̃β)B′(w̃β)z̃} and E{B′(w̃β)z̃} = 0
by the optimality of β for B.
For α < β, we must have the slope of E{A(w̃β)} negative at α = β, and for this result to hold in
general it must hold for all monotone, concave G functions.
For simplicity, let x̃ and z̃ be independent with

z̃ =
{

2 with probability 0.5
−1 with probability 0.5

; and x̃ =
{

1 with probability 0.5
0 with probability 0.5

.

The first order condition for B now takes the form E{B′(w̃β)z̃} = B02 +B12− 1
2(B01 +B11) = 0

where Bij = B′(i+ βj) ≥ 0.
With similar notation for G′ we must have
E{G′(w̃β)B′(w̃β)z̃} = G02B02 +G12B12 − 1

2(G01B01 +G11B11) < 0,
where Gij ≥ 0, and setting β = 1

4 , we must have
B01 ≥ B02 ≥ B11 ≥ B12 ≥ 0 and G01 ≥ G02 ≥ G11 ≥ G12 ≥ 0.
Finally, since the positively weighted B values are not uniformly dominant, a counterexample exists.
One such example is B01 = 4, B02 = 3, B11 = 2, B12 = 0, and G01 = G02 = 10, G11 = G12 = 0, for
which E{G′(w̃β)B′(w̃β)z̃} = 10 > 0, which implies α > β.
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Now, suppose that A is more risk averse than B in the strong sense. From theorem 3.27, there
exist λ > 0 and a decreasing concave function G, such that A = λB +G.
Examining marginal effect, we have
∂
∂αE{A(w̃α)}|α=β = E{A′(w̃β)z̃} = E{[λB′(w̃β) +G′(w̃β)]z̃} = E{G′(w̃β)z̃} ≤ 0,
where the last inequality is a consequence of the fact that G′ is negative and decreasing while
E{z̃|x} > 0. It follows that α ≤ β. In other words, if A is more risk averse than B in the strong
sense then A will choose a less risky portfolio with a lower expected return.

3.3.3 Decreasing/Increasing absolute risk aversion

Note that ⊇ denotes the “more risk averse ”relation.

Definition 3.28 The utility function U, displays decreasing absolute risk aversion,

DARA iff (∀x, y > 0) U(x) ⊇ U(x+ y)

and increasing absolute risk aversion

IARA iff (∀x, y > 0) U(x+ y) ⊇ U(x).

Definition 3.29 The utility function U, displays decreasing relative risk aversion,

DRRA iff (∀x, y > 0) U(x) ⊇ U([1 + y]x)

and increasing relative risk aversion

IRRA iff (∀x, y > 0) U([1 + y]x) ⊇ U(x).

Notice that these definitions are strictly stronger than the corresponding definitions for the Arrow-
Pratt increasing or decreasing absolute/relative risk aversion.

Theorem 3.30 The following three conditions are equivalent:

1. U exhibits DARA (IARA)

2. ∃a,∀x, U ′′′(x)
U ′′(x) ≤ a ≤

U ′′(x)
U ′(x)

(
U ′′′(x)
U ′′(x) ≥ a ≥

U ′′(x)
U ′(x)

)
.

3. ∃a,∀x, y > 0, U ′′(x+y)
U ′′(x) ≤ e

ay ≤ U ′(x+y)
U ′(x)

(
U ′′(x+y)
U ′′(x) ≥ e

ay ≥ U ′′(x+y)
U ′(x)

)
.

Proof. Since arguments are all similar, we pick the DARA case.
(1)⇒ (2) From the definition, ∀x, y > 0, ∃λ(y), U ′′(x+y)

U ′′(x) ≤ λ(y) ≤ U ′(x+y)
U ′(x) . For small y, we have

1 +
U ′′′(x)
U ′′(x)

y ≤ λ(0) + λ′(0)y ≤ 1 +
U ′′(x)
U ′(x)

y.

Letting λ(0) = 1 and a = λ′(0), it yields the desired result.
(2)⇒ (3) From (2) we have that

∂

∂x
lnU ′(x) ≥ a ≥ ∂

∂
ln(−U ′′(x)).
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It implies
U ′(x+ y)
U ′(x)

≥ eay ≥ U ′′(x+ y)
U ′′(x)

.

(3)⇒ (1) This is immediate, since (3) is a restatement of the definition. Q.E.D.

For example, U(x) = x− e−ax, a > 0 displays DARA.
Notice that the constant absolute and relative risk aversion utility functions, −eax, (1/(1−β))x1−β;β ≥
0, β 6= 1, and log x are also constant ARA and RRA in the strong sense as well. In an analogous
way, we can also study relative risk aversion’s equivalent conditions in the strong sense.

3.4 Risk aversion with random initial wealth [19]

Suppose that individuals invest their wealth in a safe and a risky asset. Denote the random rate of
return of the risky asset by x̃. Individual i with initial wealth y invests Bi in the risky asset and
y −Bi in the safe asset. His optimal choice B̂(x̃, y) is the value of Bi in [0, y] which maximizes

EUi(y +Bix̃).

For two individuals, if RU1 = −U ′′1
U ′1

> RU2 holds on the relevant domain of Ui’s, then for any y and
non-degenerate random variable x̃,

B̂1(x̃, y) < B̂2(x̃, y) and π1(x̃, y) > π2(x̃, y).

Suppose that each individual receives a nonnegative random income ỹ and that he also possesses some
initial wealth δ which is non-stochastic and positive. Before knowing ỹ he invests the non-random
wealth δ in a safe and a risky asset.

Definition 3.31 We can define B̂i(x̃, ỹ) analogously to B̂i(x̃, y) as the value of Bi in [0, δ] which
maximizes

EUi(ỹ + δ +Bix̃).

Also the risk premium can be defined as

EUi(ỹ + x̃) = EUi(ỹ + Ex̃− πi(x̃, ỹ)).

If RU1 = −U ′′1
U ′1

> RU2 holds on the relevant domain, can we say the similar results with the case
of non-random initial wealth?
To extend this results, we assume the following :

• x̃, ỹ are independent.

• The utility functions must be taken from a restricted class, specifically it can be shown that it
is sufficient that either utility function be non-increasingly risk averse.

In the analysis for this section, the utility functions Ui, i = 1, 2 will have as their domain (z, z).
Each Ui is assumed to be concave and twice differentiable. The random variable ỹ, with probability
measure µ, takes values from (y, y), where y − y < z − z.
Let x = z − y and x = z − y. For each x ∈ (x, x), Vi(x) is defined by

Vi(x) = EU(ỹ + x),
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and we assume that the expectation exists and Vi is twice differentiable on (x, x). The Arrow-Pratt
risk aversion measure of Vi is denoted by RVi .

Proposition 3.32 Let ỹ be a fixed random variable. The inequalities B̂1(x̃, ỹ) ≤ B̂2(x̃, ỹ) and π1(x̃, ỹ) ≥
π2(x̃, ỹ) hold for all x̃ independent of ỹ if and only if RV1(x) ≥ RV2(x) for all x ∈ (x, x). If
RV1(x) > RV2(x) for all x ∈ (x, x), then

B̂1(x̃, ỹ) < B̂2(x̃, ỹ) and π1(x̃, ỹ) > π2(x̃, ỹ) (3.14)

will hold for all x̃ independent of ỹ.

The proof is an immediate corollary of Theorem 3.14.

Example 3.33 Restrict ỹ + x̃ to the interval (0, 1) and let U1(y) = y − 1
2y

2 and U2(y) = y − 1
22y

11.
It can be shown that RU1(y) > RU2(y) holds on the relevant interval. Now let ỹ be a random variable
which takes on the values 0.01 and 0.99 each with probability 1

2 , and let x = 0. By calculating, we

can see that RV1(x) = −EU ′′1 (ỹ+x)
EU ′1(ỹ+x)

< RV2(x).

Since the utility functions are polynomial, there exists a neighborhood of x for which RV2(x) > RV1(x).
This example gives a counterexample where conditions (3.14) do not hold and the agent is risk averse
in Arrow-Pratt’s sense in the domain.

For the following theorem, we work with the weak form of these inequalities. However, with some
modification, we can obtain the results with strong inequalities.

Theorem 3.34 RU1(z) > RU2(z) for all z ∈ (z, z) and either RU1 or RU2 is a non-increasing
function of z on (z, z), then

RV1(x) > RV2(x) (3.15)

holds on (x, x).

Lemma 3.35 For any za, zb in (z, z), we define r by r = [U
′
1(za)
U ′1(zb)

]/[U
′
2(za)
U ′2(zb)

]. If, for all za ≥ zb in (z, z),

{[RU1(za)−RU2(za)] + [RU1(zb)−RU2(zb)]}r + (1− r)[RU1(zb)−RU2(za)] ≥ 0 (3.16)

then (3.15) holds on (x, x)

Proof of the lemma. We can check that the (3.16) is equivalent to
−[U ′′1 (za)U ′2(zb) + U ′′1 (zb)U ′2(za)] ≥ −[U ′′2 (za)U ′1(zb) + U ′′2 (zb)U ′1(za)].
This is symmetric in za and zb. Therefore, we can take zα ≥ zβ, and we let zα = za and zβ = zb.
−[U ′′1 (zα)U ′2(zβ)+U ′′1 (zβ)U ′2(zα)] ≥ −[U ′′2 (zα)U ′1(zβ)+U ′′2 (zβ)U ′1(zα)]. Thus the above inequality holds
for all zα, zβ ∈ (z, z) if and only if (3.16) holds for all za ≥ zb ∈ (z, z).
Let x ∈ (x, x) and ỹα and ỹβ be two independent random variables, each of which has the same
distribution as ỹ. We take the random variable as zα = x+ ỹα and zβ = x+ ỹβ.
Substituting zα, zβ, taking expectations in both sides of the inequality, we obtain
−[EU ′′1 (x+ ỹα)EU ′2(x+ ỹβ) + EU ′′1 (x+ ỹβ)EU ′2(x+ ỹα)] ≥
−[EU ′′2 (x+ ỹα)EU ′1(x+ ỹβ) +EU ′′2 (x+ ỹβ)EU ′1(x+ ỹα)]. Since ỹα and ỹβ have the same distribution,
−2EU ′′1 (x+ ỹ)EU ′2(x+ ỹ) ≥ −2EU ′′2 (x+ ỹ)EU ′1(x+ ỹ),
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which is equivalent to (3.15). Q.E.D.

Proof of the theorem. Pratt [28] has shown that r ≤ 1 for za ≥ zb if RU1(z) ≥ RU2(z) on
(z, z). Therefore, the first term in (3.16) is nonnegative. If RU1 is a non-increasing function of z,
then we write
RU1(zb)−RU2(za) = [RU1(zb)−RU1(za)] + [RU1(za)−RU2(za)]. Therefore, (3.16) is nonnegative.
If RU2 is a non-increasing function of z, in the same way, we prove that (3.16) is nonnegative and we
apply the lemma. Q.E.D.

Corollary 3.36 If RU1(z) > RU2(z) for all z ∈ (z, z) and either RU1 or RU2 is a non-increasing
function of z on (z, z), then (3.14) holds when x̃, ỹ are independent and range over the values such
that wealth always lies in (z, z).

The above corollary follows immediately from the preceding theorem and proposition.

Corollary 3.37 If RU (z) is a non-increasing [decreasing] function of z, then B(x̃, ỹ + z) is a non-
decreasing (increasing) function of z and π(x̃, ỹ + z) is a non-increasing (decreasing) function of
z.

Proof. If z1 ≤ z2, let Ui(z) = Ui(z + zi). Apply corollary 3.36.

In Section 3.3, Ross’ main theorem gives a condition under which U1 is more risk averse than
U2 implies π1(x̃, ỹ) > π2(x̃, ỹ) when E[x̃|y] = 0 for all y. He assumes that x̃ and ỹ are uncorrelated
in the strong sense that E[x̃|y] = 0 for all y. If in this section we had restricted to cases in which
Ex̃ = 0, the hypothesis would have satisfied those of Ross in section 3.3. However, even if x̃ and ỹ
are uncorrelated in the strong sense, if x̃ and ỹ are not independent, Proposition 3.32 does not hold.
As a result, the function V is irrelevant if x̃ and ỹ are not dependent, even if they are uncorrelated
in the strong sense of Ross.

3.5 Proper risk aversion [30]

Denote a decision maker’s initial wealth by w if it is certain, by w̃ if it is uncertain. Let x̃ and ỹ
be possible additional risks. Assume that the decision maker has a probability distribution under
which w̃, x̃, ỹ are independent. Assume that he has a von Neumann-Morgenstern utility function U .
Recall that “risk averse”is defined by the condition w̃ � Ew̃ for all w̃ and is equivalent to concavity
of U . Also an intuitive definition of “decreasingly risk averse”is that a certain decrease in wealth
never makes an undesirable gamble desirable, i.e.,

w + x̃+ y � w + y whenever w + x̃ � w and y < 0. (3.17)

Definition 3.38 U is fixed-wealth proper if w+ x̃+ ỹ � w+ ỹ whenever w+ x̃ � w and w+ ỹ � w.

In other words, if lotteries x̃, ỹ are individually unattractive, the compound lottery offering both
together is less attractive than either alone.

Definition 3.39 We call U proper if the same condition holds for uncertain w̃ also, that is, if

w̃ + x̃+ ỹ � w̃ + ỹ whenever w̃ + x̃ � w̃ and w̃ + ỹ � w̃. (3.18)
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Obviously, proper implies fixed wealth proper, and fixed wealth proper implies decreasing risk aver-
sion.

Definition 3.40 The certainty equivalent C(x̃, z̃) of a gamble x̃ in the presence of another gamble z̃
(including initial wealth) is defined as the sure amount to which x̃ is indifferent: z̃+ x̃ ∼ z̃+C(x̃, z̃).

The idea of the definition is the same as cash equivalent (Definition 3.8), but the above one is more
general, allowing x in Definition 3.8 to be a random variable. Setting C(x̃) = C(x̃, w̃) for convenience,
we can write the properness condition as

C(x̃+ ỹ) ≤ C(ỹ) whenever C(x̃) ≤ 0 and C(ỹ) ≤ 0.

Dependence between w̃ and (x̃, ỹ) seems difficult to allow, because even when the preference is
proper, risk aversion can easily be decreased by either a stochastic decrease or added noise in w̃. To
exemplify, suppose w̃ has two possible values w1 and w2, with w1 < w2, and suppose x̃ = 0 when
w̃ = w1, while respectively either x̃ = −δ < 0 or x̃ = δ with equal probability when w̃ = w2. Then
for certain values of w1, w2 and δ, the “derived”utility function Û(y) = EU(w̃+ y), which applies to
risk independent of w̃, may easily be more risk averse than V (y) = EU(w̃+ x̃+ y), because changes
around w2 have less relative importance to the former than changes around w2 − δ to the latter.

Theorem 3.41 For preferences in accord with expected utility, if there is decreasing risk aversion
and the condition

w̃ + x̃+ ỹ � w̃ whenever w̃ + x̃ ∼ w̃ ∼ w̃ + ỹ (3.19)

is satisfied, then

C(x̃+ ỹ) ≤ C(x̃) + C(ỹ) whenever C(x̃) ≤ 0 and C(ỹ) ≤ 0 (3.20)

and
C(x̃, ỹ + w̃) ≤ C(x̃, w̃) whenever C(x̃, w̃) ≤ 0 and C(ỹ, w̃) ≤ 0 (3.21)

are each equivalent to proper risk aversion, if they hold for all independent w̃, x̃ and ỹ, (to proper
risk aversion on an interval if w̃, w̃ + x̃, w̃ + ỹ, w̃ + x̃ + ỹ are restricted to this interval). The same
equivalences hold for fixed-wealth properness if w̃ is restricted to certainties w.

A significant fact used in the proof is that decreasing risk aversion, property (3.17), implies the same
property for uncertain w̃,

w̃ + x̃+ y � w̃ + y whenever w̃ + x̃ � w̃ and y < 0 (?).

Remarks First, the foregoing result implies that the above generalization of (3.17) to uncertain w̃ is
equivalent to (3.17), unlike proper or fixed-wealth proper conditions. Second, this equivalence says
that U is decreasingly risk averse iff every utility function derived from it is. Third, U is proper iff
every utility function derived from U is fixed-wealth proper.

Proof of the theorem. It is immediate that (3.20) or (3.21)⇒ (3.18)⇒ (3.19) plus decreasing
risk aversion.
To show that (3.19) plus decreasing risk aversion implies (3.20), let x = C(x̃) and y = C(ỹ), and
suppose x ≤ 0, y ≤ 0. Since w̃ + x̃ ∼ w̃ + x, replacing w̃ by w̃ + x and x̃ by x̃ − x in (?) and then
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exchanging x and y gives w̃ + x+ y + x̃− x � w̃ + x+ y, w̃ + y + x+ ỹ − y � w̃ + y + x.
Applying (3.19) at w̃+x+y to these relations gives w̃+x̃+ỹ � w̃+x+y, which is equivalent to (3.20).
To complete the proof, we show that properness (3.18) implies (3.21). Since w̃+x+ ỹ � w̃+x by (?),
applying (3.18) to w̃+x, x̃−x and ỹ gives w̃+ x̃+ ỹ � w̃+x+ ỹ, which is equivalent to (3.21). Q.E.D.

