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Chapter 1
Introduction

1.1 Motivation

The motivation for this thesis comes from the desire to sharpen my computa-

tional and analytical skills while studying how mathematics has been used to

model a real world phenomenon like biological dispersion. The choice of a

biological subject is solely due to my educational background and interest in

life science.

1.2 Summary

Indeed, there are mathematical models that reasonably describe the dispersion

of organisms such as animals. Non-linear Partial Differential Equations (PDEs)

such as the Porous Medium Equation (PME) and Non-local Porous Medium

Equation (NLPME) are examples of such mathematical models. Among the

benefits of studying these models is that, they provide an important framework

for modelling more complicated biological phenomena like chemotaxis and

organisational behaviours like the aggregation of biological organisms.

Unlike the PME where the forces that lead to dispersion are assumed to be

local, for the NLPME, the forces are rather non-local. Our reference to the term

”non-local forces” is in the sense that, interactions exist between each organism

7



1.2. SUMMARY 8

(in the total number under consideration) and other ones of the same kind that

are within its neighbourhood.

In this thesis, the objective is to verify the hypothesis that, for infinitely many

organisms, the non-local forces become local and consequently, the NLPME

coincides with the PME. Intuitively, one may see that the non-local model

describes the phenomenon more closely than the local one since it regards the

influence of other organisms on the resultant force that leads to the dispersal

of a single organism.

Not withstanding that, as indicated in a number of literature on the subject,

one advantage of the local model over the non-local one is that of ease in

analysis [10]. Holding on to that advantage, an immediate benefit of validating

this hypothesis is that, if a very large number of organisms is involved, then it

is reasonable to analyse dispersal models with the local model instead of the

more complicated non-local model .

To substantiate this hypothesis, we implore the following methodology. First,

we use two finite difference approaches, namely, the Explicit Euler and Runge

Kutta to obtain a numerical scheme for the PME. Afterwards, we solve the

resulting linear system and obtain the approximated solution to the PME.

Secondly, we use the so called particle method to reconstruct the solution to the

NLPME. By this method, a fundamental step is to consider the initial locations

of all the organisms such that, with their masses given, the distribution of their

initial density can be constructed. In both simulations, we consider a constant

as well as a triangular distribution of the organisms’ initial density.

Finally, we evaluate the L1 error between the two approximated solutions.

Ultimately, we analyse its behaviour as the range of the dispersion forces varies

and particularly, as the number of organisms increases. As a matter of choice,

we do all simulations and numerical computations in a Matlab environment.
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1.3 Organization

This thesis is divided into five chapters. In chapter 2, we present an outline for

the biological description of animal dispersion including its causes and benefits.

We also take a look at how animal dispersion is quantified and present some

mathematical models that reasonably describe the evolution of a dispersing

population.

In chapter 3, after outlining the preliminaries for a numerical analysis, we begin

an elaborate computational exercise of simulating both the local and non-local

models. In addition, we illustrate the simulated solutions with graphs for

certain values of the ”scaling coefficient”, a parameter which regulates the

range of the forces that lead to animal dispersal.

The main result of this thesis is presented in chapter 4, where we compute the

L1 error between the two solutions: the solution to the local and the non-local

models. Furthermore, we study and compare the behaviour of the error with

respect to two types of kernels that model the dispersive forces; and also with

respect to the ”scaling coefficient” and the total number of animals under

consideration.

Finally, in chapter 5, we conclude with an evaluation of the computational

procedure and the dispersal kernels used, in order to determine which of them

is most suitable for our analysis. Most importantly, we evaluate the hypothesis

for this thesis.



Chapter 2
Mathematical modelling of

biological dispersal and

animal swarming.

2.1 An overview of biological dispersal.

1

In Biology, animal dispersal is defined as the scattering of animals over

periods within a given area. It has also been defined as the movement of

indivduals of animals from their birth site to their breeding site and from one

breeding site to another. In general, dispersal occurs when the fitness benefits

of moving outweigh the costs.

Its benefits include: locating new resources, escaping unfavorable conditions,

avoiding competing with siblings, and avoiding breeding with closely related

individuals which could lead to inbreeding depression. [1]

There are also some notable costs associated with dispersal. These costs

can be thought of in terms of four main currencies: energy, risk, time and

1http://www.britannica.com/science/dispersion-biology
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2.1. AN OVERVIEW OF BIOLOGICAL DISPERSAL. 11

opportunity.[3] Energetic costs include the extra energy required to move as

well as energetic investment in movement machinery (e.g. wings). Risks in-

clude increased injury and mortality during dispersal and the possibility of

settling in an unfavorable environment.

Also, time spent dispersing is time that often cannot be spent on other ac-

tivities such as growth and reproduction. Finally, dispersal can also lead to

outbreeding depression if an individual is better adapted to its natal (birth)

environment than the one it ends up in. In social animals (such as many birds

and mammals) a dispersing individual must find and join a new group, which

can lead to loss of social rank. [3]

In general, there are two basic types of biological dispersal: Density inde-

pendent (passive) dispersal, where organisms have evolved adaptations for a

dispersal that is caused by various forms of kinetic energy occuring natually

in the environment; [8, 9] and Density dependent (active) dispersal where

dispersal is largely as a result of factors such as local population size, resource

competition, habitat size and quality. [2, 1, 4]

The forces that govern animal dispersal are classified under vectorial (deter-

ministic or directed motion), which is caused by wind, water, food sources,

overcrowding; or stochastic (random) as in case of changes in weather, which

give no indication of where the organisms may ultimately settle.