We have also proved that proper preference implies that

w̃ + x̃+ ỹ � w̃ + C(x̃) + ỹ � w̃ + C(x̃) + C(ỹ),

whenever C(x̃) ≤ 0 and C(ỹ) ≤ 0.

3.5.1 An analytical sufficient condition

Recall that, for exponential utility, preferences among risks are unaffected by wealth (since −e−c(w+a)

is a positive multiple of −e−cw). It is known that mixtures of concave exponential utilities have
decreasing risk aversion [29]. We show here that they are also proper. The most general mixture of
exponential utilities, which is called completely proper, is

U(w) =

∞∫
0

[g(s)− esw]dF (s), (3.22)

where g is an arbitrary function, F is non-decreasing, e−sw is to be replaced by w when s = 0.
Taking the difference eliminates most of the arbitrariness in g and gives the equivalent form

U(w) = U(w1) +

∞∫
0

[g(e−sw1 − esw]dF (s), (3.23)

for any w1 where U(w1) is finite. Assuming convergence at more than one point, one can show by
monotonicity and concavity in w (e.g., [8, p.409]), that (3.23), and hence (3.22) gives a finite U with
positive odd derivatives and negative even derivatives on some interval (w0,∞), possibly (−∞,∞),
and U(w) = −∞ for w < w0. A positive function with positive even derivatives and negative odd
derivatives is called “completely monotone”.

Theorem 3.42 A completely proper utility function is proper everywhere that it is finite.

One point distribution F gives exponential functions. The risk-averse power functions U(w) ∼
d(w − a)d, d ≤ 1, and log(w − a) are completely proper on (a,∞); they satisfy (3.23) with dF (s) ∼
s−d−1easds.
The two point distribution F gives U(w) = a − be−sw − ce−tw, where b, c, s, and t are nonnegative
constants and w replaces −e−sw if s = 0.

Example 3.43 For s > t > 0 and b, c > 0, the utility a − be−sw + cetw is proper risk averse on
the interval w0 = 1

s+t log b
c < w < 1

s+t log( bc
s2

t2
) = w1, but not of the form (3.22), and it is improper

below w0 although its derivatives alternate in sign for w < w1. It is increasing and its risk aversion
is decreasing everywhere. It is risk seeking above w1.
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Proof of the example. The signs of the derivatives and the formula r(w) = −t + bs(s +
t)/(bs+ ctesw+tw) for the local risk aversion are easily obtained. To show properness on (w0, w1), let
k = (c/b)Eesw̃+tw̃ and b = Eesw̃ without loss of generality, and observe that
EU(w̃ + x̃)− EU(w̃) = −Es−sx̃ + kEetx̃ + 1− k.
If w̃ + x̃ ∼ w̃ ∼ w̃ + ỹ, then Ee−sx̃ = kEetx̃ + 1− k and similarly for ỹ, and substitution gives
EU(w̃ + x̃+ ỹ)− EU(w̃) = k(1− k)(Eetx̃ − 1)(Eetỹ − 1).
For w̃ + x̃ � w1, risk aversion implies Ex̃ ≥ 0 and hence Eetx̃ ≥ etEx̃ ≥ 1. Similarly Eetỹ ≥ 1 for
w̃ + ỹ � w1. Since k > 1 for w̃ > w0, EU(w̃ + x̃ + ỹ) − EU(w̃) is not positive and the condition
(3.19) for properness is satisfied on the interval (w0, w1). Q.E.D.

Proof of the theorem. If U has the form (3.22), then so does every derived utility Û(x) =
EU(w̃ + x). Hence, it is sufficient to show that every U of the form (3.22) is proper at 0. Suppose
x̃ � 0 and ỹ � 0. Let x(s) and y(s) be the certainty equivalents of x̃ and ỹ for constant risk aversion,
that is e−sx(s) = Ee−sx̃ and e−sy(s) = Ee−sỹ; and x(s) and y(s) are decreasing in s (Theorem 3.14).
Except in trivial cases, there exist constants c and d such that x(c) = y(d) = 0. Since x̃, ỹ are
symmetric we can take c ≥ d. Then one can show that, because x(s) and y(s) are decreasing,
esx(s) S 1 and esy(s) S e−cy(c) for s S c.
By (3.23) with w1 = 0 and (3.21),

EU(x̃)− U(0) =
∞∫
0

E[1− e−sx̃]dF (s) =
∞∫
0

[1− e−sx(s)]dF (s) ≤ 0

and similarly for ỹ.

We then have EU(x̃+ ỹ)− U(0) =
∞∫
0

E[1− e−sx̃−sỹ]dF (s) =
∞∫
0

[1− e−sx(s)−sy(s)]dF (s) ≤

by independence ≤
∞∫
0

[e−sy(s) − e−sx(s)−sy(s)]dF (s) ≤ e−cy(c)
∞∫
0

[1− e−sx(s)]dF (s) ≤ 0. Q.E.D.

3.6 Standard risk aversion [20]

Definition 3.44 Under the von Neumann-Morgenstern utility function U, two risks x̃ and ỹ (which
may have non-zero means) aggravate each other, starting from initial wealth w, if and only if

1
2
EU(w + x̃) +

1
2
EU(w + ỹ) ≥ 1

2
U(w) +

1
2
EU(w + x̃+ ỹ). (3.24)

A risk x̃ aggravates a reduction in wealth of size ε if and only if

1
2
EU(w + ε) +

1
2
EU(w + x̃) ≥ 1

2
U(w) +

1
2
EU(w − ε+ x̃). (3.25)

For infinitesimal reduction in wealth (ε small), (3.25) becomes

EU ′(w + x̃) ≥ U ′(w). (3.26)

Thus, a risk aggravates an infinitesimal reduction in wealth if and only if it raises expected marginal
utility.

Definition 3.45 A risk x̃ is loss-aggravating, starting from initial wealth w, if and only if it satisfies
(3.26).
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When absolute risk aversion is decreasing, every undesirable risk is loss aggravating, but not every
loss-aggravating risk is undesirable. Also, note that mutual aggravation guarantees that if one risk
is a bad thing in the absence of the other risk, it will remain a bad thing in the presence of the other
risk. For example, if EU(w + ỹ) ≤ U(w), then (3.24), mutual aggravation between x̃ and ỹ implies
that EU(w + x̃+ ỹ) ≤ EU(w + x̃).

Definition 3.46 The von Neumann-Morgenstern utility function has standard risk aversion iff for
any pair of independent risks x̃ and ỹ, and any initial wealth w, the combination of (3.26) and
EU(w + ỹ) ≤ U(w) implies (3.24).

Other than the allowance for random initial wealth, the only difference between the definition of
proper risk aversion and the standard risk aversion is that for the proper risk aversion, both risks
must be undesirable to guarantee the mutual aggravation, while for the standard risk aversion, it is
enough for one risk to be undesirable, with the other risk loss-aggravating.

Proposition 3.47 The von Neumann-Morgenstern utility function has a proper risk aversion iff for
any triple of mutually independent variables w̃, x̃ and ỹ, the pair of inequalities

EU(w̃ + x̃) ≤ EU(w̃) and EU(w̃ + ỹ) ≤ EU(w̃) (?)

implies E[U(w̃ + x̃+ ỹ)− U(w̃ + x̃)− U(w̃ + ỹ) + U(w̃)] ≤ 0.

Proof. (⇐)(?) imply E[U(w̃ + x̃ + ỹ) − U(w̃ + ỹ)] = E[U(w̃ + x̃ + ỹ) − U(w̃ + x̃) − U(w̃ + ỹ) +
U(w̃)] + E[U(w̃ + x̃)− U(w̃)] ≤ 0.
(⇒) If v has decreasing absolute risk aversion and Ev(π∗ + x̃) ≤ v(π∗), with π∗ ≥ 0, then

E[v(π∗ + x̃)− v(x̃)] =
π∗∫
0

Ev′(ζ + x̃)dζ ≥
π∗∫
0

Ev′(ζ)dζ = v(π∗)− v(0). x̃ is undesirable at π∗. By the

decreasing absolute risk aversion which guarantees that every undesirable risk is loss-aggravating,
the above inequality holds for any ζ ≤ π∗.
Using this result, (?) and the definition of proper risk aversion, we have
E[U(w̃ + x̃+ ỹ)− U(w̃ + x̃)− U(w̃ + ỹ) + U(w̃)] =
= E[U(w̃ + x̃+ ỹ)− U(w̃ + ỹ)− U(w̃ + x̃+ ỹ + π∗y) + U(w̃ + ỹ + π∗y)]+
+E[U(w̃ + x̃+ ỹ + π∗y)− U(w̃ + x̃)− U(w̃ + x̃+ π∗x + ỹ + π∗y) + U(w̃ + x̃+ π∗x)]+
+E[U(w̃ + x̃+ π∗x + ỹ + π∗y)− U(w̃ + ỹ + π∗y)] + E[U(w̃)− U(w̃ + x̃+ π∗x)] ≤ 0,
where π∗x and π∗y are the risk premia for x̃ and ỹ at w̃. The first bracketed term on the right hand of
the equation is negative using the above result with v(ζ) = EU(ζ + w̃+ ỹ) and π∗ = π∗y . The second
bracketed term is negative using the above result again with v(w) = EU(ζ + w̃+ x̃) and π∗ = π∗x. In
both cases, v inherits decreasing absolute risk aversion from U (which has decreasing absolute risk
aversion as a consequence of the definition of proper risk aversion, with ỹ = −ε, ε > 0), while the
definition together with the undesirability of x̃ and ỹ guarantees that Ev(π∗+ x̃) ≤ v(π∗). Note that
x̃ and ỹ can be interchanged and can be replaced by x̃ + π∗x and ỹ + π∗y in the definition of proper
risk aversion. The third is negative using the definition of proper risk aversion. Using the definition
of risk premium, the fourth bracket is zero. Q.E.D.

Proposition 3.48 If U ′(w) > 0 and U ′′(w) < 0 over the entire domain of U, then U is standard
if and only if both the absolute risk aversion −U ′′(w)/U ′(w) and absolute prudence −U ′′′(w)/U ′′(w)
are monotonically decreasing over the entire domain of U.
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Proof.
Necessity of Decreasing Absolute Risk Aversion. Specialize the risk x̃ in (3.24) and (3.26) to a non-
random negative quantity −ε. Concavity of U ensures that x̃ = −ε satisfies (3.26). Trivially, −ε
and ỹ are statistically independent. When x̃ = −ε, EU(w + ỹ) ≤ U(w) implies (3.24). In words, if
the agent would reject a risk ỹ at the initial wealth w, then the agent would reject the risk at any
lower level of initial wealth. Pratt [28] has shown that this implies decreasing absolute risk aversion.
Consider a small risk ỹ for which EU(w+ỹ) ≤ U(w) holds with equality. Then µ = −U ′′(w)

U ′(w)
σ2

2 +o(σ2),
where µ is the mean of ỹ and σ2 is the variance of ỹ.
Moreover, EU(w− ε+ ỹ)−U(w− ε) ≤ EU(w+ ỹ)−U(w) ≤ 0 implies that µ ≤ −U

′′(w−ε)
U ′(w−ε)

σ2

2 + o(σ2).

Combining the above two results and dividing by σ2/2, we have −U
′′(w−ε)

U ′(w−ε) ≥
−U ′′(w)
U ′(w) + o(σ2)

σ2 . If one

chooses a small enough risk ỹ so that σ2 → 0, then o(σ2)
σ2 → 0. Therefore −U

′′(w−ε)
U ′(w−ε) ≥

−U ′′(w)
U ′(w) for any

w and any ε > 0.

Necessity of Decreasing Absolute Prudence. Specialize the second risk ỹ to a non-random negative
quantity, ε < 0. Monotonicity ensures that ỹ = −ε. Trivially, −ε and x̃ are statistically independent.
When x̃ = −ε, (3.26) implies (3.24), EU(w − ε+ x̃)− U(w + x̃)− EU(w − ε) + U(w) ≤ 0.
Equivalently, for all w, ε > 0, and x̃ satisfying EU ′(w+ x̃) ≥ U ′(w),

∫ w
w−ε[EU

′(ζ + x̃)−U ′(ζ)]dζ ≥ 0.
This means there cannot be any interval [w − ε, w] on which EU ′(ζ + x̃) − U ′(ζ) is monotonically
increasing from a negative value to zero. Therefore, by continuity, EU ′(w + x̃ − ε) ≥ U ′(w − ε)
for any w and ε > 0. In words, if a risk x̃ is loss-aggravating at the initial wealth w, then it is
loss-aggravating at any lower level of initial wealth. By the same argument as above, this, with some
modification, implies that −U

′′′(w−ε)
U ′′(w−ε) ≥

−U ′′′(w)
U ′′(w) for any w and any ε > 0.

The contribution of Decreasing Absolute Risk Aversion. As shown by [21], decreasing absolute
risk aversion implies that EU ′(w+ ỹ) ≥ U ′(w) whenever EU(w+ ỹ) ≤ U(w). Using this consequence
of decreasing absolute risk aversion, the combination of (3.26), EU(w + ỹ) ≤ U(w) and statistical
independence between x̃ and ỹ implies

E[U ′(w + x̃)− U ′(w)][U ′(w + ỹ)− U ′(w)] ≥ 0. (3.27)

The contribution of Decreasing Absolute Prudence. Here we will prove that (3.27) implies (3.24).
The convexity of ln(−U ′′) implied by the decreasing absolute prudence ensures that
ln(−U ′′(w + x+ y))− ln(−U ′′(w + y)) ≤ ln(−U ′′(w + x))− ln(−U ′′(w)), if xy ≥ 0. If xy ≤ 0, then
the inequality is reversed. Equivalently, U ′′(w+x+y)

U ′′(w) ≥ U ′′(w+x)
U ′′(x)

U ′′(w+y)
U ′′(w) , if xy ≥ 0.

We take integral to yield
∫ x
0

∫ y
0
U ′′(w+χ+ξ)

U ′′(w) dξχ ≥ (
∫ x
0
U ′′(w+χ)
U ′′(w) dχ)(

∫ y
0
U ′′(w+ξ)
U ′′(w) dξ) for any pair of x and

y. Performing the integration yields,

U(w + x+ y)− U(w + x)− U(w + y) + U(w)
U ′′(w)

≥ U ′(w + x)− U ′(w)
U ′′(w)

U ′(w + y)− U ′(w)
U ′′(w)

for any pairs of x and y. Taking expectations of both sides of it and multiplying both sides by U ′′(w),
we obtain, for any pair of random variable x̃ and ỹ,
E[U(w + x̃+ ỹ)− U(w + x̃)− U(w + ỹ) + U(w)] ≤ E[(U ′(w+x̃)−U ′(w))(U ′(w+ỹ)−U ′(w))]

U ′′(w) .
This gives the desired result that (3.27) implies (3.24). Q.E.D.
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Proposition 3.49 For any random variable w̃, if U is standard then the derived utility function Û
defined by Û(x) = EU(w̃ + x) is also standard.

Proposition 3.50 If U ′(w) > 0 and U ′′(w) < 0 and both the absolute risk aversion −U ′′(w)/U ′(w)
and absolute prudence −U ′′′(w)/U ′′(w) are monotonically decreasing over the entire domain of U,
then U is proper.

Proposition 3.51 If U ′(w) > 0 and U ′′(w) < 0 over the entire domain of U, then any loss-
aggravating risk always lowers the absolute value of the optimal level of investment in any other
independent risk if and only if U is standard.

For the proofs of the above propositions, see [20].

4 Multivariate risk aversion

4.1 Risk aversion with many commodities [17]

Theorem 3.14 implies that U1 is more risk averse than U2 if and only if U1 is an increasing concave
transformation of U2.
In this section we would like to extend this result. A difficulty encountered in generalizing the Arrow-
Pratt theory of risk aversion is that n dimensional von Neumann-Morgenstern utility functions may
represent different preference ordering on the set of commodity bundles. Let’s illustrate the above
statement with an example. Let x̂ = (x̂1, x̂2) and x̃ = (x̃1, x̃2) be two distinct points in Ω2, the
nonnegative part of the Euclidean two-dimensional space with the property that U1(x̃) > U1(x̂) and
U2(x̂) > U2(x̃). Consumer 1, with utility function U1, and consumer 2, with utility function U2,
are both faced with the choice of receiving x̃ with certainty or a gamble between x̃ and x̂. Clearly,
consumer 1 prefers x̃ with certainty to any gamble between x̃ and x̂. However, consumer 2 prefers any
gamble between x̃ and x̂. Consumer 1 acts as if she is more risk averse than consumer 2. However,
this behavior occurs because of the differences in the ordinal preferences represented by U1 and U2.
This difficulty never arises in one dimension since in that case all monotonically increasing utility
functions represent the same ordinal preference.

Proposition 4.1 (Univariate case) Let ri(x) and πi(x, z) be the absolute risk aversion function and
the risk premium corresponding to the twice continuously differentiable and monotonically increasing
utility function Ui(x), i = 1, 2. The following conditions are equivalent:

• r1(x) ≥ (>)r2(x).

• π1(x, z) ≥ (>)π2(x, z).

• There exists an increasing, (strictly) concave, twice continuously differentiable function k such
that U1(x) = k(U2(x)).

Proof. Because of the assumptions made about U1 and U2, there exists a monotonically in-
creasing and continuously differentiable function k = U1 ◦ U−1

2 such that U1 = k ◦ U2. Dif-
ferentiating we get U ′1 = k′U ′2 and U ′′1 = k′′(U ′2)2 + k′U ′′2 . Using the above equation, we get
k′′ = U ′′1 −k′U ′′2

(U ′2)2
= [U

′′
1
U ′1
− U ′′2

U ′2
][ U ′1

(U ′2)2
]. Therefore, k′′ ≤ (<)0 if and and only if r1(x) ≥ (>)r2(x).Q.E.D.
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Motivated by the above proposition, the following definition generalizes the concept of risk aver-
sion to utility functions of more than one variable. Throughout this section, it is assumed that Ui is
strictly concave and has continuous second derivatives.
We also assume that ∂Ui/∂xj > 0, i = 1, 2, j = 1, .., n. Finally U1 and U2 are assumed to represent
the same preferences, there exists a function k such that U1 = k ◦ U2, and k′ > 0.

Definition 4.2 U1 is at least as risk averse as U2, [U2RU1] if U1 = k(U2) where k′ > 0 and k is
concave. U1 is more risk averse than U2, [U1PU2], if k is strictly concave.

Let x, y ∈ Ωn and let z be a random variable which takes values in [0,∞). Consider gambles in
Ωn, the n dimensional Euclidean space, of the form x+zy. These gambles lie on the line, originating
at x, through the point x+ y. For the utility function Ui we will study the risk premium π(x, y, z),
E{Ui(x + zy)} = Ui(x + y(E(z) − π(x, y, z))), associated with the random variable z, the point x
and the direction y.

Proposition 4.3 If U1 is at least as risk averse as (more risk averse than) U2 then, for every
x, y ∈ Ωn and every gamble z ≥ 0, the risk premium π1(x, y, z) for U1 is at least as large as (larger
than) the corresponding risk premium π2(x, y, z) for U2.

Proof. For z ∈ [0,∞), let vix,y(z) be defined by vix,y(z) = Ui(x+zy). When x and y are fixed, vix,y(z)
is a function of the one dimensional variable z, and πi(x, y, z) is analogous to the one dimensional
Arrow-Pratt risk premium. v1

x,y(z) = k(v2
x,y(z)) where k is (strictly) concave. By Proposition 4.1,

the (strict) concavity of k implies that π1(x, y, z) ≥ (>)π2(x, y, z). Q.E.D.

Proposition 4.4 Suppose that U1 and U2 both represent the preference ordering �. If there exists y
such that, for all z, π1(0, y, z) ≥ (>)π2(0, y, z) then U1 is at least as risk averse as (more risk averse
than) U2.

Proof. Since U1 and U2 represent the same preference, there exists a function such that U1 = k ◦U2.
For this same k, v1

0,y(z) = k(v2
0,y(z)). Applying Proposition 4.1, π1(0, y, z) ≥ (>)π2(0, y, z), for all z,

implies that k is (strictly) concave. Q.E.D.

In spite of the fact that the value of the directional risk premium varies with the direction, risk
aversion comparisons of utility functions, obtained by comparing directional risk premia are indepen-
dent of the direction. This result is obtained because comparisons are restricted to utility functions
representing the same ordinal preference.

Let 4n =

∣∣∣∣∣∣∣
U11 . . . U1n
...

...
Un1 ... Unn

∣∣∣∣∣∣∣ and 4b
n =

∣∣∣∣∣∣∣∣∣
U11 . . . U1n U1
...

...
...

Un1 ... Unn Un
U1 . . . Un 0

∣∣∣∣∣∣∣∣∣.
It has been assumed that all utility functions are strictly concave. This assumption implies that

(−1)n4b
n ≥ 0. Let’s assume that (−1)n4b

n > 0, then we define

ρ(x1, .., xn) =
(−1)n4n

{(−1)n4b
n}n/n+1

.
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Proposition 4.5 Suppose U1 and U2 represent the preference �. Then U1 is at least as risk averse
as [more risk averse than] U2 if and only if ρ1(x1, x2) ≥ [>]ρ2(x1, x2) for all x1, x2.

Proof In order to simplify notation, in this part of the proof we will denote U1 by U1, and ∂U/∂x1

by U1. Since U1 and U2 represent the same preference, U1 = k ◦ U2, where k′ > 0. Therefore
U1
i = k′U2

i and U1
ij = k′′U2

i U
2
j + k′U2

ij , i, j = 1, 2.
Now let

Ai =
∣∣∣∣ U i11 U i12

U i21 U i22

∣∣∣∣ , Bi =
∣∣∣∣ U i11 U i1U

i
2

U i21 (U i2)2

∣∣∣∣ , Ci =
∣∣∣∣ (U i1)2 U i12

U i2U
i
1 U i22

∣∣∣∣ , Di =
∣∣∣∣ (U i1)2 U i1U

i
2

U i2U
i
1 (U i2)2

∣∣∣∣ .
By computing, we can check

Bi + Ci = −

∣∣∣∣∣∣
U i11 U i12 U i1
U i21 U i22 U i2
U i1 U i2 0

∣∣∣∣∣∣ = [U i2,−U i1]
[
U i11 U i12

U i21 U i22

] [
U i2
−U i1

]
,

Di = 0 and

ρi =
Ai

{−[Bi + Ci]}
2
3

.

Combining the results,

[B2 + C2] = [ 1
k′ ][B1 + C1]− k′′

k′ [U
2
2 ,−U2

1 ]
[

[U2
1 ]2 U2

1U
2
2

U2
2U

2
1 [U2

2 ]2

] [
U2

2

−U2
1

]
= [ 1

k′ ][B1 + C1].

Using U1
ij = k′′U2

i U
2
j + k′U2

ij , i, j = 1, 2 and Di = 0, since the determinant is a linear function of
each column, we get A1 = [k′]2A2 + k′k′′[B2 + C2].
Solving for k′′ and substituting the result we have obtained gives

k′′ =
−k′

{−[B2 + C2]}
1
3

[ρ1 − ρ2].

Since, k′/{−[B2 + C2]}
1
3 > 0, k′′ ≤ (<)0 if and only if ρ2 − ρ1 ≤ (<)0. Q.E.D.

Moreover, ρ is invariant under linear transformations.

Proof Let w = a+ bU . Then∣∣∣∣∣∣ w11 w12

w21 w22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
w11 w12 w1

w21 w22 w2

w1 w2 0

∣∣∣∣∣∣∣∣
2
3

=
b2

∣∣∣∣∣∣ U11 U12

U21 U22

∣∣∣∣∣∣
[b3

∣∣∣∣∣∣∣∣
U11 U12 U1

U21 U22 U2

U1 U2 0

∣∣∣∣∣∣∣∣]
2
3

=

∣∣∣∣∣∣ U11 U12

U21 U22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
U11 U12 U1

U21 U22 U2

U1 U2 0

∣∣∣∣∣∣∣∣
2
3
. Q.E.D.

It is possible to introduce other two dimensional risk aversion measures, and to provide the same
justification for these measures as has been given for ρ. Specifically, for any z ∈ Ω1 and y ∈ Ω2, let
the directional risk aversion measure r0,y(z) be defined by

r0,y(z) = −
v′′0,y(z)
v′0,y(z)

=

∑2
i=1

∑2
j=1 Uij(zy)yiyj∑

i=1 2Ui(zy)yi
,

where vx,y(z) = U(x+ zy).
The measure of r0,y is simply the Arrow-Pratt measure of risk aversion of the one dimensional utility
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function v0,y(z) = U(zy). Hence, r0,y is invariant under linear transformations. A justification
for calling r0,y a two dimensional risk aversion measure is provided by the following corollary to
propositions 4.3 and 4.4.

Corollary 4.6 Suppose U1 and U2 both represent the preference ordering �. Let y be any vector in
Ω2. Then U1 is at least as risk averse as (more risk averse than) U2 if and only if r10,y(z) ≥ (>)r20,y(z),
for all z.

4.1.1 An approach to compare the risk averseness of two utility functions with different
ordinal preferences

The comparison can be restricted to a class of gambles, call it Γ, that excludes gambles for which
the ordinal preferences disagree about the relative ranking of the prizes. As an example, consider a
consumer, and let Γ be the class of gambles for which income is random. Assume that prices are fixed
and that for each possible income level the consumer chooses consumption to maximize utility within
the budget. For such gambles the risk averseness of all utility functions can be compared regardless
of the preference they represent. The reason is that the consumers’ actions will be determined by
their utility of income function (the indirect utility function with fixed prices) which is a function of
one variable.

Proposition 4.7 U1 is at least as risk averse as (more risk averse than) U2 if and only if for every
p ∈ Ωn, U1(p, I) is at least as risk averse as (more risk averse than) U2(p, I).

Proof. The assumption that U1 and U2 represent the same preferences implies that x(p, I) is the
same for U1 and U2. The fact that U1 = k ◦ U2, with k′ > 0, implies
U1(p, I) = U1(x(p, I)) = k(U2(x(p, I))) = k(U2(p, I)).
If U1 is at least as risk averse as U2 then k is concave. By Proposition 4.1, U1 is more risk averse
than U2. On the other hand, if U1 is more risk averse than U2 for some p then k is concave, again
because of the Proposition 4.1, U1 is at least as risk averse as U2. Q.E.D.

4.1.2 An approach to the comparison of risk aversion by Yaari

Consider two mutually exclusive events, E and ∼ E, such that the probability of E is q ∈ (0, 1). A
gamble is then a pair (z1, z2) ∈ Ωn×Ωn such that the player is awarded z1 if E occurs and z2 if ∼ E
occurs.

Definition 4.8 For any gamble (z1, z2), the acceptance set A(z1, z2), associated with the utility func-
tion U , is the set of gambles which yield at least as high an expected value of U as (z1, z2). Formally,

A(z1, z2) = {(y1, y2) : qU(y1) + (1− q)U(y2) ≥ qU(z1) + (1− q)U(z2)}.

We can prove that the definition of risk aversion using the acceptance set Ai(z, z) corresponding
to U i is equivalent to the Arrow-Pratt definition of risk aversion in the one-dimensional utility case.

Definition 4.9 U1 is [Yaari] at least as risk averse as U2 [U1Y U2] if for all z ∈ Ωn, A
2(z, z) ⊇

A1(z, z). U1 is [Yaari] more risk averse than U2 [U1V U2] if for all z ∈ Ωn, A
2(z, z) ⊃ A1(z, z).
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From a geometrical point of view, if U1 is more risk averse than U2 in Yaari’s sense, the hyperplane
supporting the set A2(z, z) at (z, z) also supports the set A1(z, z) at (z, z). Thus if the risk averseness
of U1 and of U2 are to be compared at (z, z) using Yaari’s approach, the supporting hyperplane to
the sets A1(z, z) and A2(z, z) must be the same.

Proposition 4.10 If U1 is at least as risk averse as U2 in Yaari’s sense, then U1 and U2 must
represent the same ordinal preferences.

Proof. Suppose U1 and U2 represent difference preference orderings. Then there exist x and y such
that U1(x) > U1(y) but U2(x) < U2(y). Then (x, y) ∈ A1(y, y) but (x, y) /∈ A2(y, y). Q.E.D.

The following proposition shows the equivalence of the Yaari definition and the definition 4.2
(which was introduced by Kihlstrom and Mirman [17]). Recall that the certainty equivalent of a
gamble (z1, z2) is the certain payoff z which yields the same expected utility as the gamble. Note
that in the Yaari framework the certainty equivalent for a particular gamble (z1, z2) is the point
(z, z) on the frontier of the acceptance set A(z1, z2).

Proposition 4.11 Suppose U1 and U2 represent the preference �. U1 is at least as risk averse as
U2 (in Kihlstrom and Mirman’s sense) if and only if U1Y U2 (risk aversion in Yaari’s sense).

Proof. First suppose U1 is at least as risk averse as U2, and suppose (y1, y2) ∈ A1(z, z).
Then k(qU2(y1) + (1− q)U2(y2)) ≥ qk(U2(y1)) + (1− q)k(U2(y2)) ≥ k(U2(z)).
Since k is monotonically increasing this inequality implies (y1, y2) ∈ A2(z, z).
Now suppose U1Y U2. Then, by Proposition 4.10, U1 and U2 represent the same preferences, hence
U1 = k ◦ U2, k

′ > 0. Suppose k is not concave over the range of values taken by U2. Then there
exist y1 and y2 such that k(qU2(y1) + (1 − q)U2(y2)) < qk(U2(y1)) + (1 − q)k(U2(y2)). Let z be the
certainty equivalent to (y1, y2) for U1. Then (y1, y2) ∈ A1(z, z). However, k(U2(z)) = qk(U2(y1)) +
(1− q)k(U2(y2)) > k(qU2(y1)+(1− q)U2(y2)), which implies that (y1, y2) /∈ A2(z, z), a contradiction.
Q.E.D.

4.2 Risk independence and multi-attribute utility functions [16]

For multi-attribute utility functions, we can define conditional risk aversion functions as the same likes
of the Arrow-Pratt risk aversion r(x). More specifically, consider the utility function U(x1, ..., xn)
for attributes X = X1 ×X2 × ...×Xn. Let’s denote X1 × ...×Xi−1 ×Xi+1 × ...×Xn as Xi.

Definition 4.12 The conditional risk aversion for Xi, which is denoted by ri(x), is defined by

ri(x) = −U
′′
i (x)
U ′i(x)

, (4.1)

where U ′i(x) and U ′′i (x) are the first and second partial derivatives of U with respect to xi. We have
assumed that U is increasing in each Xi and the first and second partial derivatives exist and are
continuous.

Definition 4.13 Xi is risk independent of Xi if ri(x) does not depend on xi.
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In other words, Xi is risk independent of other attributes if the riskiness (as measured by ri) of
lotteries involving only uncertain amounts of Xi does not depend on the fixed amounts of the other
attributes. That is, if all of the risk is associated with only one attribute and the other attributes are
all fixed, the decision-maker’s attitudes toward the risk will depend only on that attribute involving
the risk.

Definition 4.14 Let xi represent any amount of Xi and let x0
i

be a specific amount. Then we can
define the conditional utility function for Xi given xi = x0

i
to mean any positive linear transformation

of U(xi, x0
i
).

Lemma 4.15 If Xi is risk independent of Xi, then

U(xi, xi) = f(xi)U(xi, x0
i
) + g(xi),

where f(xi) > 0.

Proof. Given ri(xi, xi) = ri(xi, x0
i
), it follows from equation (4.1) that

∂
∂xi

[logU ′i(xi, xi)] = ∂
∂xi

[logU ′i(xi, x
0
i
)], so by partial integration and exponentiation,

U ′i(xi, xi)e
a(xi) = U ′i(xi, x

0
i
)eb, where a(xi) and b are integration constants.

Integrating again, U(xi, xi)e
a(xi) + c(xi) = U(xi, x0

i
)eb + d.

After arranging, and putting f(xi) = eb−a(xi) and g(xi) = [d− c(xi)]× e−a(xi), we obtain the desired
result. Q.E.D.

The lemma becomes almost obvious when we consider that ri(x) specifies the conditional utility
function for Xi uniquely up to positive transformations and that ri(x) does not depend on xi.

4.2.1 Utility functions and risk independence

In this section we derive the functional form of a utility function with two attributes given that each
attribute is risk independent of the other.

Theorem 4.16 Assume that X is risk independent of Y and Y is risk independent of X. Let U(x, y)
be the utility function for attributes X and Y , and U is increasing, twice continuously differentiable
in each attribute then U(x, y) can be expressed by

U(x, y) = U(x, y0) + U(x0, y) + kU(x, y0)U(x0, y),

where k is an empirically evaluated constant and U(x, y0) and U(x0, y) are consistently scaled con-
ditional utility functions.

Proof. For reference, let us define the origin of U(x, y) by U(x0, y0) = 0. Since X is risk independent
of Y , from Lemma 4.15, we know U(x, y) = f1(y)U(x, y0) + g1(y) (?).
Similarly, Y is risk independent of X, so U(x, y) = f2(x)U(x0, y) + g2(x) (??).
Evaluating (?) at x = x0 gives U(x0, y) = g1(y) and (??) at y = y0 gives U(x, y0) = g2(x).
Substituting the above equations back into (?) and (??) correspondingly, we obtain:
f1(y)U(x, y0) + U(x0, y) = f2(x)U(x0, y) + U(x, y0),
which, after rearranging, is

f1(y)− 1
U(x0, y)

=
f2(x)− 1
U(x, y0)

, x 6= x0, y 6= y0.
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In the above equation, a function of x is equal to a function of y; therefore, they both must equal a
constant. We have

f2(x) = kU(x, y0) + 1.

Substituting f2(x) = kU(x, y0) + 1, U(x, y0) = g2(x) into (??), gives
U(x, y) = U(x, y0) + U(x0, y) + kU(x, y0)U(x0, y). Q.E.D.

The above theorem simplifies the assessment of U(x, y) provided the requisite of risk independent
assumptions hold. The assessment of two attribute utility function is reduced to assessing two one-
attribute conditional utility functions.

4.2.2 Conditional risk premium

Consider the lottery represented by (x̃i, xi), where ∼ represents a random outcome, and let pi(xi)
represent the probability density function describing this outcome.