Moreover, animals can establish one of three possible patterns of dispersion: a

random pattern; and aggregated pattern, in which organisms gather in clumps;

or a uniform pattern in which organisms are arranged in such a way that the

spaces between them are roughly equal. The type of pattern formed by animals

is often determined by the nature of the relationships within the population.

For example, while territorial animals like birds tend to assume a uniform

pattern, social animals like chimpanzees tend to gather in groups, an aggregate

pattern.
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In order to obtain an accurate reading of the pattern formed, it is important to

be mindful of the scale of study. For instance, if we magine a group of monkeys

occupying three widely separated trees, after observation, our inference would

obviously be that they have formed an aggregated pattern while if the focus is

on only one tree, then thier arrangement may appear to be rather uniform.

2.1.1 Quantifying Dispersion

Arguably, the most intuitive quantitative definition of dispersion is that, it is

the degree of the variation of a variable about a central value. Most commonly,

it is quantifed either in terms of rate or distance.

Dispersal rate describes the probability that any individual leaves an area in

a given time. On the other hand, dispersal distance is usually described by a

dispersal kernel which gives the probability distribution of the distance trav-

elled by any individual. Some of the distribution functions used as dispersal

kernels or potentials in theoretical models for dispersion include: the negative

exponential distribution, [13] the extended negative exponential distribution

[7] and the normal distribution (Gaussian curve) [13].

2.2 Mathematical Models For Animal Dispersal.

There is a significant number of mathematical models that reasonably describe

the bahaviour of a dispersing population. In a book edited by Tilman and

Kareiva (1998) [6], it has been demonstated that, the spatial structure of a

habitat can fundamentally alter both the qualitative and quantitative dynamics

and outcomes of ecological processes such as dispersion. This implies that,

when developing ecological models, although its reasonable to assume in

some cases that population is a homogeneous quantity which only depends on

time, in many other situations, the dependence on spatial variables is relevant.

Therefore, it is typical that in dispersal models, population is considered as a

function of space and time.

In an assemblage of individuals (or particles) of animals (or cells, bacteria,
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chemicals), each individual usually moves (actively or passively) in a random

way. They spread out and settle in undeterminable locations as a result of some

random forces. When this individual (or microscopic) irregular movements

result in some gross (or macroscopic) regular motion of the group, we may

think of it as a diffusion process.

2.2.1 The Continuity Equation

Indeed, it is a laborious exercise to obtain a macroscopic behaviour from a

knowledge of an individual microscopic behaviour. Authors like Masaaki

Inoue and Morale et. al. have rigorously obtained it in various forms. [5, 10]

Here, we follow the derivation of a continuum model for the global behaviour

in terms of a quantity called population density function or concentration.

Unless otherwise stated, most of the material in the remaining parts of this

chapter is based on the lecture notes of Mathematical Biology by Prof. Marco

Di Francesco.

The diffusion mechanism models the movement of many individuals of the

same kind in an environment. The sizes of the individuals may be very small

such as: basic particles in physics and chemistry (like atoms and molecules)and

microscopic particles in biology (like bacteria and cells); or very large objects

such as: animals (like ants) and plants; or certain events like epidemics and

tumours.

We assume an ensemblage of particles residing in a region (habitat), which

we denote as Ω, with Ω being an open subset of Rn for n ≥ 1. In particular,

we are interested in the case of n = 1 although the formulation here holds

regardless of the spatial dimension. We also introduce the main mathematical

variable for our analysis: the population density function of the particles or

simply the population density, denoted by ρ(t, x), where t is the time and

x ∈ Ω is the location of the particles. Usually, the dimension of population

density is expressed as: the number of individuals per unit length (if n = 1),

per unit area (if n = 2) or unit volume (if n = 3). For example, the human

population density is often expressed in number of people per square kilometer.
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As in many other mathematical models, we also assume that ρ(t, x) has nice

properties like continuity and differentiability, which is in fact reasonable when

a population with a large number of organisms (or particles) is considered.

More precisely, we assume that, ρ ∈ C1([0,+∞); L1(Ω)).

Technically, we define the population density function, ρ(t, x) as follows. Let x

be a point in the habitat Ω, and let {On}∞
n=1 be a sequence of spatial regions

(which have the same dimension as Ω) surrounding x;. Here, On is chosen in a

way such that, the spatial measurement |On| of On (length, area, volume, or in

a more general sense, the Lebesgue measure) tends to zero as n → +∞, and

On ⊂ On+1 ∀n; then

ρ(t, x) = lim
n→+∞

Number of organisms in On at time t
|On|

,

if the limit exists. Realistically, as long as the scale of data collecting is small

enough, the population density function is usually very well defined. The total

population in any sub-region, O of Ω at time t is

∫
O

ρ(t, x)dx. (2.1)

Our interest is in knowing how ρ(t, x) changes as time t evolves and as the

location x changes. Basically, the events that cause changes in populations can

be grouped into two: movement related causes (migration and emmigration);

and non-movement related causes (birth and death).

For the movement related causes, we focus on diffusion, which is the most

classical natural phenomenon that contributes to the movement of particles

with a heterogeneous distribution. During diffusion, particles move from a re-

gion of high population density to a region of low population density. Perhaps,

a more intuitive way of thinking about the movement of the particles in the

above context is, as a directed flow of a fluid (the population density). The

flow of ρ(t, x) is known as the flux of the population density, which is a vector

quantity that we denote by ~J(t, x). On the other hand, we denote the rate of

change of the population density with respect to death and birth by f (t, x, ρ),
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which is known as the reaction rate.

From the definition of total population in the region O given in 2.1, the rate of

change of the total population is d
dt

∫
O ρ(t, x)dx. Additionally, the net growth of

the population inside the region O is
∫

O f (t, x, ρ(t, x))dx and the total outward

flux is −
∫

∂O
~J(t, x).~n(x)dS, where ∂O is the boundary of O, and n(x) is the

outward normal vector at a location x. Now, using the mass balance law, we

derive a differential equation in terms of ρ(t, x) as

d
dt

∫
O

ρ(t, x)dx = −
∫

∂O
~J(t, x).~n(x)dS +

∫
O

f (t, x, ρ(t, x))dx. (2.2)

Since diffusion is pure transport phenomena, it has no reaction. If we further

assume that there is no reaction rate, that is f = 0, then the balance equation

becomes

d
dt

∫
O

ρ(t, x)dx = −
∫

∂O
~J(t, x).~n(x)dS (2.3)

From the Fundamental Theorem of Calculus in the one dimensional case or the

Divergence Theorem in multi-variable calculus, assuming that the flux ~J(t, x)

is C1 with respect to x, we have

∫
∂O

~J(t, x).~n(x)dS =
∫

O
div~J(t, x)dx. (2.4)

Combining (2.3) and (2.4) and interchanging the order of differentiation and

integration (which is possible since ρ(t, x) ∈ C1([0,+∞); L1(O))), we obtain

∫
O

∂

∂t
ρ(t, x)dx + div~J(t, x)dx = 0.

Since the choice of the region O is arbitrary, we can apply the variational

Lemma to finally obtain the partial differential equation (PDE)

∂

∂t
ρ(t, x) + div~J(t, x) = 0, (2.5)

which holds for any (t, x) ∈ Ω. This equation is called the Continuity Equa-

tion.
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2.2.2 The Diffusion Equations

With the continuity equation in hand, we are now ready to obtain the so

called diffusion equations. We recall that in section 2.1, it was mentioned that,

dispersal (in this context, the flow of the population density) can be grouped

into two forms: density dependent and density independent dispersal. This

implies that, what characterises the transport phenomena (diffusion) is the flux

~J(t, x).

One model for the flux is given by a principle called the Fick’s law, which

states that:

~J(t, x) = −d(x)∇xρ(t, x), (2.6)

where d(x) is called diffusion coefficient at x. The function d : O → R such

that d(x) > 0 ∀x ∈ O, and ∇x is the gradient operator.

With this choice of ~J, the Continuity Equation becomes

∂

∂t
ρ(t, x) = div(d(x)∇xρ(t, x)). (2.7)

If we assume a constant diffusion coefficient, i.e d(x) = d > 0, then (2.7)

becomes

∂

∂t
ρ(t, x) = d∆xρ(t, x), (2.8)

where ∆x is the Laplacian operator. This equation is called Linear Diffusion

Equation (or Heat equation).

Another model of the flux is built on the principle that, the diffusion coeffient

depends on the density, i.e d = d(ρ). So if we think of the flux as a repulsive

force, then as the individuals move closer, the repulsive force (or flux) becomes

stronger. This provides a more realistic way of modelling diffusion and it is

called Darcy’s Law, which is given by:

~J(t, x) = −d(ρ(t, x))∇xρ(t, x)). (2.9)
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Typically we assume that d = d(ρ) is increasing with respect to ρ and consider

d(ρ) = Cρm−1, where C > 0 is constant and m > 1 is an integer. Substituting

this into (2.5), with D = C
m , we recover the non-linear PDE

∂

∂t
ρ = D∆xρm m > 1. (2.10)

2.3 Porous Medium Equation (PME)

Considering the PDE in (2.10), after a suitable scaling of the spatial and time

variables, one can recover the dimensionless form

∂

∂t
ρ = ∆xρm. m > 1 (2.11)

This equation is called the non-linear diffusion equation, also known as the

Porous Medium Equation.

The existence of a classical solution to the PME is not known. Our goal now is

to derive a self-similar solution for it. For this, we look for a solution of the

form ρ(t, x) = Rd(t)u(xR(t), τ(t)) where x ∈ Rd and t ≥ 0. Let y := xR(t)

and τ := τ(t), then putting ρ(t, x) in equation (2.11), with λd := d(m− 1) + 2,

it can be shown that

 R(t) = (1 + λdt)
− 1

λd

τ(t) = − log R(t)
(2.12)

and that if ρ(t, x) = Rd(t)u(xR(t), τ(t)) solves


∂
∂t ρ = ∆xρm, m > 1

ρ(0, x) = ρ0(x)
(2.13)

with R(t) and τ(t) as in equation (2.12), then u = u(y, τ) solves the Fokker-Plank Equation,

uτ + divy(yu) = ∇um

u(y, 0) = ρ0(y)
(2.14)

Furthermore, it can be shown that equation (2.14) has a stationary solution

which is given by
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u∞(y) =


[

m−1
m
(
C− |y|

2

2
)] 1

1−m
if |y| ≤

√
2C

0 otherwise

(2.15)

where C > 0 constant. Hence, the self-similar solution to equation (2.13) is

given by

ρ∞(t, x) = (1 + λdt)
− d

λd u∞(x(1 + λdt)
− 1

λd ). (2.16)

This self-similar solution is called the Barenblatt Solution, and it has the

following properties.