Definition 4.17 The conditional certainty equivalent for x̃i given xi is defined as the amount of Xi,
call it x̂i, such that the decision maker is indifferent between (x̂i, xi) and (x̃i, xi). The conditional
risk premium πi for this lottery is defined as the amount such that the decision maker is indifferent
between (xi − πi, xi) and (x̃i, xi), where xi is the expected value of x̃i.

It should be clear that πi = xi − x̂i. In general, there is no reason why the conditional certainty
equivalent and conditional risk premium for x̃i would not depend on xi. However, from Lemma
4.15, it follows that when Xi is risk independent of Xi, the conditional risk premium and conditional
certainty equivalent for x̃i will not depend on xi.
To be specific, consider the lottery (x̃, ỹ), where we have verified that X and Y are risk independent
of each other. We can now calculate the expected utility of (x̃, ỹ) using Theorem 4.16, to find
E[U(x̃, ỹ)] =

∫
x

∫
y

[U(x, y0) + U(x0, y) + kU(x, y0)U(x0, y)]p(x, y)dxdy =

= E[U(x̃, y0)] + E[U(x0, ỹ)] + kE[U(x̃, y0)U(x0, ỹ)],
where p(x, y) is the joint probability density function for (x̃, ỹ).
When X and Y are probabilistically independent, the above equation becomes
E[U(x̃, ỹ)] = E[U(x̃, y0)] + E[U(x0, ỹ)] + kE[U(x̃, y0)]E[U(x0, ỹ)].
But since X and Y are risk independent, we can reduce it to
E[U(x̃, ỹ)] = U(x̂, y0) + U(x0, ŷ) + kU(x̂, y0)U(x0, ŷ),
where x̂ and ŷ are respectively the conditional certainty equivalents for x̃ and ỹ.
It follows from here that

E[U(x̃, ỹ)] = U(x̂, ŷ) = U(x− πx, y − πy),

where πx and πy are conditional risk premia.

4.3 A matrix measure (extension of Pratt measure of local risk aversion) [7]

4.3.1 Multivariate risk premia

Let the risk faced by an individual be denoted by Z, a random vector taking values in En, the
n-dimensional Euclidean space. An element x = (x1, ..., xn) is a commodity vector, while U is the
von Neumann-Morgenstern utility function consistent with the individual’s preferences.
We assume that U is strictly increasing in each commodity and that EU(x+ Z) is finite.
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Definition 4.18 A family of risk premium functions π(x;Z): For a given risk Z a vector π =
(π1, ..., πn)′ ∈ En is assigned to each commodity vector x. If E(Z) = 0, the vector π must satisfy

U(x− π) = EU(x+ Z). (4.2)

Pratt [28] noted that π is unique in the univariate case; in the multivariate case a vector π exists which
satisfies equation (4.2) but uniqueness does not hold. A simple example of this is U(x1, x2) = x1x2,
where equation (4.2) is satisfied if π1π2−π1x2−π2x1 = σ12. Clearly, additivity of u and the covariance
structure of Z are of critical concern when examining risk premia in the multivariate setting.

4.3.2 Multivariate absolute risk aversion locally

Definition 4.19 As we have seen the univariate absolute risk aversion, in an analogous way we can
extend the result. The absolute risk aversion matrix can be defined as R = [−Uij/Ui].

Consider a Taylor series expansion of the function on each side of equation (4.2). First, for Uij(x) =
∂2U(x)/∂xi∂xj continuous we obtain

U(x− π) = U(x)−
n∑
i=1

πiUi(x) +
1
2

n∑
i,j=1

πiπjUij(x− θπ) (4.3)

for some 0 ≤ θ ≤ 1. Second, if A = varZ = [σij ] exists

EU(x+ Z) = E[U(x) +
n∑
i=1

ZiUi(x) + 1
2

n∑
i,j=1

ZiZjUij(x) +
n∑

i,j,k=1

O(ZiZjZk)]

EU(x+ Z) = U(x) +
1
2

n∑
i,j=1

σijUij(x) +O(trA), (4.4)

where trA =
∑n

i=1 σii. By substituting (4.3) and (4.4) into equation (4.2), we have the approximate
solution

u′π =
n∑
i=1

πiUi(x) =
1
2

n∑
i,j=1

σijUij(x) = −1
2
trUA, (4.5)

where U = [Uij(x)] is the n × n Hessian matrix and u = (Ui(x)) is an n-vector. This equation
restricts π to lie in an n-dimensional hyperplane.
Let’s denote π̂0 as a particular approximate risk premium vector. It has the form π̂ = −1

2u
′−trUA,

where for any m× n matrix A, the n×m matrix A− is its generalized inverse.
Therefore, π̂0

i = −1
2

∑
j
U−1
i Uijσij , that is π̂0 = 1

2dgRA, where

R = [rij ] = [−Uij
Ui

] = [diagu]−1U.

(For any n × n matrix B, dgB is the n-vector of the main diagonal elements (bii), while for any
n-vector c, diagc is the n× n diagonal matrix with (i, i)th element ci.)
It follows from Theorem 2.4.1 of Rao and Mitra [32] for the general representation of a generalized
inverse that all approximate risk premium vectors have the form
π̂ = π̂0− 1

2atrUA+ 1
2a
′u(U−1

i U′iAi), where a is an arbitrary n-vector and Ui,Ai are the i-th columns
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of U and A.
Consider risk Z with positive variance on only one variable, say Zi. If the marginal risk premia πj are
to be zero for all marginal variables Zj , j 6= i and equal to the Arrow-Pratt quantity −1

2(Uii/Ui)σ2
i

for i = j, then π̂ = π̂0. Therefore, it appears appropriate to call R = [−Uij/Ui] the absolute risk
aversion matrix.

Example 4.20 Consider the following family of utility functions with constants θ1 and θ2: U(x1, x2) =
−θ1[e−x1 + e−x

2
] − θ2e−x1−x2 . One can compute rii(x) = 1 and rij(x) = θ2/(θ1exj + θ2) for i 6= j.

Suppose the current fortune is (µ1, µ2)′ and a gamble X is available which will leave the fortune at
a normally distributed random bivariate level with mean vector (µ1, µ2)′ and covariance matrix A.
Then in the special case θ1 = θ2 = 1,

π̂0 =
1
2

(σ11 + σ12/(eµ2 + 1), σ22 + σ12/(eµ1 + 1))′.

The approximate risk premium depends on the present fortune, just as the actual premium does.

Lemma 4.21 The system of partial differential equations, fj(x) = a(j)(xj), j = 1, .., n, has the
general solution f(x) =

∑n
j=1

∫
a(j)(xj)dxj + c, where c is an arbitrary constant.

Theorem 4.22 The absolute risk aversion matrix R is diagonal if and only if the utility function
is additive, U(x) =

∑n
j=1 h

(j)(xj). If R is diagonal, the commodities are mutually risk independent.

Proof. Sufficiency is immediate. To show necessity, suppose i 6= j. Then rij(x) = 0 implies
∂ logUi(x)/∂xj = 0 and, hence, Ui(x), and, consequently, Uii(x) is not a function of xj for i 6= j.
Therefore, the commodities are mutually risk independent and applying Lemma 4.21 we obtain that
U is additive. Q.E.D.

4.3.3 Positive risk premium

In this section we examine the relationship between concavity of the multivariate utility function
and positivity of a risk premium vector, especially in its approximate form.

Theorem 4.23 Let Z be an n-dimensional random vector with expectation EZ = 0. If there exists
a nonnegative risk premium vector π for all two point gambles Z, then U is concave. Let U be a
concave utility function on En. Then there exists a non-negative n-vector π such that equation (4.2)
is satisfied.

Proof. Let π be a nonnegative risk premium vector with respect to a two point gamble Z. Since U
is a utility function, U(x−π) ≤ U(x) whenever π is nonnegative. But by definition of π, U(x−π) =
EU(x+Z). Therefore, EU(x+Z) ≤ U(x), which, since Z is an arbitrary two point gamble, guarantees
that U is concave. The proof of the second statement follows easily by using the continuity assured
by concavity on considering π = tπ0 for varying t > 0 and any fixed nonnegative π0 6= 0. Q.E.D.

Theorem 4.24 If there is any approximate risk premium vector which is nonnegative regardless of
the risk, then U is concave. If U is concave, there is a positive approximate risk premium vector.
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Proof. If there is any risk premium vector π which is nonnegative regardless if the risk given by A
then for all A, by equation (4.5), 0 < u′π = 1

2 trUA. In particular it holds for all A of the rank one
form tt′. Therefore, 0 < −1

2 trUtt
′ = 1

2 t
′Ut for all t 6= 0. Then the Hessian matrix U is negative

definite, hence U is concave.
Conversely, if U is concave, then U is negative definite. Any A may be written in its spectral
decomposition form as

∑r
i=1 λipip

′
i where the rank of A is r ≤ n and λi > 0, i = 1, .., r. Then

trUA =
∑r

i=1 λitrUpip
′
i =

∑r
i=1 λipiUpi < 0. Hence, u′π > 0 and so π may be chosen to be

positive. Q.E.D.

4.3.4 Constant and proportional multivariate risk aversion

Theorem 4.25 The absolute risk aversion matrix R does not depend on the fortune x if and only
if the utility function U is equivalent to

U(x) =
n∑
i=1

[αixiβiexp(−µixi)] + exp(−
n∑
i=1

γixi), (4.6)

where only one of the real coefficient αi, βi, and γi can be nonzero for each i, i = 1, .., n.

For the proof, see [7, page 900]. Moreover, we can verify that a utility function of the form (4.6)
provides risk premia which are constant over x not only locally, but also globally. Also the approxi-
mate risk premia will equal the actual risk premia if and only if the risk Z has a multivariate normal
distribution.

Definition 4.26 We will say that an individual has proportional multivariate local risk aversion if
xjr

ij(x) does not depend on x for i, j = 1, ..., n and will denote by P the proportional risk aversion
matrix, [xjrij(x)].

Theorem 4.27 Let x > 0. The proportional risk aversion matrix P is constant if and only if the
utility function U is equivalent to

U(x) =
∑
i/∈I

aix
1−rii
i +

∑
i∈I

bi log xi,

where I = {i : rii = 1} and ai, bi are positive real numbers.

For the proof, see [7, page 902].

4.4 Extension of the Arrow measure of risk aversion [23]

In this part, we present the generalization of Arrow’s univariate gamble to the multivariate case. Even
for the same preference ordering, the multivariate risk premium is not unique, which complicates
the comparison of the risk premia of different individuals. In an analogous way to Arrow’s, the
probability premium is introduced. The advantage of the probability premium approach is that it
provides a unique solution and, therefore, an unambiguous criterion for the comparison of the risk
aversion.
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Definition 4.28 A single vector risk z is defined as

z =
{
h with probability p
−h with probability 1− p

where h′ = (h1, .., hn) ∈ Rn is some vector.

We assume that an individual with initial consumption x and with twice continuously differen-
tiable utility function U(x) (assumed to be increasing in each argument) is confronted with a single
vector z. The vector h can be chosen as long as the following inequality holds:

U(x+ h) > U(x) > U(x− h). (4.7)

Condition (4.7) ensures that receiving vector h is preferred to remaining with the initial x, which is
preferred to losing the vector h. Due to Jensen’s inequality, any risk averter will reject the gamble
z if p = 1/2, i.e., if z is a fair gamble. As in Arrow’s analysis in the univariate case, we can find
probability p which the individual is indifferent between receiving the bet z and remaining with the
initial wealth x.

U(x) = pU(x+ h) + (1− p)U(x− h). (4.8)

If the individual is risk averse, then p > 1
2 .

The following theorem is a multivariate generalization of the univariate result of Arrow. The theorem
proves the relationship between the probability “premium”(given by Arrow, Proposition 3.3) and the
concept of being more risk averse.

Theorem 4.29 Let U1 and U2 be two utility functions, where U1 is a monotonic transformation of
U2. Let h be some single vector risk and p1, p2 be probabilities satisfying equation (4.8) associated
with U1 and U2. The following two conditions are equivalent:

• p1 ≥ p2 for every x and every h, satisfying the inequalities in (4.7).

• U1 is more risk averse than U2 according to Kihlstrom and Mirman’s definition.

Therefore, the larger p the more risk averse is the individual.

For the proof, see [23, page 894].

Relation to the work of Duncan
The gamble defined in this section is a special case of the general risk introduced by Duncan, just
as in the univariate case Arrow’s gamble is a special case of the general risk introduced by Pratt.
However, while in the univariate case both the Arrow’s premium defined as probability (in equation
4.8) and Pratt’s premia (defined in equation 3.10 or Definition 3.12) depend solely on the absolute
risk aversion, the relationship between Duncan’s result and those of this section is not so obvious.

Theorem 4.30 Let U1 and U2 be two utility functions representing the same preferences. Let z be
some risk and π1, π2 be the risk premia, such that U(x+ Ez − π) = EU(x+ z), associated with the
risk, corresponding to U1 and U2, respectively. The following two conditions are equivalent:

• U1 is more risk averse than U2 according to Kihlstrom and Mirman’s definition.

• U1(x− π2) ≥ U1(x− π1), for all x and all risks z.

For the proof, see [23, page 896].
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4.5 Notes and comments about risk premium [26]

Utility is assumed to be twice continuously differentiable and monotonically increasing all over.
πU (x, z̃) is not uniquely determined from equation U(x + Ez̃ − π) = E{U(x + z̃)}. Using the fact
that the solution to (3.10) has n− 1 degrees of freedom, we can introduce another way of comparing
risk premia.

Definition 4.31 π1 is higher than π2, π1 � π2, if π1
i > π2

i , whenever π1
j = π2

j , for the n− 1 values
i 6= j. π1 is equivalent to π2, π1 ∼ π2, if π1

i = π2
i whenever π1

j = π2
j for all i 6= j.

Proposition 4.32 π1 � π2 if and only if a2 > a1 and π1 ∼ π2 if and only if a1 = a2, where
πi = πU (x, z̃i) and ai = E{U(x+ z̃i)}

The proof is a direct outcome of the definition of the relations “∼”and “�”and of the monotonicity
of U .

Proposition 4.33 For small risks, π1 � π2 if and only if∑
Uk(π1

k − π2
k) > 0,

and π1 ∼ π2 if and only if
∑
Uk(π1

k−π2
k) = 0, where πik is the k-th component of πi, Uk is the partial

derivative of Uwith respect to xk.

Proof. By equation (3.10), πi is a solution of ai = U(x − πi). For small risks U(x − πi) ≈
U(x)−

∑
Ukπ

i
k and therefore a2 − a1 =

∑
Uk(π1

k − π2
k). By applying Proposition 4.32, the proof is

complete. Q.E.D.

Let’s restrict to the same preference ordering.

Proposition 4.34 Suppose U and V are two utility functions defined on the same preference field,
then πV � πU if and only if V is more risk averse (in KM’s sense) than U. πV ∼ πU if and only if
V is a linear transformation of U.

Proof. Since U and V are defined on the same preference field then some h exists such that
V = h◦U, h′ > 0. According to KM’s definition, V is more risk averse than U if h is strictly concave,
i.e., h′′ < 0. By definition U(x − πU ) = E{U(x + z̃)} and V (x − πV ) = E{V (x + z̃)} but since
V = h◦U , U(x−πV ) = h−1(E{V (x+ z̃)}). Due to Jensen’s inequality, Eỹ < h−1(Eh(ỹ)) if and only
if h is strictly concave. Using Proposition 4.32, we can see that πV � πU if and only if V is more risk
averse (in KM’s sense) than U . Again using Proposition 4.32 and the fact that Eỹ = h−1(Eh(ỹ)) if
and only if h is linear, we can prove the other part. Q.E.D.

Proposition 4.35 Suppose U and V are two utility functions defined on the same preference field,
i.e., V = h ◦ U, h′ > 0, then, for small risks, πV � πU if and only if

∑
Uk(πV k − πUk) > 0 and

πV ∼ πU if and only if
∑
UK(πV k − πUk) = 0.

Proof. For small risks, U(x − πU ) ≈ U(x) −
∑
UkπUk and also EU(x + z̃) ≈ U(x) + 1

2E(z̃′HU z̃),
where HU is the hessian matrix of U. From these equations , we can derive

∑
UkπUk = −1

2E(z̃′HU z̃),
and similarly

∑
VkπV k = −1

2E(z̃′HV z̃).
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Since Vk = h′Uk and Vrs = h′Urs + h′′UrUs, we have∑
VkπV k = h′

∑
UkπV k = −1

2h
′E(z̃′HU z̃)− 1

2h
′′E(z̃′GU z̃), where GU = αα′, and α′ is the vector of

the n partial derivatives of U .
Dividing the equation by h′ and simplifying we get:∑

Uk(πV k − πUk) = −1
2
h′′

h′
E(z̃′GU z̃).

Since GU is a positive semi-definite matrix, then E(z̃′GU z̃) is always positive. Note also that h′′ = 0
if and only if h is linear. Q.E.D.

The last two propositions suggest −h′′/h′ as a relative index of risk aversion with many com-
modities.

Proposition 4.36 Suppose V1 and V2 are utility functions defined on the same preference field as
U, i.e., V1 = h1 ◦ U, h′1 > 0 and V2 = h2 ◦ U, h′2 > 0. V1 is more risk averse than V2 (in KM’s
sense) if and only of r1 > r2 where ri = −h′′i /h′i.