1. It diffuses in the sense that, it decays in L∞ and the measure of its support

goes to +∞ as t→ +∞.

2. Since ρ∞ remains compactly supported for t ∈ [0,+∞), we have a finite

speed of propagation of the support, which is more realistic than in the

linear diffusion case where we have an infinite speed of propagation.

3. It has C∞ regularity on {x ∈ Rd : ρ∞(t, x) > 0} and Cα with α = 1
m−1

(Hölder Regularity) on Rd.

In the particular case of m = 2, the PME is called the Quadratic Diffusion

Equation and the third property implies that, ρ∞ ∈ C1
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Figure 2.1: A Mathlab representation of the Barenblatt profile defined on the interval [−3, 3],

with m=2 and C=1.

2.4 Swarming Models: Non-local Interaction

More realistically, there often exist some kind of interaction between the

individuals of a population. Consequently, their global movement may not be

accurately described by a simple diffusion process. Biological aggregations

such as insect swarms, ungulate herds, fish schools, and bacterial colonies

are widespread examples of self-organization in nature. These groups often

arise as a social phenomena, without directions from a leader or influence of

external stimuli such as food and light sources. Social forces among organisms

include attraction, for group cohesion, and repulsion, for collision avoidance.

The resulting aggregations can confer benefits such as protection and mate

choice to their members. These interactions are called non-local because each

organisms interacts with other ones that are some distances away from its local

position.
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2.4.1 General Approach to Interacting Individuals

Several phenomena in particle physics, cell and population biology, and social

sciences, can be modelled by a discrete set of N interacting agents, or particles,

with positions X1(t), ..., XN(t) ∈ Rd depending on time, and with given masses

m1, ..., mN > 0. Each individual is treated as a discrete particle subject to the

forces that govern animal dispersal. This approach of modelling the movement

is called the Lagrangian approach: individuals are followed in their motion.

As mentioned earlier, the forces that govern the dispersal of animals are either

random or vectorial. As such, possible randomness may be included in the

motion of each particle. With the random location of the kth particle being

Xk(t) ∈ Rd : k = 1, ..., N, the variation in time of Xk(t) for each individual in

the group at any t ≥ 0 gives a system of N stochastic differential equations

(SDEs). [10]

More technically, from a Lagrangian point of view, the state of a system of N

particles may be described as a stochastic process {Xk
N(t)}t≥0, defined on a

suitable probability space (Ω,F ,P) and valued in (Rd,BRd) where BRd is the

Borel σ-algebra generated by intervals on Rd. [10]

According to Morale et. al. [10], one way is to model the state of the kth

individual with a random Dirac-Measure, εXk
N(t) ∈ M(Rd), which is a random

measure defined by:

εXk
N(t) =

1 if Xk
N(t) ∈ B, where B ⊂ B

0 otherwise
. (2.17)

Equation (2.17) means that, the generalized function of the kth particle is a

Dirac-δ function, δXk
N(t). By an Eulerian approach, the collective behavior of

the discrete (in the number of particles) system, may be given in terms of the

spatial distribution of particles at time t, expressed in term of an empirical

measure
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XN(t) =
N

∑
k=1

εXk
N(t) ∈ M(Rd). (2.18)

In case the of a vectorial force, the position of each individual at any t ≥ 0

is obtained in a deterministic way, and the variation in time of the position

of each individual in the group gives a system of N deterministic differential

equations. We then obtain the empirical measure by replacing the term ”εXk
N(t)”

in equation (2.18) with the deterministic location of the kth individual.

To describe the dynamics of the particles, one way is by a second order system

given by Newton’s law. For that, we set

Ẋk(t) = Vk(t)

mkV̇k(t) = Fk(t)

where Vk and Fk(t) = Fi(X1(t), ..., XN(t), V1(t), ..., VN(t)) are respectively the

velocity and the interaction force of the Kth individual. Another way is by a

first order description given by:

Ẋk = Fk(X1, ..., XN), (2.19)

The first order approach comes from the observation that, external factors bias

the motion of each single agent (particle) in terms of sudden changes in the

velocity, rather than the acceleration. The chemotaxis (Keller Segel) model is

an example of a first order model. Other examples are

1. Deterministic diffusion: consider particles on a real line, with all of

them having the same mass, mk =
1
N for simplcity. The dynamics of the

particles is given by


Ẋk = Fk(X1, ..., XN)

Fk(X1, ..., XN) =
1

N2

(
1

Xk−Xk−1
− 1

Xk+1−Xk

)
= 1

N

(
mk

Xk−Xk−1
− mk

Xk+1−Xk

) (2.20)

Equation (2.20) indicates that, the interaction force Fk is given by a ”dis-

cretized gradient” for the ”discrete density”. It also can be observed that,
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it is a repulsive force since each particle computes the distance between

it and two neighbouring particles, and then moves away from the closest

one.

2. Non-local Forces: The model is


Ẋk = Fk

Fk = −
N

∑
j=1
j 6=k

mj∇G(Xk − Xj)
(2.21)

where G is called interaction potential which is typically assumed to be

(at least) continuous on Rd\{0}. A more precise choice of G depends on

the phenomenon under study. Moreover, G is radial i.e. G(x) = g(|x|).

It is called an attractive potential if g′ ≥ 0 on [0,+∞), or a repulsive

potential if g′ ≤ 0 on [0,+∞). It is an attractive repulsive potential if it is

repulsive inside a ball |x| ≤ R and attractive outside. Some examples of

interaction potentials are:

(a) Repulsive potentials: The Morse Potential, G(x) = 1
2 exp (−|x|); and

the Gaussian Potential, G(x) = 1√
π

exp (−x2).

(b) An attractive potential: G(x) = − 1
2 exp (−|x|)

(c) An attractive repulsive potential: G(x) = MR exp (− |x|R )−MA exp (− |x|A )

where MR, MA, R, A > 0.

2.4.2 Non-Local Porous Medium Equation (NLPME)

Although the individual modelling approach does not compromise on the iden-

tity of the individuals, it may be problematic when we have a lot of particles.

As a generalized approach, a continuum description has been provided in the

discrete based setting. The continuum description of the density leads to the a

model that is based on PDE’s. This is a classical widespread approach which

according to Morale et. al., is so due above all, to the wider spread knowledge

on Non-linear PDE’s. The advantages of the continuum approach are those of

ease of analysis and elimination of arbitrary spatial discretization.
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In other words, we want to replace the ODE (or SDE) system with a PDE. Here,

we consider purely ”deterministic” interactions. To formulate the PDE, we

consider the ODE system Ẋi = Fi(X1, ..., XN) and then define the empirical

measure of the particles as µ(t) =
N

∑
i=1

miδXi(t), which is also an element of the

space of distributions, D′(Rd).

In a classical dynamic framework, and by neglecting both inertial effects and

the interaction of a particle with itself, the movement of the particles can be

described through the Cauchy problem on RdN :


Ẋi(t) = −

N

∑
j=1
j 6=i

mj∇G(Xi(t)− Xj(t))

Xi(0) = X0
i

i = 1, ..., N (2.22)

where X1, ..., XN ∈ Rd, m1, ..., mN > 0 and
N

∑
i=1

mi = 1. Now, we derive the PDE

for (2.22) as follows. Let ϕ = ϕ(x, t) ∈ C∞
c (Rd × [0,+∞)) ( a test function).

Then

〈∂tµ, ϕ〉 = −〈µ, ∂t ϕ〉 = −
N

∑
k=1

mk〈δXk(t), ∂t ϕ〉 = −
N

∑
k=1

mk∂t ϕ(Xk(t), t) (2.23)

where as the first equality is by the definition of derivatives in distributions, the

second one is by the definition of the empirical measure and then in the final

one, by the definition of the Dirac-δ function: 〈δx, ϕ〉 = ϕ(x). Letting T > 0,

we integrate (2.23) on [0, T) taking into account that supp(ϕ) ⊂ Rd × [0, T)

and assumming that ∇G(0) = 0.
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∫ T

0
〈∂tµ, ϕ〉dt = −

N

∑
k=1

mk

∫ T

0
∂t ϕ(Xk(t), t)dt

= −
N

∑
k=1

mk

∫ T

0

[
d
dt

ϕ(Xk(t), t)−
(
∇Xk ϕ(Xk(t), t)

)
Ẋk(t)

]
dt

=
N

∑
k=1

mk ϕ(Xk(0), 0)

−
N

∑
k=1

mk

∫ T

0

[(
∇Xk ϕ(Xk(t), t)

) N

∑
j=1
j 6=k

mj∇G
(
Xk(t)− Xj(t)

)]
dt

= 〈µ(0), ϕ(·, 0)〉

−
∫ T

0

N

∑
k=1

mk∇Xk ϕ(Xk(t), t)
(
µ(t) ∗ ∇G

(
Xk(t)

))
dt

= 〈µ(0), ϕ(·, 0)〉 −
∫ T

0
〈µ(t),

(
µ(t) ∗ ∇G

(
Xk(t)

))
∇ϕ(·, t)〉dt

= 〈µ(0), ϕ(·, 0)〉 −
∫ T

0
〈
(
µ(t) ∗ ∇G

(
Xk(t)

))
µ(t),∇ϕ(·, t)〉dt

=
∫ T

0
〈div

[(
µ(t) ∗ ∇G

(
Xk(t)

))
µ(t)

]
, ϕ(·, t)〉dt.

Hence, we have

∫ T

0
〈∂tµ− div

[
µ
(
∇G ∗ µ

)]
, ϕ〉dt = 0,

which is the distributional formulation of the PDE,

∂µ

∂t
= div(µ∇G ∗ µ), (2.24)

which is the continuum counterpart of equation (2.22). Putting µ = ρ (the

population density, which could be a function or a distribution), we get:

∂ρ

∂t
= div(ρ∇G ∗ ρ), (2.25)

which is the Non-Local Continuum Interaction Equation. We refer to it as

the Non-Local Porous Medium Equation (NLPME). Let’s denote ν = ∇G ∗ ρ.