Proof. Since V1 and V2 are defined on the same preference field, then some T exists such that
V1 = T ◦V2, T

′ > 0. Obviously T = h1 ◦h−1
2 . But T ′ = h′1/h

′
2, and T ′′ = (h′′1h′2−h′′2h′1)/(h′2)2 =

(r2 − r1)(h′1/h′2), or r1 − r2 = −(T ′′/T ′). So r1 > r2 if and only if T is strictly concave. Q.E.D.

4.6 Risk aversion using indirect utility [15]

Let ψ(y, p1, .., pn−1) be the indirect utility function, with y = Y/pn, pi = Pi/pn, i = 1, .., n− 1, where
Y denotes money income and Pi is the money price of the i-th commodity. Let z be an n-dimensional
random vector, where we will denote z1 is the deviation of y from an arbitrary value y0, zi+1 is the
random deviation of pi from an arbitrary value p0

i and in general zi and zj , i 6= j, i, j = 1, .., n need
not be independent. Let z̃ denote the joint probability distribution of z.

Definition 4.37 (Risk premium by Karni) Let the risk premium function, π(y0, p0
1, ..., p

0
n−1, z̃) be

defined as the income compensation such that the decision maker is indifferent between receiving a
combined income and relative risk z̃, and a non random income and relative price vector:

ψ(y0 + E{z1} − π, p0
1 + E{z2}, .., p0

n−1 + E{zn}) = E{ψ(y0 + z1, p
0
1 + z2, .., p

0
n−1 + zn)}. (4.9)

We will confine our discussion to the case where the expectation on the right-hand side of (4.9) exists
and is finite. The existence and uniqueness of π follow from the fact that ψ is a continuous and
decreasing function, which for any given income y and any positive relative price vector (p1, ..., pn−1)
ranges over all possible values of ψ.
From (4.9), it follows that for any n-dimensional real vector (µ1, .., µn) = µ,

π(y0, p0
1, ..., p

0
n−1, z̃) = π(y0 + µ1, p

0
1 + µ2, ..., p

0
n−1 + µn, z̃

′),

where z̃′ is the joint probability distribution of z − µ. Therefore, without loss of generality, we can
consider neutral risk, E{z} = 0.
From now on, in this section, we will denote z1 the random deviation of y from its mean value y, and
zi+1 the random variation of pi from its mean value pi, i = 1, ..., n− 1. Also, p will denote the n− 1
dimensional vector (p1, ..., pn−1), p = (p1, ..., pn−1) and z̃ denote the joint probability distribution of
z = (z1, .., zn).
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4.6.1 Local risk aversion

We would like to obtain measures of decision maker’s aversion to small risks, such that Pr{(z1, ..., zn) ∈
B} = 1, where B is an n-dimensional ball of center (y, p1, ..., pn−1) with radius ε. Let ψ1 and ψij
denote the first and second partial derivatives of ψ with respect to its i and j arguments respectively.
Consider the Taylor expansions of the functions on both sides of (4.9):
ψ(y − π, p) = ψ(y, p)− πψ1(y, p) +O(π2) and, if var[z] = V = [σij ] exists,
E{ψ[(y, p) + z]} = ψ(y, p) + 1

2

∑∑
i,j
σijψij(y, p) + o(trV ),

where trV =
∑n

i=1 σii. Setting these expressions equal to one another, solving for π, we obtain an
approximate solution:

π[(y, p), z̃] ≈ −1
2

n∑
i=1

n∑
j=1

σij
ψij
ψ1

(y, p). (4.10)

Let

R = [rij ] =
[
−ψij
ψ1

]
. (4.11)

R is the matrix measure of local risk aversion. The diagonal elements of R, −ψjj
ψ1

, are proportional
to the risk premium per unit of variance σjj when zi = 0 with probability 1 for all i 6= j. The
off-diagonal elements, −ψij

ψ1
with i 6= j, have the interpretation of the excess of risk premium, when

zi, zj are random and zk = 0 (k 6= i, k 6= j) are non random, per unit of covariance (σij). The
following theorem points out a property of R in relation to π.

Theorem 4.38 Let z = (z1, .., zn) be a random vector in z1 ≥ −y, zi > −pi−1 (i = 2, .., n), with
expectations E{z} = 0. Let ψ(y, p), y ≥ 0, p > 0, be an indirect utility function, and let R be given
by (4.11).Then the following conditions are equivalent:

a) R is positive semi-definite [positive definite] for all y ≥ 0, p > 0.

b) π[(y, p), z̃] ≥ [>]0 for all y ≥ 0, p > 0 and all z̃ with mean (y, p).

c) ψ(y, p) is [strictly] concave.

Proof. To show that a ⇔ c we note that ψ is [strictly] concave if and only if its Hessian H is
negative [definite] semi definite for all y ≥ 0, p > 0. But R = −H/ψ1 and ψ1 > 0 by the properties of
the indirect utility function. Hence, H is negative [definite] semi-definite, if and only if R is positive
[definite] semi-definite.
To show that b⇒ c, by the properties of the indirect utility function ψ(y− π, p) ≤ [<]ψ(y, π) for all
π ≥ [>]0. But, by definition, ψ(y−π, p) = E{ψ[(y, p) + z]}. Therefore, E{ψ[(y, p) + z]} ≤ [<]ψ(y, p)
for any z̃, with mean (y, p). Hence, by Jensen’s inequality ψ is [strictly] concave.
Finally, c⇒ b follows directly from [strict] concavity of ψ and Jensen’s inequality. Q.E.D.

4.6.2 Comparative risk aversion

Let χ and ψ be indirect utility functions with the same domain. Comparison of global attitudes
toward multivariate risks, using the comparison of risk premia, is directional dependent in general.
In the following definition, we are using the risk premium introduced by Karni (equation 4.9).
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Definition 4.39 An indirect utility function χ is globally [strictly] more risk averse than an indirect
utility function ψ if and only if, πχ[(y, p), z̃] ≥ [>]πψ[(y, p), z̃] for all y ≥ 0, p ∈ Rn−1

++ and every
joint probability distribution z̃ with mean (y, p) of n-dimensional vectors z such that E{z} = 0, and
z1 ≥ −y, zi > −pi−1(i = 2, .., n).

The local interpretation is obtained if z̃ represents small risks.

In the local case, the relationship between Rχ,Rψ, the respective measures of local risk aversion,
and corresponding risk premia is given in the following theorem.

Theorem 4.40 Let Rχ(y, p),Rψ(y, p), πχ[(y, p), z̃] and πψ[(y, p), z̃] be respectively, the matrix mea-
sures of local risk aversion and the risk premium (by Karni) functions corresponding to the indi-
rect utility functions χ and ψ. Let z be an n-dimensional small random vector with joint prob-
ability distribution z̃, with z1 ≥ −y0, zi > −p0

i−1, i = 2, ..., n and expectation E{z} = 0. Then
πχ[(y0, p0), z̃] ≥ [>]πψ[(y0, p0), z̃], for y0 ≥ 0, p0 > 0 and z̃ with mean (y0, p0) if and only if
Rχ(y0, p0)−Rψ(y0, p0) is positive [definite] semi definite.

Outline of the proof. From (4.10) and (4.11),

πχ[(y0, p0), z̃]− πψ[(y0, p0), z̃] = 1
2

n∑
i=1

n∑
j=1

σij [r
χ
ij(y

0, p0)− rψij(y0, p0)] =

= 1
2 tr{V [Rχ(y0, p0) −Rψ(y0, p0)]} ≥ [>]0, where the last inequality follows from the fact that the

covariance matrix V is a real symmetric positive [definite] semi-definite matrix.
To prove necessity, choose V such that the correlation coefficients of (zi, zj) are all equal to one,
which leads to contradiction. Q.E.D.

The following theorem states that if the local property pointed out in the above theorem holds
everywhere, then χ is globally more risk averse than ψ using the risk premium definition by Karni.
Since both utility functions are continuous and monotonic increasing in y, we define the p-inverse as
follows: t = ψ(y, p), y = ψ−1(t, p).

Theorem 4.41 Let Rχ(y, p),Rψ(y, p), πχ[(y, p), z̃] and πψ[(y, p), z̃] be, respectively, the matrix mea-
sures of local risk aversion and the risk premium (by Karni) functions corresponding to the indirect
utility functions χ and ψ. Let z be an n-dimensional random vector with a joint probability dis-
tribution z̃, of mean (y0, p0 = (p0

1, .., p
0
n−1)) on z1 ≥ −y0, zi > −p0

i−1, i = 2, ..., n, with expectation
E{z} = 0. Then the following conditions are equivalent :

• χ(ψ−1(t, p), p) = φ(t, p) is [strictly] concave.

• Rχ(y, p)−Rψ(y, p) is positive [definite] semi-definite for all y ≥ 0, p > 0.

• πχ[(y, p), z̃] ≥ [>]πψ[(y, p), z̃] for all y ≥ 0, p > 0 and all n-dimensional joint probability distri-
butions z̃ with mean (y,p).

For the proof, see [15, page 1396].
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4.7 Alternative representations and interpretations of the relative risk aversion
[11]

U is assumed cardinal, twice continuously differentiable, strongly increasing and strongly quasi-
concave on a convex open set X ⊂ Rn+. By the strong quasi-concavity of U , we mean: (−1)i|UBxx|i >
0, i = 1, .., n, where |UBxx|i is the principal minor of order (i + 1) of the bordered Hessian matrix
of U . Also, strongly increasing means Ux = ∂U/∂x >> 0. The following Lagrangian function
corresponds to utility maximization under given positive prices p and income y, using normalized
prices q = (1/y)p:

L = U(x)− µ(qtx− 1).

The conditions for an optimum are given by

Ux = µq =
µ

y
p; qtx = 1, (4.12)

where µ ∈ R++, Ux = (U1, ..., Un)t = ∂U/∂x. Under certainty, the consumer is assumed to maximize
the expected utility.
Using results on duality, preferences under certainty may be represented by the following five alter-
natives:

(i) u = U(x), direct utility function;

(ii) u = U [x(p, y)] = V (p, y) indirect homogeneous utility function;

(iii) u = V ( 1
yp, 1) = W ( 1

yp) = W (q), indirect utility function;

(iv) y = E(p, u), expenditure function;

(v) 1 = E( 1
yp, u) = F (q, u), unit cost price frontier.

The assumptions on U imply the following restrictions on the other functions:

• (ii) V is derived from U by substitution of demand function x(p, y) which is the solution to
(4.12). V is strongly increasing in y, strongly decreasing and strongly quasi convex in p, and
is zero-homogeneous in (p, y) ∈ C ⊂ Rn+1

+ , where C is an open convex cone.

• (iii) W is strongly decreasing and strongly quasi-convex on an open convex set Q(X) ⊂ Rn+.
W is derived by using the zero-homogeneity of V .

• (iv) E is derived by using the implicit function theorem on V . E is positively homogeneous
and concave in p, and strongly increasing and twice differentiable in (p, u) ∈ Cn × I, where
Cn(C ∩Rn) is an open convex cone, and I ⊂ R an open interval.

The Lagrangian µ is positive and interpreted as the utility valuation of income, since µ = yVy,
where Vy is the marginal utility of income. The relative risk aversion r(p, y) = −yVyy(y)

Vy(y)
is zero

homogeneous in (p, y), so that it is a unit-free measure of local aversion to risk.
The following theorem represents alternative derivations of r, corresponding to alternative functional
representations of preferences.
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Theorem 4.42 If x, p, y and u satisfy the optimality condition (4.12), then the following alternative
representations of relative risk aversion r are equivalent:

(1) r(x) = Utxx|Uxx|∣∣∣∣∣∣ 0 U tx
Ux Uxx

∣∣∣∣∣∣
; if |Uxx| 6= 0 then r(x) = −U txx/U txU−1

xx Ux,

where Uxx = ∂Ux/∂x = {Uij(x)} is the Hessian matrix of U .

(2) r(p, y) = −∂ log Vy(y)
∂ log y = 1− ∂ logµ(p,y)

∂ log y = 2 + ptVpp(y)p
V tp p

= 2 + λVλλ(λp,y)
Vλ(λp,y) |λ=1;

(3) r(q) = 2 + λWλλ(λq)
Wλ(λq) |λ=1;

(4) r(p, u) = 1− ∂µ(p,u)
∂u ;

(5) r(q, u) = −∂µ(q,u)
∂u .

For the proof, see [11, p.417]
These alternative expressions for r from equation (1) to (5) have some alternative economic

interpretations.

1. From (2) in Theorem 4.42, −r = ∂ log Vy(y)/∂ log y = ω̂ = 1/φ = y/k, where ω̂ is the elasticity
of marginal utility of income, called by Frisch the “money flexibility”, φ is Thiel’s and k is
Houthakker’s “income flexibility”. These seem to play an important role in demand analysis.

2. From (2) and (3),

2− r =
−λVλλ(λ)
Vλ(λ)

|λ=1 =
−λWλλ(λ)
Wλ(λ)

|λ=1

is seen to be a measure of “price risk aversion”with respect to the proportional variation in all
prices (i.e., movements along the income-consumption path in the X-space) around the point
q0 = (1/y0)p0 (which corresponds to λ = 1), in analogy to the “income risk aversion”r =
−yVyy(y)/Vy(y).

3. From r(p, y) = 1− ∂ log µ(p,y)
∂ log y and the interpretation given to µ, it follows that 1−r = ∂ logµ/∂y

is the elasticity of utility valuation of income with respect to money income y.

4. By (4), 1 − r = ∂µ/∂u is also the change in utility-valued income with respect to utility, as
nominal prices are fixed and utility varies together with money income y.

5. Finally, by (5), −r = ∂µ(q, u)/∂u is the change in utility-valued income with respect to utility,
as the unit-cost frontier F (q, u) = 1 is shifting, with fixed “real”prices q.

Assuming maximization of expected utility Eu, the consumer is averse to all small risks in x, if
and only if the direct utility function is concave at x; by Jensen’s inequality, EU(x + δx) < U(x)
holds for all δx such that Eδx = 0 and x + δx in an open neighborhood of x, if and only if U is
concave at x.

Theorem 4.43 U is concave at x, if and only if r(x) ≥ 0; if r(x) > 0, then U is strictly concave.
(U is defined at the beginning of the section 4.7.)

45



Proof. The assumption of strong quasi-concavity of U implies (−1)n|UBxx| > 0, where UBxx is the
bordered Hessian. Since Uxt x > 0, r is nonnegative iff (−1)n|Uxx| ≥ 0. But if U is concave, then
(−1)n|Uxx| ≥ 0, so r(x) ≥ 0. If U is concave but not strongly concave at x, then |Uxx| = 0 and r = 0.
If U is strongly concave, then r(x) > 0.
When r > 0, U is strongly concave and, therefore, strictly concave, iff Uxx is negative definite, or
equivalently, iff the characteristic roots of Uxx are all negative: 0 > λ1 > ... > λn. By a known
theorem [25], strong quasi-concavity implies that (λ2, ..., λn) < 0. Thus λ1 < 0 is sufficient for strong
concavity. On the other hand, |Uxx| = λ1...λn, and (−1)n|Uxx| > 0 if r > 0. Therefore, λ1 < 0.
Q.E.D.

Theorem 4.44 (i) If W is convex, or V (p, y) is convex in p, then r(q) = r(p, y) ≤ 2

(ii) In general, however, r ≤ 2 is not sufficient for convexity in prices unless n = 1, or preferences
homothetic (monotone transformation of a homogeneous function).

(iii) W and V cannot be concave in prices, unless n = 1 and r ≥ 2.

An economic interpretation of these propositions is:
(i) A necessary condition for risk loving with respect to price fluctuations is that income risk aversion
is not too large.
(ii) This is also sufficient for a single commodity and for homothetic preferences.
(iii) The consumer is not risk averse with respect to all price fluctuations.

Proof of (i). If W is convex, Wqq (or Vpp) is positive semi-definite, and qtWqqq ≥ 0. Since
W t
qq < 0, the second term in equality r(q) = 2 + qtWqqq

W t
qq

is non-positive, and r(q) ≤ 2. (If r < 0, there
is no risk loving with respect to income, as well.) Q.E.D.
For the proof (ii) and (iii), see [11, p.420]

4.8 Constant, increasing and decreasing risk aversion with many commodities
[18]

In this section, we extend the theory of increasing, decreasing and constant absolute and relative risk
aversion to multidimensional utility functions. There are several problems regarding the extension.
Firstly, it is only possible to compare the risk aversion of those utility functions which represent the
same ordinal preferences. In the theory of increasing Arrow-Pratt risk aversion, the risk aversion
of one utility function at a specific wealth level is compared to the risk aversion of the same utility
function at a different wealth level. Generalizing this to multi-dimension, it is necessary to compare
the risk aversion of one utility function at a specific point to the risk aversion of the same utility
function at a different point. This requires ordinal preferences represented by the utility function
are the same at each of the two points. This is done by restricting to homothetic preferences, i.e.
those preferences for which marginal rates of substitution remain constant along the rays through
the origin. The second problem is the ambiguity in term “increasing”.
For each homothetic utility function of many variables to which we would like to apply the theory,
there must be some “base”utility function which can play a role analogous to the linear homogenous
utility functions in the one-dimensional Arrow-Pratt theory. This problem is solved by using the
least concave representation of the ordinal preferences.
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Given p ∈ Rn and x ∈ R+
n , we define the hyperplane H(p, x) = {x : x ∈ Rn, p · x = p · x}.