It has been shown that ν the continuos analogue of equation 2.21, which gives

the velocity of the kth organism
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In addition to equation (2.25), given the initial condition ρ(x, t) = ρ0(x), the

following properties hold.

1. If ρ0 = µ(0) =
N

∑
i=1

miδXi(0) (i.e the initial condition is a singular distri-

bution), then the solution to the problem is (a singular distribution):

ρ = µ(t) =
N

∑
i=1

miδXi(t) , with Xk(t) being solutions to the ODE with

initial conditions Xk(0)

2. If G ∈ C2(Rd) and ρ(0) ∈ L1(Rd), then the solution to the problem is

always a function (not singular distributions) ∈ L1(Rd × [0,+∞))

Wrapping up on this chapter, it can be shown that, for:

• For a deterministic diffusion with Ẋi = 1
N2

(
1

Xi−Xi−1
− 1

Xi+1−Xi

)
, if we

consider the empirical measure µ(t) =
N

∑
i=1

miδXi(t) and let N → +∞, we

recover the heat equation: ∂tµ = ∂xxµ

In the remaining parts of this thesis, our interest is to use computational

methods to show that, if one considers the NLPME and lets N → +∞, then

the PME can be recovered within a reasonable margin of error.



Chapter 3
Numerical Analysis 1:

Simulating the PME and

NLPME

Moving on to the main purpose of this thesis, in this chapter, we present

elaborate explanations of the procedure used to implement an approximation

scheme for the PME and NLPME for various initial conditions.

3.1 Simulating the PME with the Finite-Difference

Method

The problem under study is the PME imposed with a Dirichlet boundary

and various initial conditions. First, we use a Barenblatt distribution for the

organisms’ initial density. This enables us to check that PME is well simulated

since we expect the solution to remain a Barenblatt. In order to compare later

with the NLPME, we also simulate the PME with a constant initial condition

and a triangular one as well. We use a finite-difference approach as the approx-

imation procedure for the problem.

More formally, for Ω = [−a, a]× [0, T] for any choice of a, T > 0, the problem

26
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under consideration is:



∂u
∂t = ∂2u2

∂x2 for (x, t) ∈ Ω

u(t,−a) = 0 for t ∈ [0, T]

u(t, a) = 0 for x ∈ [−a, a]

u(0, x) = ui(0) for x ∈ [−a, a]

(3.1)

with ui defined in the following. For i = 1, we use a Barenblatt initial condition

(BIC):

u1 =


1
2

(
c− |x|

2

2

)
for −

√
2c < x <

√
2c : c > 0

0 otherwise
, (3.2)

for i = 2, we use the constant initial condition (CIC):

u2 =

1 for − 1
2 < x < 1

2

0 otherwise
, (3.3)

and for i = 3, we use the triangular initial condition (TIC):

u3 =

1− |x| for − 1 < x < 1

0 otherwise
. (3.4)

Its important to note from the above initial conditions that, u2 and u3 have a

total mass (or L1 norm) of 1.

3.1.1 Procedure with the Barenblatt Initial Density

The finite difference scheme formulation we use here is based on a lecture

provided by Prof. Jens Struckmeier. Prior to defining a scheme for the PME,

we discretize the domain by introducing a rectilinear grid on Ω with sides

parallel to the x and t axes. That is, on the time interval [0, 1] , we define the

time grid with k as grid size and T as number of time steps.
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Gk = {tn = nk : k > 0, n = 0, 1......, T}

and on the spatial interval (−a, a), we define the spatial with grid size h as

Gh = {xm = mh : h > 0, m ∈ Z}

together with the two boundary points

∂G = {−a, a}

In particular, the functions satisfying the differential equations and the cor-

responding difference equation defined in the following will be denoted by

un
m and Un

m respectively. Where the indices m and n denote the grid points

xm = mh and tn = nk. So, un
m = u(tn, xm) and Un

m = U(tn, xm).

Using the Explicit Euler Method defined on Gk ×Gh ∪ ∂Gh , the second order

term of the PME in problem 3.1 gives

∂2u
∂x2 ≈

(Un
m+1)

2 − 2(Un
m)

2 + (Un
m−1)

2

h2

while the first order term gives

∂u
∂t
≈ Un+1

m −Un
m

k

Hence, the corresponding difference equation for the PME is given by

Un+1
m
k

=
Un

m
k

+
Un

m+1 − 2Un
m + Un

m−1
h2

Simplifying with λ = k
h2 , we obtain

Un+1
m = Un

m + λ(Un
m+1 − 2Un

m + Un
m−1)

Again from problem 3.1, we have the boundary conditions: U(tn,−a) = 0 and

U(tn, a) = 0 ∀ n; and the initial condition Ui(0, xn) for any of the i′s under

consideration. One can observe without much difficulty that, the problem

has now been transformed to a system of linear equations. Moreover, if we



3.1. SIMULATING THE PME WITH THE FINITE-DIFFERENCE METHOD 29

denote the number of spatial grid point by N, which is particularly the number

of organisms (or particles) under study in the given spatial domain, then for

(tn, xm) ∈ Gk × Gh ∪ ∂Gh, the approximated solution to the problem gives

a matrix of dimension T × N, which we denote by UP. Implementing the

finite-difference scheme and solving the linear sytem, we obtain UP via the

following lines of pseudocode.

Algorithm 1 : Using the Explicit Euler Method to simulate the PME with the BIC -

Part 1

1: procedure set parameters for the simulation

2: c = 1
16

3: N = 100

4: T = 500

5: a = 1

6: xmax = a

7: xmin = −a

8: h =
xmax − xmin

N − 1
. Assume equal spatial grid size

9: k = 1
T−1 . Assume equal time step size

Require: x = xmin : h : xmax . Descretize spatial domain

10: lx = length(x)

Require: t = 0 : k : 1 . Descretize time domain

11: end procedure

12: procedure construct the barenblatt initial condition

13: for i← 1 : N do

14: if −
√

2c ≤ x(i) ≤
√

2c then

15: U1(i) = 1
2

(
c− x(i)2

2

)
16: else

17: U1(i) = 0

18: end if

19: end for

. This algorithm continues with algorithm 2 on the next page.
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Algorithm 2 : Using the Explicit Euler Method to simulate the PME with the BIC -

Part 2
20: end procedure

21: procedure set the initial and boundary densities

22: UP(1, 1 : N) = U1 . Set U1 to initial values of UP

23: UP(:, 1) = 0 . Set boundary values of UP

24: UP(:, lx) = 0

25: end procedure

26: procedure solve the linear system

27: for n← 1 : T do

28: UP(n + 1, 2 : N − 1) = UP(n, 2 : N − 1) + λ(U2
P(n, 1 : N − 2) −

2U2
P(n, 2 : N − 1) + U2

P(n, 3 : N))

29: end for

30: end procedure

Figure3.1 illustrates the result of the simulation.

Figure 3.1: Showing an approximated solution for the PME with a Barenblatt Initial data:

solving with the Explicit Euler method.
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From figure 3.1, we observe that the algorithm simulates the behaviour of

the PME well. This is because, as in the actual case of the PME, the initial

distribution of the organisms’ density reduces while spreading to other parts

of the domain. However, we also observe that, the peak of the solution is

still quite high at the end of the simulation. This may be quite problematic.

Hence, to take care of this set back which arises from using equal time steps,

we consider an alternative way of solving the problem.

Another useful approach in formulating a linear system for the problem is

by using the Explicit Euler scheme together with the Runge Kutta Method.

Henceforth, we refer to this approach as ”Approach Two” . By this approach,

we reduce the PDE first to an ODE in the time variable. Next, we solve the

resulting ODE with an in-built ODE solver in Matlab which uses the Runge

Kutta method and comes in different varieties. Here, we use the one called

ODE45 and allow for adaptive time steps. The advantage is that, unlike in the

previous approach where we use equal time steps, here, each time step is cho-

sen such that there is a maximum change in UP as a result of the change in time.

To explain further, applying the Explicit Euler Scheme defined on the set:

Gh ∪ ∂Gh to the second order term of the PME gives:

du
dt
≈

U2
m+1 − 2U2

m + U2
m−1

h2 . (3.5)

Next, we implement and store equation (3.5) as function in Matlab and then

solve (or numerically integrate) it using the solver ODE45.
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Algorithm 3 : Using ”Approach Two” to simulate the PME with the BIC

1: procedure set variables for the simulation

2: global N x h l . Make global variables

3: c = 1
16 . Set parameters

4: N = 100

5: T = 500

6: xmax = 1

7: xmin = −1

8: h =
xmax − xmin

N − 1
. Assume equal spatial grid size

Require: x = xmin : h : xmax . Descretize spatial domain

9: Let length(x) = l

10: for i← 1 : N do . Construct the initial data

11: if −
√

2c ≤ y(i) ≤
√

2c then

12: U1(i) = 1
2

(
c− y(i)2

2

)
13: else

14: U1(i) = 0

15: end if

16: end for

17: end procedure

18: procedure implement a function for equation 3.5

19: function PMEBar(t, UP)

20: global N x h l . Make global variables

21: dUP = zeros(l, 1) . column vector, Set boundary data

22: for i← 2 : l − 1 do . Build the ODE’s

23: dUP =
U2

P(i− 1)− 2U2
P(i) + U2

P(i + 1)
h2 . A vector

24: end for

25: end function

26: end procedure

27: procedure solve the system of ode’s

28: [NT, UP] = ode45(@PMEBar, [0, T], U1) . Use the ODE solver, NT is a

vector containing all time grid points

29: end procedure
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Figures 3.2 and 3.3 illustrate the results of the simulation.

Figure 3.2: Approximated solution for the PME with a Barenblatt Initial data: solving with

both Explicit Euler and Runge Kutta methods

Rescaling the axes in order to visualize the final solution better, we obtain the

following figure.

Figure 3.3: A rescaled version of figure 3.2, showing the final distribution of the organisms’

densities.
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Comparing the two approaches used: Explicit Euler only and Explicit Euler

with Runge Kutta, figures 3.1 and 3.3 demonstrate that, within the same sim-

ulation time, the latter approach gives a solution whose maximum value is

much more smaller than in the former. Based on this observation, we may

conclude that, the latter approach integrates the PDE faster.