The hyperplane H(p, x) supports V (x) at x if x ∈ V (x) implies p · x ≥ p · x.
We now let

∑
(x) = {p : H(p, x) supports V (x) at x}. We consider preference orderings � defined

on R+
n with the following properties:

• Continuity. � is continuous if there exists a continuous real valued function u with domain R+
n

which represents � in the sense that u(x) ≥ u(x′) if and only if x � x′.

• Convexity. � is convex if, for all x ∈ R+
n , V (x) = {x : x ∈ R+

n and x � x} is convex.

• Monotonicity. � is monotonic if, whenever xi ≥ xi for all i and xi > xi for some i, then
x = (x1, ..., xn) � (x1, ..., xn) = x.

• Homotheticity. � is homothetic if
∑

(x) =
∑

(λx) for all x ∈ X and λ > 0.

Lemma 4.45 If � is continuous, convex, monotonic and homothetic, x ∼ x′ if and only if λx ∼ λx′
for all x, x′ ∈ X and all λ > 0.

Outline of the Proof. If λx � λx′ when x ∼ x′, it would be possible to show that there is a vector
p ∈

∑
(λx′) which is not in

∑
(x′). Q.E.D.

Let’s call u∗ a least concave representation of � if, whenever u is a concave representation of �,
u = f ◦ u∗ where f is concave and increasing.

Proposition 4.46 If � is continuous, convex, monotonic and homothetic, then there exists a ho-
mogeneous of degree one utility function u∗ which is a least concave representation of �.

Proof. The continuity and monotonicity assumptions imply that for each x ∈ R+
n there exists

t ≥ 0 such that x ∼ (t, ..., t). We let u∗(x) = t. Monotonicity guarantees that x � x′ if and only if
u∗(x) ≥ u∗(x′). Furthermore, Lemma 4.45 implies that u∗ is homogeneous of degree one.
To prove that u∗ is a least concave representation of �, let v be a concave representation of �. Then
v can be written as v = f ◦ u∗ where f is a monotonically increasing function. If u, ũ ∈ u∗(R+

n ),
there exists x ∈ R+

n and λ such that u∗(x) = u and u∗(λx) = ũ. For µ ∈ (0, 1),
f(µu+ (1− µ)ũ) = f(µu∗(x) + (1− µ)u∗(λx)) = f([µ+ (1− µ)λ]u∗(x)) =
= f(u∗([µ+ (1− µ)λ]x)) = f(u∗(µx+ (1− µ)λx)) = v(µx+ (1− µ)λx).
Since v is concave,
v(µx+ (1− µ)λx) ≥ µv(x) + (1− µ)v(λx) = µf(u∗(x)) + (1− µ)f(u∗(λx)) = µf(u) + (1− µ)f(ũ).
Combining the above two, we have that f is concave. Q.E.D.

Notice that when n = 1, u∗ is just a linear function of x and u∗(0) = 0.
If a > 0, the transformation au∗ has the same properties of u∗ mentioned in the above proposition.
However, au∗ + b, where a, b > 0, is a least concave representation of �, but is not homogeneous of
degree one.

Definition 4.47 u is an increasing (decreasing, constant) absolute risk averse representation of �
if u(x) = h(u∗(x)) and h is an increasing (decreasing, constant) absolute risk aversion function of a
single real variable.
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Definition 4.48 u is an increasing (decreasing, constant) relative risk averse representation of �
if u(x) = h(u∗(x)) and h is an increasing (decreasing, constant) relative risk aversion function of a
single real variable.

Notice that when n = 1, so that u∗ is linear with u∗(0) = 0, these definitions coincide with the
Arrow-Pratt definitions. In [35], it was shown that if the derived indirect utility function exhibits
constant relative or absolute risk aversion as a function of income, then the underlying preferences
must be homothetic.

Definition 4.49 Let (p, I) ∈ R+
n+1. The demand correspondence φ(p, I) associated with � is defined

on R+
n+1 by

φ(p, I) = {x : x ∈ R+
n , p · x ≤ I and x � x if p · x ≤ I}.

One well-known property of the demand correspondence of homothetic preferences is that Ix ∈ φ(p, I)
if x ∈ φ(p, 1).
Let U(p, I) = u(φ(p, I)) be the indirect utility function associated with u.

Theorem 4.50 If � is continuous, monotonic, convex and homothetic, and if u is an increasing
(decreasing, constant) relative risk averse representation of �, then U(p, I) is an increasing (decreas-
ing, constant) relative risk averse function of income. Similarly, if u is an increasing (decreasing,
constant) absolute risk averse representation of �, then U(p, I) inherits this property when considered
as a function of I.

Proof. Suppose that u = h ◦ u∗ where h is a constant relative risk averse function. Also let
x ∈ φ(p, 1). Then U(p, I) = h(u∗(Ix)) = h(Iu∗(x)). Since h is a constant relative risk averse func-
tion, U is a constant relative risk averse function in I. The same argument applies to the other cases.
Q.E.D.

Consider a consumer-investor with wealth W that can either be consumed in the present or
saved and invested to yield a random return x̃. If s is the fraction of wealth saved and invested,
there will be sWx̃ available for future consumption while present consumption is W (1 − s). Let’s
denote the consumer-investor’s utility function as u(c1, c2). He will choose s ∈ [0, 1] so as to maximize
Eu((1−s)W, sWx̃). Let’s assume that the optimal choice of s, ŝ(W ), is unique. We will be concerned
with the effect on ŝ(W ) of changes in W . In general, the direction of this effect is ambiguous because
of income and substitution effects are in opposite directions. For the purpose of discussing these
effects and their influence on ŝ(W ), we refer to the case in which x, the return savings, is not
random. When x is certain, the choice depends only on the ordinal preference �, i.e. it is the same
for all u representing �. Let ξ(x) denote the optimal proportion of wealth saved by an individual
whose preferences are � and who faces a certain return x. Kihlstrom-Mirman [17] has shown that the
resulting relationship between x and ξ(x) is critical in determining the influence of risk aversion on
savings. Theorem 4.50 asserts that when the ordinal preferences are such that ξ(x) is an increasing
(decreasing) function of x, then ŝ1(W ) < ŝ2(W ) [>] for all W , if and only if u1 is more risk averse
than u2 in Kihlstrom-Mirman’s sense.
This suggests that ŝ(W ) should increase (decrease) as W increases if u is a decreasing relative risk
aversion function and if � is such that ξ(x) increases (decreases) as x increases; i.e. if � is such that
the substitution effect outweighs (is outweighed by) the income effect.
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Definition 4.51 When u is an homothetic and twice-continuously differentiable representation of
�, the elasticity of substitution, σ, is defined by

σ =
q

r

dr

dq
,

where r is defined implicitly by u1(c1, rc1)/u2(c1, rc1) = q, and where dr/dq is obtained by implicit
differentiation of it.

This elasticity determines the direction of the effect which changes in x have on ξ(x) by deter-
mining the relative size of the above mentioned income and substitution effects. Note that when �
is homothetic, the function defined by u1(c1, rc1)/u2(c1, rc1) = q, relating r, the ratio of c2 to c1, to
q, the marginal rate of substitution, is independent of c1.
In Kihlstrom-Mirman [17] it has been shown that if σ is always greater (less) than one then the sub-
stitution effect of a change in x is always greater (less) than the income effect and ξ(x) is increasing
(decreasing) in x. Also, Kihlstrom-Mirman [17] states that when � is such that σ is greater (less)
than one, ŝ1(W ) < ŝ2(W ) [>] for all W if and only if u1 is more risk averse than u2. We are now
led to conjecture that s(W ) will increase (decrease) with W if u is a decreasing relative risk function
and if � is such that σ is uniformly greater (less) than one. This conjecture is confirmed by the
following theorem.

Theorem 4.52 Suppose that � is continuous, strictly convex, monotonic, and homothetic on R2
+.

Also assume that u is twice continuously differentiable and x̃ is a nontrivial random variable. If u is
an increasing (decreasing) relative risk averse representation of � and if the elasticity of substitution
of � is uniformly greater than one, then ŝ(W ) decreases (increases) with W . If the elasticity of
substitution is less than one, then ŝ(W ) increases (decreases) with W .

Proof. Suppose that u = h ◦ u∗ where h is an increasing relative risk averse function. Suppose
that W1 > W2, and that ŝ(Wi) maximizes
Eh(u∗((1− s)Wi, sWix̃)) = Eh(Wiu

∗((1− s), sx̃)).
If we let u1(c1, c2) = h(Wiu

∗(c1, c2)) and ki(u∗) = h(Wiu
∗) then −u∗k′′i (u∗)

k′i(u
∗) = −u∗Wih

′′(Wiu
∗)

h′(Wiu∗)
.

Since h is an increasing relative risk averse function, W1 > W2 and the above equality implies that
−k′′1 (u∗)
k′1(u∗) > −k′′2 (u∗)

k′2(u∗) for all u∗. Thus k1(u∗) = f(k2(u∗)), where f is strictly concave. Therefore,

u1(c1, c2) = f(u2(c1, c2)).
Since ŝ(Wi) maximizes Eui((1 − s), sx̃), and u1 is more risk averse than u2, the corollary to [17,
Theorem 2] implies that ŝ(W1) < ŝ(W2) [>] if the elasticity of substitution exceeds (is less than)
one. Q.E.D.

5 Some other concepts related to the risk aversion [18]

5.1 First and second order risk aversion [34]

This section defines a new concept of attitude towards risk. For an actuarially fair random variable
ε̃, π(t) is the risk premium the decision maker is willing to pay to avoid tε̃. Since Pratt [28], it has
been known that in expected utility theory, the risk premium, for small t, is proportional to t2 and
to the variance of ε̃. Therefore, it approaches zero faster than t; in other words, for small risks the
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decision maker is almost risk neutral. Let M be a bounded interval in R and let D be the set of
random variables (or lotteries) with outcome in M . For a lottery x̃ ∈ D, let Fx̃(x) = Pr(x̃ ≤ x) be
the cumulative distribution function of x̃. Lotteries with a finite number of outcomes are sometimes
written as vectors of the form (x1, p1;x2, p2; ...;xn, pn) where

∑
pi = 1, and pi ≥ 0,∀pi. Such a

lottery yields xi with probability pi. δx stands for the lottery (x, 1).
On D there exists a complete and a transitive preference relation �. We assume that � is continuous
with respect to the topology of weak convergence, and monotonic with respect to the first order
stochastic dominance (i.e., ∀x, Fx̃(x) ≤ Fỹ(x)⇒ x̃ � ỹ).
V : D → R represents the relation � if V (x̃) ≥ V (ỹ)⇔ x̃ � ỹ. The certainty equivalent of x̃, CE(x̃),
is defined implicitly by δCE(x̃) ∼ x̃. Its existence is guaranteed by the continuity and monotonicity
assumptions, and it can be used as a representation of �.

Definition 5.1 The risk premium of a lottery x̃ is given by π(x̃) = E[x̃] − CE(x̃). The decision
maker is risk averse iff the risk premium π is positive.

When E[x̃] = 0, the risk premium is the amount the decision maker is willing to receive to accept
not participating in the lottery x̃.
Let ε be a random variable such that E[ε̃] = 0 and consider the lottery x+ tε. Its risk premium π is
a function of t, and it is defined by δx−π(t) ∼ x+ tε. Of course, π(0) = 0. Throughout this section we
assume that π is continuously twice differentiable with respect to t around t = 0, except, possibly, at
t = 0, where it may happen that only right and left derivatives exist. We assume, in addition, that
all these derivatives are continuous in x.
If the decision maker is risk averse, then for every non-degenerate ε̃, and for every t 6= 0, δx � x+ tε.
Therefore, it follows that ∂π/∂t|t=0+ ≥ 0 and ∂π/∂t|t=0− ≤ 0.

Definition 5.2 The decision maker’s attitude towards risk at x is of order 1 if for every ε̃ 6= δ0 such
that E[ε̃] = 0, ∂π/∂t|t=0+ 6= 0.
It is of order 2 if for every such ε̃, ∂π/∂t|t=0 = 0, but ∂2π/∂t2|t=0+ 6= 0.

This definition says that the decision maker’s attitude towards risk is of order one if limt→0+ π(t)/t 6=
0, that is, if π(t) is not o(t). The attitude is of order 2, π(t) = o(t) but not o(t2).

Proposition 5.3 Let E[ε̃] > 0. If the decision maker’s attitude towards risk is of order 2, then for
a sufficiently small t > 0, x+ tε̃ � δx. If his attitude towards risk is of order 1 and is negative (i.e.,
∂π/∂t|t=0+ > 0), and if E[ε̃] is small enough, then for a sufficiently small t > 0, δx � x+ tε̃.

Proof. Let ε̃′ = ε̃ − E[ε̃]. Define πt(s) implicitly by δx+tE[ε̃]−πt(s) ∼ x + tE[ε̃] + sε̃′, and define
π∗(t) by δx+π∗(t) ∼ x+ tε̃. Obviously, ∂π∗/∂t = E[ε̃]− ∂πt/∂s|s=t.
By continuity of ∂πt/∂s in s and t it follows that limt→0+ ∂πt/∂s|s=t = ∂π0/∂t|t=0+ .
Hence, ∂π∗/∂t|t=0+ = E[ε̃]− ∂π0/∂t|t=0+ . If the decision maker’s attitude towards risk is of order 2,
then ∂π0/∂t|t=0+ = 0 and ∂π∗/∂t|t=0+ = E[ε̃] > 0.
If his attitude is of order 1 and negative then ∂π0/∂t|t=0+ > 0.
For E[ε̃] < ∂π0/∂t|t=0+ , ∂π∗/∂t|t=0+ < 0. Q.E.D.

Proposition 5.4 Let the decision maker be an expected utility maximizer. At the points where his
utility function is differentiable and U ′′ 6= 0 his attitude towards risk is of order 2, and at the points
where the utility function is not differentiable but has (different) side derivatives, his attitude is of
order 1.

For the proof, see [34, page 118].
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5.2 The duality theory of choice under risk [37]

In this section a new theory of choice under risk is being proposed. It is a theory which is dual to
expected utility theory. The duality theory has the property that utility is linear in wealth, in the
sense that applying an affine transformation to the payment levels of two gambles always leaves the
direction of preference between them unchanged. (Under expected utility, this is true only when the
agent is risk neutral.)
Let V be the set of all random variables defined on some given probability space, with values in the
unit interval.
For each v ∈ V , define the decumulative distribution function (DDF) of v, to be denoted by Gv, by
Gv(t) = Pr{v > t}, 0 ≤ t ≤ 1. Gv is always non-increasing, right-continuous, and satisfies Gv(1) = 0.
For all v ∈ V , the following relationship holds

∫ 1
0 Gv(t)dt = Ev, where Ev stands for the expected

value of v. The values of random variables in V will be interpreted as payments. A preference
relation � is assumed to be defined on V .

Axiom 5.5 Neutrality: Let u and v belong to V , with respective DDF’s Gu and Gv. If Gu = Gv,
then u ∼ v.

We may construct a preference relation among DDF’s by writing G(�)H if and only if, there ex-
ist two elements u and v, of V such that Gu = G,Gv = H, and u � v. Under Axiom 5.5, the
assertions u � v and Gu(�)Gv are equivalent. We assume that the underlying probability space
is “rich”, in the sense that all distributions with supports contained in the unit interval can be
generated from elements of V . Let a family of functions Γ be defined by Γ = {G : [0, 1] →
[0, 1]|G is non-increasing, right continuous, G(1) = 0}. Then the above assumption implies that
G � H is meaningful for every pair of functions, G and H, in Γ.

Axiom 5.6 Complete weak order: � is reflexive, transitive and connected.

Axiom 5.7 Continuity (with respect to L1 - convergence): Let G,G′, H,H ′, belong to Γ; assume
that G � G′. Then, there exists an ε > 0 such that ||G−H|| < ε and ||G′ −H ′|| < ε imply H � H ′,
where || || is the L1 norm, i.e., ||m|| =

∫
|m(t)|dt.

Axiom 5.8 Monotonicity (with respect to first-order stochastic dominance): If Gu(t) ≥ Gv(t) for
all t, 0 ≤ t ≤ 1, then Gu � Gv.

With the above axioms 5.5-5.8, we write down an independence axiom and obtain the result that
preferences are representable by expected utility comparisons.

Axiom 5.9 Independence: If G,G′ and H belong to Γ and α is a real number satisfying 0 ≤ α ≤ 1,
then G � G′ implies αG+ (1− αH) � αG′ + (1− α)H.

If x and p both lie in the unit interval, then [x; p] will stand for a random variable that takes values
x and 0 with probabilities p and 1− p, respectively.

Theorem 5.10 A preference relation � satisfies Axioms 5.5-5.8 and 5.9, if and only if, there exists
a continuous and nondecreasing real function φ, defined on the unit interval, such that, for all u
and v belonging to V, u � v ⇔ Eφ(u) ≥ Eφ(v). Moreover, the function φ, which is unique up to a
positive affine transformation, can be selected in such a way that, for all t satisfying 0 ≤ t ≤ 1, φ(t)
solves the preference equation [1;φ(t)] ∼ [t, 1].
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Proof. Using Fishburn’s theorem (Theorem 2.4), it follows from Axioms 5.6-5.8 that the premises
of Fishburn’s theorem hold, with unit interval acting as the set of consequences and with distribu-
tions representing probability measures. The conclusion, therefore, is that a function φ satisfying
u � v ⇔ Eφ(u) ≥ Eφ(v) exists, uniquely up to a positive affine transformation and, moreover, that
equation [1;φ(t)] ∼ [t, 1] provides the construction of φ. That φ is continuous and nondecreasing
follows directly from Axiom 5.7 and Axiom 5.8, in conjunction with [1;φ(t)] ∼ [t, 1]. Q.E.D.

The duality theory of choice under the risk is obtained when the independence axiom of expected
utility theory (Axiom 5.9) is taken. Instead of independence being postulated for convex combinations
which are formed along the probability axis, it will now be postulated for convex combinations which
are formed along the payment axis.
Let G ∈ Γ, so that G is the DDF of some v ∈ V . Now define a set-valued function, Ĝ, by writing, for
0 ≤ t ≤ 1, Ĝ(t) = {x|G(t) ≤ x ≤ G(t−)}, where G(t−) = lims→t,s<tG(s) for t > 0, and G(0−) = 1.
Ĝ is simply the set-valued function which “fills up”the range of G, to make it coincide with the unit
interval. The values of Ĝ are closed and for each p, 0 ≤ p ≤ 1, there exists some t such that p ∈ Ĝ.
Using Ĝ, we define the (generalized) inverse of G, G−1(p) = min{t|p ∈ Ĝ(t)}.
Note that G−1 belongs to Γ and that, for all G ∈ Γ, (G−1)−1 = G. Furthermore, if G and H belong
to Γ and || || stands for the L1 norm, then ||G−H|| = ||G−1 −H−1||. Apparently, if G is invertible
then G−1 is just the usual inverse function of G.

Definition 5.11 If G and H belong to Γ and if 0 ≤ α ≤ 1, then αG⊕ (1− α)H is the member of Γ
given by

αG⊕ (1− α)H = (αG−1 ⊕ (1− α)H−1)−1.

Axiom 5.12 Dual Independence: If G,G′ and H belong to Γ and α is a real number satisfying
0 ≤ α ≤ 1, then G � G′ implies αG⊕ (1− α)H � αG′ ⊕ (1− α)H.

Theorem 5.13 A preference relation � satisfies Axioms 5.5-5.8 and 5.12, if and only if, there exists
a continuous and non decreasing real function f, defined on the unit interval, such that, for all u and
v belonging to V,

u � v ⇔
∫ 1

0
f(Gu(t))dt ≥

∫ 1

0
f(Gv(t))dt.

Moreover, the function f, which is unique up to a positive affine transformation, can be selected in
such a way that, for all p satisfying 0 ≤ p ≤ 1, f(p) solves the preference equation [1; p] ∼ [f(p); 1].

Proof Define a binary relation �∗ on the family Γ of DDF’s, as follows: G �∗ H if and
only if G−1 � H−1 for all G and H in Γ. Clearly, if u and v are random variables in V , then
u � v ⇔ G−1

u �∗ G−1
v .

Checking Axioms 5.6-5.8, we find that they hold for � if and only if , they hold for �∗.
Furthermore, � satisfies the axiom of dual independence if and only if �∗ satisfies the independence
axiom. Therefore, from Theorem 5.10, � satisfies axioms 5.5-5.8 and 5.12, if and only if, �∗ has the
appropriate expected utility representation.
In other words, � satisfies axioms 5.5-5.8 and 5.12, if and only if, there exists a continuous and
nondecreasing function f , defined on the unit interval, such that
u � v ⇔ −

∫ 1
0 f(p)dG−1

u (p) ≥ −
∫ 1
0 f(p)dG−1

v (p) is true for all u and v in V . Let G be any member of
Γ. Then, the equation −

∫ 1
0 f(p)dG−1(p) =

∫ 1
0 f(G(t))dt holds, by introducing the change of variable
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p = G(t), and this proves the first part of the theorem.
Now applying the second part of Theorem 5.10 to �∗, we find that f can be selected so as to satisfy
the preference equation G[1;f(p)] ∼∗ G[p;1] for 0 ≤ p ≤ 1. Note, however, that if G is the DDF of
[x; p] then G−1 is the DDF of [p, x]. Therefore, rewriting G[1;f(p)] ∼∗ G[p;1] in terms of the original
preference relation �, gives [1; p] ∼ [f(p); 1]. Q.E.D

Let v belong to V , with DDF Gv, and let U(v) be defined by

U(v) =
∫
f(Gv(t))dt,

with f defined as [1; p] ∼ [f(p); 1]. Theorem 5.13 tells us that the function U is a utility on V when
preferences satisfy axioms 5.5-5.8 and 5.12. The hypothesis of the duality theory is that agents will
choose among the random variables so as to maximize U .
This is an analogy with the hypothesis of expected utility theory, which is that agent chooses among
the random variables so as to maximize the function W , given by W (v) = Eφ(v) = −

∫ 1
0 φ(t)dGv(t),

with φ defined in [1;φ(t)] ∼ [t; 1].

The utility U of the duality theory has two important properties: First, U assigns to each random
variable its certainty equivalent. In other words, if v belongs to V , U(v) is equal to that sum of money
which, when received with certainty, is considered by the agent equally as good as v. The second
property of U is linearity in payments: When the values of a random variable are subjected to some
fixed positive affine transformation, the corresponding value of U undergoes the same transformation.

Proposition 5.14 Under axioms 5.5-5.8 and 5.12, the relationship v ∼ [U(v); 1] holds for every
v ∈ V .

Proof. It follows from U(v) =
∫
f(Gv(t))dt that U([x; 1]) = x for all x, 0 ≤ x ≤ 1. In particular,

U([U(v); 1]) = U(v) and, by Theorem 1, [U(v); 1] ∼ v. Q.E.D.

Remark In expected utility theory, the following dual to the above proposition exists:
Let � satisfy axioms 5.5-5.9, and let φ be defined by [1;φ(t)] ∼ [t; 1] and W (v) = Eφ(v) =
−
∫ 1
0 φ(t)dGv(t). Then, v ∼ [1;W (v)] is true for every v ∈ V .

Proposition 5.15 Let v belong to V and let a and b be two real numbers, with a > 0. Define
a function av + b by writing (av + b)(s) = av(s) + b for each state-of-nature s, and assume that
0 ≤ av(s) + b ≤ 1 for all s. Then, U(av + b) = aU(v) + b.

Proof. Let Gv and Gav+b be the DDF’s of v and av + b respectively. Note that, for every
t ∈ [0, 1], we have

Gav+b(t) =
{

1 for 0 ≤ t < av0 + b,

Gv( t−ba ) for t ≥ av0 + b,

where v0 is the infimum of the range of v. Hence,
U(av + b) = av0 + b+

∫ 1
av0+b f(Gav+b(t))dt = av0 + b+

∫ 1
av0+b f(Gv( t−ba ))dt.

Introducing the change of variable s = (t− b)/a, we get
U(av + b) = a[v0 +

∫ 1
v0
f(Gv(s))ds] + b = aU(v) + b. Q.E.D.
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Corollary 5.16 If the preference relation � satisfies axioms 5.5-5.8 and 5.12, then, for all u and
v belonging to V, we have u � v ⇔ au + b � av + b, provided a > 0 and au + b, av + b ∈ V . In
words, under axioms 5.5-5.8 and 5.12, agents always display constant absolute risk aversion as well
as constant relative risk aversion.

Note that under expected utility theory, an agent with constant absolute risk aversion as well as
constant relative risk aversion must be risk-neutral, i.e., this agent’s preferences always rank random
variables by comparing their means. Under duality theory, we have linearity without risk neutrality
being implied in any way. Indeed, let us see how risk neutrality is characterized under the duality the-
ory. It follows from u � v ⇔

∫ 1
0 f(Gu(t))dt ≥

∫ 1
0 f(Gv(t))dt in conjunction with

∫ 1
0 Gv(t)dt = Ev,

that under axioms 5.5-5.8 and 5.12, the agent’s preference relation � ranks random variables by
comparing their means if and only if the function f representing � coincides with the identity, i.e.,
f(p) = p for 0 ≤ p ≤ 1. In other words, risk neutrality is characterized in the duality theory by the
function f in [1; p] ∼ [f(p); 1] being identity. But there is nothing in theorem 5.13 to “force”f to
coincide with the identity: Any continuous and nondecreasing function f , satisfying f(0) = 0 and
f(1) = 1 can be obtained in [1; p] ∼ [f(p); 1], for some preference relation � satisfying axioms 5.5-5.8
and 5.12.

It is interesting to compare the construction of the function f in the duality theory with the
construction of the von Neumann-Morgenstern utility φ in expected utility theory. Consider the
preference equation [1; p] ∼ [t; 1]. We know from [1; p] ∼ [f(p); 1] and [1;φ(t)] ∼ [t; 1] that f(p) is the
value of t that solves [1; p] ∼ [t; 1], while φ(t) is the value of p that solves [1; p] ∼ [t; 1]. It follows,
therefore, that f = φ−1.

5.2.1 Paradoxes

Behavior which is inconsistent with the expected utility theory has been observed systematically,
and often such behavior has been branded “paradoxical”. As it turns out, behavior which is “para-
doxical”under expected utility theory is, in many cases, entirely consistent with duality theory. This
does not mean, however, that the duality theory is “paradox free”. On the contrary, for each “para-
dox ”of expected utility theory, one can usually construct a “dual paradox”of duality theory, by
interchanging the roles of payments and probabilities. Let’s illustrate the above with the following
example.

Example A famous “paradox”of expected utility theory is the so-called common ratio effect: Di-
viding all the probabilities by some common divisor reverses the direction of preferences. Kahnemen
and Tversky [14], for example, have found that a great majority of subjects prefer [0.3;1] over [0.4;
0.8] but that an equally large majority prefer [0.4;0.2] over [0.3; 0.25].(The symbol [x; p] stands for a
random variable which takes values x and 0 with probabilities p and 1−p, respectively.) This pattern,
which is inconsistent with expected utility theory, is entirely in keeping with the duality theory.
Specifically, with the utility function defined as U(v) =

∫
f(Gv(t))dt, we find that U([0.3;1])=0.3,

U([0.4;0.8])= (0.4)f(0.8), U([0.3;0.25])= (0.3)f(0.25) and U([0.4;0.2])= (0.4)f(0.2), and these
numbers will support the preference pattern [0.3; 1] � [0.4; 0.8] and [0.4; 0.2] � [0.3; 0.25] if f(0.8) <
3
4 < f(0.2)

f(0.25) . This inequality is satisfied, for example, when f is of the form f(p) = p/(2 − p), for
0 ≤ p ≤ 1. (This f is in fact risk averse, as we will see in the next section.)
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5.2.2 Risk aversion in duality theory

How would the risk aversion be characterized under the duality theory? Under expected utility
theory, preferences are represented by a von Neumann-Morgenstern utility φ. Under the duality
theory, preferences are represented by a function f and f = φ−1. Since the concavity of φ is
equivalent to the convexity of φ−1, and since the concavity of φ characterizes risk aversion, we
should expect the convexity of f to characterize risk aversion under the duality theory.
Letting � be a preference relation on V , as before, we say that � is risk averse if v = u + noise
implies u � v: Adding noise can never be � improving.

Definition 5.17 Let u and v belong to V, with DDF’s Gu and Gv, respectively, and consider the
inequality

∫ T
0 Gu(t)dt ≥

∫ T
0 Gv(t)dt. A preference relation � on V is said to be risk averse if u � v

whenever the above inequality holds for all T satisfying 0 ≤ T ≤ 1, with equality for T = 1.

Theorem 5.18 Consider the class of preference relations on V satisfying Axioms 5.5-5.8 and 5.12.
A preference relation � in this class is risk averse if and only if the function f representing � is
convex.

Proof. Let � satisfy axioms 5.5-5.8 and 5.12, and assume that � is risk averse. Take five real
numbers x, y, p, q, r such that 0 ≤ y ≤ x ≤ 1 and 0 ≤ q ≤ p ≤ r ≤ 1, and construct two random
variables, u and v, in the following manner: u takes the values x, y and 0 with probabilities q, r− q,
and 1 − r, respectively, and v takes the values x and 0 with probabilities p and 1 − p, respectively.
Assume that (p− q)x = (r− q)y. Then, by direct calculation,

∫ T
0 Gu(t)dt ≥

∫ T
0 Gv(t)dt holds for all

T satisfying 0 ≤ T ≤ 1, with equality for T = 1. Hence, u � v.
By Theorem 5.13, u � v ⇔ U(u) � U(v). We can see that U(u) = yf(r) + (x − y)f(q) and
U(v) = xf(p).
Moreover, (p− q)x = (r− q)y ⇒ yf(r) + (x− y)f(q) ≥ xf(p) holds for any x, y, p, q, r satisfying the
above conditions.
It is trivial when r = q. So assume r > q. Define λ ∈ [0, 1], by writing λ = (p− q)/(r − q) and note
that p = λr + (1 + λ)q. Using this, we obtain that
y = λx ⇒ yf(r) + (x − y)f(q) ≥ xf(λr + (1 − λ)q) must hold for all λ and x in the unit interval.
Since x < 0, f is convex.
Conversely, let � satisfy axioms 5.5-5.8 and 5.12 and suppose that u and v satisfy

∫ T
0 Gu(t)dt ≥∫ T

0 Gv(t)dt for 0 ≤ T ≤ 1, with equality for T = 1. Then by Hardy, Littlewood and Polya [12,
Theorem 10], the inequality holds for every convex and continuous f . Therefore, using the definition
of U , U(u) ≥ U(v) (or u � v) holds whenever f is continuous and convex. Thus, if the function f of
Theorem 5.13 is convex, then � is risk averse. Q.E.D.

The fact that risk aversion is characterized in the duality theory by the convexity of f has a
useful interpretation when f happens to be differentiable. Let v belong to V , with DDF Gv, and let
U(v) be the utility number assigned to v under the duality theory, i.e., U(v) =

∫
f(Gv(t))dt. If f is

differentiable, then the expression for U(v) can be integrated by parts to obtain
U(v) =

∫ 1
0 tf

′(Gv(t))dFv(t), where Fv is the cumulative distribution of v. Note that∫
f ′(Gv(t))dFv(t) = 1 and

∫
tdFv(t) is the mean of v.

In U(v), a similar integral is being calculated, each t is given a weight f ′(Gv(t)). If f is convex, then
f ′ is nondecreasing; i.e., those values of t for which Gv(t) is small receive relatively low weights and
those values of t for which Gv(t) is large receive relatively high weights.
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5.3 Behavior towards risk with many commodities [35]

The purpose of this part is to show what restrictions on the indifference map (e.g., on the income-
consumption curves) are implied by alternative assumptions about consumer behavior under un-
certainty and, conversely, what restrictions on consumer behavior under uncertainty are implied by
alternative assumptions about the indifference map.

5.3.1 Linearity of income-consumption curves for risk neutrality

It is well known that risk neutrality is equivalent to linearity in income of the Von Neumann-
Morgenstern utility function for fixed prices. If the individual is risk neutral at all prices and incomes
in some open region, then all income-consumption curves must be straight lines. To see this, observe
that since the individual is risk neutral at fixed prices, utility can be written as a linear function of
income, U = a′y + b. If the individual is risk neutral at another, nearby, set of prices, we can again
write utility as a linear function of income, U = a′′y+ b′′, where in general a′ 6= a′′, b′ 6= b′′. If this is
to be true for all sets of prices in a given neighborhood, then it must be true that

U(y, p1, ..., pn) = a(p1, ..., pn)y + b(p1, ..., pn). (5.1)

The linearity of the indirect utility function means that the expenditure function, which gives the
minimum level of expenditure E required to obtain a given level of utility U at given prices, is linear
in U :

E =
U

a
− b

a
.

The compensated demand curve for the i-th commodity, xi, is then linear in U :

xi(p1, ..., pn, U) =
∂E

∂pi
= −U

a

ai
a
− bi
a

+
bai
a2
, (5.2)

where bi = ∂b/∂pi, ai = ∂a/∂pi.
The income-consumption curves may be derived by substituting (5.1) into (5.2), or directly from the
fact that, if U(y, p1, ..., pn) is the indirect utility function,

xi = −∂U/∂p
i

∂U/∂y
= −ai

a
y − bi

b
.

These are linear in income, but need not go through the origin, i.e., the indifference map need
not be homothetic. If, however, an individual is risk neutral at all prices and incomes, all income-
consumption curves must be straight lines through the origin, i.e., the indifference must be homoth-
etic.
The converse is also true: if all income-consumption curves are linear in some open neighborhood of
the origin, there exists a cardinal representation of utility which is linear in income. Gorman [10]
has shown that if income-consumption curves are straight lines in an open region of the commodity
space, then there exist functions g(p) and h(p) such that xi = gi(p) + Uhi(p), where U is the utility
index and p is the vector of prices. Multiplying by pi and summing over all commodities, we obtain
the expenditure function, which in turn implies that U is linear in y, for given p.
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5.3.2 Extensions to concave and convex utility functions

If an individual has a utility function that is concave (or convex) in income at a given set of prices, p∗,
for all values of y ≤ y∗, then if all income-consumption curves are linear, his utility function will be
concave (or convex) in y at any fixed set of prices p for all values of y such that U(y, p) ≤ U(y∗, p∗).
To see this, assume we performed a betting experiment in which it turned out that Uyy(y, p∗) < 0
for all values of y ≤ y∗. One cardinal representation of the utility function is Û = a(p)y + b(p).
U and Û must be related by a monotonic transformation F , such that U(y, p∗) = F (Û(y, p∗)), so
Uyy(y, p∗) = F ′′(a(p∗))2. In order to have Uyy(y, p∗) < 0 for y ≤ y∗, we must have F ′′ < 0, for
Û(0, p∗) ≤ Û ≤ Û(y∗, p∗). But this implies that for all p, Uyy < 0, provided only that U(y, p) ≤
U(y∗, p∗).

5.4 Risk aversion over income and over commodities [24]

Let f and g be two real valued and continuous functions defined on some open interval, with g strictly
increasing. The standard way of saying that f is more concave than g is to require that there be a
concave function ϕ such that f = ϕ ◦ g.

Definition 5.19 We call a function g : I → R a capping function of f at y∗ if g(y∗) = f(y∗) and
g(y) ≥ f(y) for all y ∈ I. A function g : I → R is a capping function of f if for each y∗ in I, there
are scalars r′ and r such that the function g given by g(y) = r′ + rg(y) is a capping function of f at
y∗.

Theorem 5.20 Let f and g be two real-valued and continuous functions defined in an open interval
I, with g strictly increasing. Then the following are equivalent:

a) f is more concave than g.

b) g is a capping function of f .

c) The function f has the representation

f(y) = min
r∈U

(φ(r) + rg(y)), (5.3)

where U is a set in R and φ is a real-valued function defined on U .

Proof. (a) ⇒ (b). The function f ◦ g−1 is concave, so at any point z∗ = g(y∗) in g(I), there is a
tangent at (z∗, f ◦ g−1(z∗)) which “caps”the graph of f ◦ g−1. In other words, for some r′ and r,
r′ + rz∗ = f ◦ g−1(z∗) and r′ + rz ≥ f ◦ g−1(z) for all z in g(I). Substituting g−1(z∗) for y∗, and
g−1(z) for y shows that r′ + rg(y) is a capping function for f at y∗.
(b) ⇒ (c). If h(y) = r′ + rg(y) is a capping function of f at a point y∗, then h̃(y) = r′′ + rg(y)
for r′′ 6= r cannot be a capping function at any point in I. Therefore, we can consider r′ = φ(r).
Since each point in I admits an affine transformation of g as a capping function, the formula follows
immediately.
(c)⇒ (a). The implication follows observing that f ◦ g−1(z) = min

r∈U
(φ(r) + rz) is a concave function.

Q.E.D
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Note that f is concave if and only if it is more concave than the identity function; so defining g by
g(y) = y, we obtain the following representation of any concave function f : f(y) = min

r∈U
(φ(r) + ry).

In this section, a Bernoulli utility function v is considered and we assume that the function v is nice:
the domain of v is R++ and v is non-decreasing.

Definition 5.21 For any positive real number σ, we denote by LA(σ, y, t, z′) the lottery

t •
(
y − 1

σ
ln z′

)
⊕ (1− t) •

(
y − 1

σ
ln z′′

)
, (5.4)

where z′, z′′ ∈ (0, eσy) satisfying tz′ + (1 − t)z′′ = 1. The nice utility function v is said to be of
type Aσ if the agent with this utility function prefers y to any lottery LA(σ, y, t, z′); in other words,
v(y) ≥ tv(y − (ln z′)/σ) + (1− t)v(y − (ln z′′)/σ).

Lemma 5.22 Suppose σ > σ. Then for every lottery LA(σ, y, t, z′) with z′ 6= 1, there is a lottery
LA(σ, y, t, z′) such that y − (ln z′)/σ > y − (ln z′)/σ and y − (ln z′′)/σ > y − (ln z′′)/σ.

Proof. Note that −(ln z′)/σ = −(ln z′σ/σ)/σ and similarly −(ln z′′)/σ = −(ln z′′σ/σ)/σ. Defining
z̃′ = z′

σ/σ and z̃′′ = z′′
σ/σ, we observe that M = tz̃′ + (1− t)z̃′′ = tz′

σ/σ + (1− t)z′′σ/σ ≥ 1,
since σ > σ and tz′+ (1− t)z′′ = 1. Choosing z′ = z̃′/M and z′′ = z̃′′/M gives us the desired lottery.
Q.E.D.

The above lemma says that any lottery LA(σ, y, t, z′) is dominated by some lottery LA(σ, y, t, z′)
in the sense that the latter has a higher payoff in every realization. Since v is nondecreasing, it
follows that an agent who prefers y to all lotteries of the form LA(σ, y, t, z′) must also prefer y to all
lotteries of the form LA(σ, y, t, z′). Thus we obtain the next proposition.

Proposition 5.23 The nice utility function v is of type Aσ if and only if it is of type Aσ for all
σ ≤ σ.

Proposition 5.24 Suppose that the nice utility function v is C2 with v′ > 0. Then Av(y) =
−v′′(y)/v′(y) ≥ σ for all y > 0 if and only if v is of type Aσ.

Proof. The result follows from two important observations. Firstly, the condition Av ≥ σ is
equivalent to saying that v is more concave than g(y) = −e−σy since Ag = σ. Secondly, the concavity
of v ◦g−1 is equivalent to v being of type Aσ. To see this, note that the map v ◦g−1 has as its domain
the interval (−1, 0) and v ◦ g−1(w) = v(− ln(−w)/σ).
That this map is concave means that for any t ∈ [0, 1],
tv(− ln(−w′)/σ) + (1− t)v(− ln(−w′′)/σ) ≤ v(− ln(−tw′ − (1− t)w′′)/σ).
If we define y by −tw′ − (1 − t)w′′ = e−σy and z′, z′′ by −w′ = e−σyz′,−w′′ = e−σyz′′ respectively,
we have tz′ + (1 − t)z′′ = 1. Making this substitution in the above inequality gives v(y) ≥ tv(y −
(ln z′)/σ) + (1− t)v(y − (ln z′′)/σ). Q.E.D.

Proposition 5.25 Suppose that the nice utility function v is C2 with v′ > 0. Then Av(y∗) = σ if
and only if the following holds:

(a) For each σ̃ > σ, there is a neighborhood of 1 such that whenever z′ and z′′ are in that neighbor-
hood, the agent prefers LA(σ̃, t, y∗, z′) to the sure income level y∗.
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(b) For each σ̃ < σ, there is a neighborhood of 1 such that whenever z′ and z′′ are in that neighbor-
hood, the agent prefers the sure income level y∗ to LA(σ̃, t, y∗, z′).

Proof. Define the function Gσ̃ by Gσ̃(z) = v(y∗ − (ln z)/σ̃). Then G′′σ̃(1) = σ̃−1v′′(y∗)+v′(y∗)
σ̃ . If

Av(y∗) = σ, this term is negative if σ > σ̃ and positive if σ̃ > σ, as required by (a) and (b). On the
other hand, if (a) and (b) hold, it means that G′′σ̃(1) ≤ 0 whenever σ > σ̃ and G′′σ̃(1) ≥ 0 whenever
σ̃ > σ. This can only happen if Av(y∗) = σ. Q.E.D.

Proposition 5.26 For a nice utility function v, the following are equivalent:

1. v is of type Aσ.

2. The function gσ = −e−σy is a capping function of v.

3. The function v has the representation v(y) = min
r∈U

(φ(r)− re−σy), where U is a set in R and φ

is a real valued function defined on U .

Proof. That v is of type Av is equivalent to v ◦ g−1 being concave, where g(y) = −e−σy. The result
then follows immediately from theorem 5.20. Q.E.D.

Based on the coefficient of relative risk aversion, we can define an appropriate class of Bernoulli
utility functions for which results similar to those holding for functions of type Aσ can be obtained.
For the details, see [24].

The following results give the precise way in which an agent’s risk aversion over incomes can be
related to her risk aversion over consumption bundles.
Let Rl++ be the consumption space and u be the Bernoulli utility function. For any price vector p in
Rl++ and income y > 0, the budget set at the price-income situation (p, y) is the set B(p, y) = {x ∈
Rl++ : p · x ≤ y}.
The demand at (p, y) refers to the set argmaxx∈B(p,y)u(x); we denote this set by x(p, y).
We say that u is well behaved if the following hold:

(a’) x(p, y) is nonempty for all (p, y) in Rl++ × R++ and obeys the budget identity p · x′ = y for
x′ ∈ x(p, y).

(b’) ∀x ∈ Rl++, there is p such that x is in x(p, 1).

We say u is very well behaved if, in addition to (a’) and (b’), we have:

(c’) The demand set x(p, y) is a singleton at all (p, y), and the function x is continuous.

Assuming that u is well behaved, the function v : Rl++×R++ → R defined by v(p, y) = u(x(p, y)) is
the indirect utility function generated by u.
Given w ∈ Rl+ \ {0}, we define the normalized price set Qw = {p ∈ Rl++ : p · w = 1}.

Definition 5.27 Let w be an element of Rl+ \ {0}, and σ be a positive real number. We say that
u : Rl++ → R is of type Awσ if the agent with this utility function always prefers the (sure) bundle
tx′ + (1− t)x′′ to any lottery of the form

t •
(

1
α′
x′ − lnα′

σ
w

)
⊕ (1− t) •

(
1
α′′
x′′ − lnα′′

σ
w

)
,
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where α′, α′′ > 0, tα′ + (1− t)α′′ = 1, x′, x′′ ∈ Rl, and the two possible realizations of the lottery and
the bundle tx′ + (1− t)x′′ all belong to the consumption space. In other words,

tu

(
1
α′
x′ − lnα′

σ
w

)
+ (1− t)u

(
1
α′′
x′′ − lnα′′

σ
w

)
≤ u(tx′ + (1− t)x′′).

Choosing α′ = α′′ = 1, we can see that u is a concave function and the agent is risk averse.

Theorem 5.28 Suppose u : Rl++ → R is very well behaved and generates the indirect utility function
v : Rl++ ×R++ → R. Then the following are equivalent:

(a) v(p, ·) is of type Aσ for all p in the normalized price set Qw.

(b) u has the representation
u(x) = min

(q,r)∈U
(φ(q, r)− re−σ(q·x)),

where U is a subset of Qw ×R and φ is the real valued function defined on U .

(c) u is of type Awσ .

For the proof, see [24].

6 Summary

The risk aversion implied by a von Neumann-Morgenstern utility function u is closely related to
the measure of concavity. Assuming maximization of the expected utility EU , the consumer is
risk averse to all small risks in x, if and only if the utility function is concave at x. We assume
that u is twice continuously differentiable and monotonically increasing. Arrow-Pratt risk aversion
r(x) = −u′′(x)/u′(x) is invariant under the positive linear transformation which is consistent to von
Neumann-Morgenstern utility function property. Also, it has been used in many applications proving
its usefulness.
In the univariate case, one of the powerful concepts is the risk premium π, the real number where
receiving a risk z̃ or receiving non-random amount E(z̃)− π is indifferent. Let’s consider a portfolio
selection behavior of an investor when there is one risky and one non-risky asset. Pratt [28] considers
two investors with utility functions u1 and u2 and shows that investor 1 always invests less in the
risky asset than investor 2 if r1 > r2 or equivalently π1 > π2.
Arrow shows that [1] if the agent becomes more risk averse as his wealth rises; i.e., if r(x) is an in-
creasing function, then the amount of money invested in the risky asset decreases as wealth increases.

Suppose that both assets are risky, then there are cases where the measure of Arrow-Pratt risk
aversion can not support the intuitions. Therefore, Ross [33] introduced the stronger measure of risk
aversion : A is strongly more risk averse than B if and only if

inf
w

A′′(w)
B′′(w)

≥ sup
w

A′(w)
B′(w)

.

For example, consider a choice between two lotteries, x̃ and ỹ, where ỹ is distributed as x̃ plus a
“return”ṽ ≥ 0 and an additional risk ε̃, where E{ε̃|x̃ + ṽ} = 0. Intuition would suggest that if the
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agent B finds such a tradeoff unacceptable then so must do any agent A, who is more risk averse
than B. While this is not true for the Arrow-Pratt ordering, the strong measure of risk aversion
justifies the above case.
Moreover, from [19], there is an another counter example where r1 > r2 holds but π1 > π2 fails
to hold for two independent lotteries x̃, ỹ. It can be shown that if u1 is more risk averse than u2

(r1 > r2) and if either u1 or u2 is a non-increasing risk aversion, then π2 is always smaller than π1

for two independent lotteries.

Pratt and Zeckhauser [30] approached this problem from axiomatic point of view, saying that an
undesirable lottery can never be made desirable by the presence of an independent desirable lottery.
They proposed the proper utility function u iff the condition

w̃ + x̃+ ỹ � w̃ + ỹ whenever w̃ + x̃ � w̃ and w̃ + ỹ � w̃

holds. They gave the analytical necessary and sufficient conditions for utility function u being proper.
Kimball has given the concept of the standard risk aversion which implies the proper risk aversion
(see Definition 3.46). One of the advantage is an simple characterization of standard risk aversion;
Decreasing absolute risk aversion and decreasing absolute prudence is equivalent to u being standard,
under assumption u′ > 0, u′′ < 0.

In univariate case, the Arrow-Pratt risk premium π is proportional to t2, so it approaches to zero
faster than t. For small risks, the risk averse agent is almost risk neutral. Segant [34] defined first
and second order of risk aversion, where the above phenomena can be distinguished, and studied its
properties.

Moreover, there are other behaviors which are inconsistent with the expected utility theory, called
“Paradoxes”. One example of such behavior is the common ratio effect: Dividing all the probabilities
by some common divisor reverses the direction of preferences. Yaari [37] proposed the dual theory,
where instead of the independence axiom in ordering so-called “Dual independence”is used. This
gives a possibility to explain these “Paradoxes”.

In the multivariate case, n-dimensional von Neumann-Morgenstern utility functions may rep-
resent different preference orderings on the set of commodity bundles. The comparison of risk
averseness of utility functions representing different ordinal preferences are confusing because of the
differences in these preferences. Therefore, Kihlstrom and Mirman restricted the utility functions to
represent the same ordinal preference and defined: U1 is at least as risk averse as U2, if U1 = k(U2)
where k′ > 0 and k is concave. Also, U1 is more risk averse than U2, if k is strictly concave.
Moreover, the risk premium is not unique in the multivariate case. In [17], they have defined the direc-
tional risk premium, generalizing the one-dimensional risk premium. To generalize one-dimensional
risk aversion function r, they proposed an function ρ : Rn+ → R+ and proved that it is an appropriate
measure of risk aversion under some assumptions.
Keeney [16] defined the risk independence and the conditional risk premium where all the compo-
nents except a certain one are taken as constants.
A matrix measure was given by Duncan [7], considering the risk premium π as a vector satisfying

U(x− π) = EU(x+ Z),
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where x, Z ∈ En and E(Z) = 0. Since the risk premium is a vector and the measure of risk aversion
is a matrix, it makes impossible to compare the risk averseness in this case.
In an analogous way of how Arrow defined the measure of risk aversion in one-dimension, using

U(x) = pU(x+ h) + (1− p)U(x− h),

H.Levy and A.Levy [23] proved that probability p can be used as the measure of risk aversion in the
multivariate case.
Paroush [26] noticed that the risk premium, U(x + Ez̃ − π) = E{U(x + z̃)}, has (n− 1) degrees of
freedom. When the (n− 1) free variables are forced to be the same for risk premia, he proved that
the comparison of the first component of the risk premia is also an alternative way to compare risk
averseness.
Karni [15], using the indirect utility function, defined the one-dimensional risk premium for the
income y:

ψ(y + E{z1} − π, p1 + E{z2}, .., pn−1 + E{zn}) = E{ψ(y + z1, p1 + z2, .., pn−1 + zn)},

where z = (z1, .., zn) is a small random variable and p = (p1, ..., pn−1) ∈ Rn−1
++ is a price vector. He

further studied the relationship between the matrix measure and the above described risk premium.

Let’s suppose the risk averseness of two utility functions representing the different ordinal prefer-
ence. We can restrict the class of gambles, where excludes gambles with different preferences. Using
the indirect function with fixed price, it can regarded one-dimensional function of income y. In this
case, the Arrow-Pratt results can be applied.

Furthermore, using the least concave representation of utility functions u∗, Kihlstrom and Mir-
man defined in [18]: u is an increasing absolute risk averse representation of � if u(x) = h(u∗(x))
and h is an increasing absolute risk aversion function of a single real variable.

In “Risk aversion over income and over commodities”part, the connection between an agent’s
risk attitudes over income and his risk attitudes over the goods he consumes with that income is
given precisely for the specific class of utility functions.

As we can see, there are many approaches in the univariate cases. Since all of them are the
measures of risk aversion, it is difficult to compare these approaches. However, depending on the
different conditions or situations, we can proceed with the appropriate one.
In the multivariate case, as Paroush has proved fixing (n − 1) components and comparing the only
dependent component of the risk premia, we can compare risk averseness of the agents. Therefore,
the risk premium of indirect utility function, the directional risk premium and the conditional risk
premium are the same in general.
I am very grateful to Marco Rocco for his revision and helpful comments.
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