Therefore, we subsequently use ”Approach Two” with adaptive time steps

for our simulations. In addition, since the code for ”Approach Two is more

versatile, even in cases where a time step-by-time step analysis is required, we

use ”Approach Two” with equal time steps and increase the simulation time to

take care of the set back that arises from using the equal time steps.

3.1.2 Using the Constant Initial density

1

Now, we consider the initial condition u2, as defined in equation 3.3. After

simulating with u2, we also consider another it’s other variation which de-

scribes the organisms’ population density as a mass that is concentrated in a

small volume, like a Dirac-δ function. In application, one may see this as the

distribution of organisms at the moment when they are produced (or prior

to dispersion). The benefit of considering this other initial density is that, we

are also able to check whether or not the results are affected as a result of

using concentrated initial densities. To model the ”Dirac-δ-like” function, we

introduce the parameter α = 1
N and re-write the initial density as:

u2 =


1
α for − α

2 < y < α
2

0 otherwise
(3.6)

The following algorithms illustrate the set of pseudocode that we use to obtain

UP. Due to the non-smoothness of the initial density, we use the ODE solver

ODE23s instead.1

1https://it.mathworks.com/help/matlab/math/choose-an-ode-solver.html
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Algorithm 4 : Using ”Approach Two” to simulate the PME with the constant initial

density- Part 1

1: procedure set variables for the simulation

2: global h lx . Make global variables

3: N = 100

4: T = 500

5: a = 1

6: α = 1
N

7: xmax = a

8: xmin = −a

9: h =
xmax − xmin

N − 1
. Assume equal spatial grid size

Require: x = xmin : h : xmax . Descretize spatial domain

10: lx = length(x)

11: end procedure

12: procedure implement a function for equation 3.5

13: function PMEConst(t, UP)

14: global N x h l

15: dUP = zeros(lx, 1) . column vector, Set boundary data

16: for i← 2 : lx− 1 do . Build the ODE’s

17: dUP =
U2

P(i−1)−2U2
P(i)+U2

P(i+1)
h2

18: end for

19: end function

20: end procedure

21: procedure conctruct the constant initial density

22: for i← 1 : N do

23: if − α
2 ≤ x(i) ≤ α

2 then

24: U2(i) = 1
α

25: else

26: U2(i) = 0

27: end if

. This algorithm continues on the next page
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Algorithm 5 : Using ”Approach Two” to simulate the PME with the constant initial

density- Part 2

28: end for

29: end procedure

30: procedure Solve the system of ode’s

31: [NT, UP] = ode23s(@PMEConst, [0, T], U2). Use the ODE solver, NT is a

vector containing all the time grid points used

32: end procedure

Figures 3.4 and 3.5 depict the results for simulating with α = 1 (non-concentrated

constant initial density).

Figure 3.4: An approximated solution for the PME with the constant Initial density: solving

with both Explicit Euler and Runge Kutta methods
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Figure 3.5: A rescaled version of figure 3.4, showing clearly the final density.

In the case of the concentrated constant initial density (α = 1
N ), we obtain the

following results.

Figure 3.6: An approximated solution for the PME with the Dirac ”δ-like” initial density:

solving with both Explicit Euler and Runge Kutta methods
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Figure 3.7: A rescaled version of figure 3.6, showing clearly the final density.

The above figures indicate that using a concentrated constant initial density

here does not alter the results of the simulation significantly.

3.1.3 Using a Triangular Initial Density

Finally, we consider the triangular initial density u3 (3.4), which is by far more

regular than the previous one used. In particular, it is Lipschitz continuous

while the constant one is not even continuous. In this case also, we simulate

for a concentated version of initial density, given by:

u3 =


1
α

(
1− 1

α |x|
)

for − α < x < α

0 otherwise
. (3.7)
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Algorithm 6 : Using ”Approach 2” to solve the PME with a Triangular initial

density- Part 1

1: procedure set variables for the simulation

2: global h lx . Make global variables

3: N = 101

4: T = 200

5: α = 1
N

6: a = 5

7: xmax = a

8: xmin = −a

9: h =
xmax − xmin

N − 1
. Assume equal spatial grid size

Require: x = xmin : h : xmax . Descretize spatial domain

10: lx = length(x)

11: end procedure

12: procedure conctruct the constant initial density

13: for i← 1 : N do

14: if −α < x(i) < α then

15: U3(i) = 1
α −

1
α2

∣∣∣x(i)∣∣∣
16: else

17: U3(i) = 0

18: end if

19: end for

20: end procedure

21: procedure implement a function for equation 3.5

22: function PMETri(t, UP)

23: global h lx

24: dUP = zeros(lx, 1) . Column vector, set boundary data

. This algorithm continues on the next page
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Algorithm 7 : Using ”Approach 2” to solve the PME with a Triangular initial

density- Part 2

25: for i← 2 : lx− 1 do . Build the ODE’s

26: dUP =
U2

P(i−1)−2U2
P(i)+U2

P(i+1)
h2

27: end for

28: end function

29: end procedure

30: procedure Solve the system of ode’s

31: [NT, UP] = ode23s(@PMETri, [0, T], U3) . Use the ODE solver, NT is a

vector containing all the time grid points used

32: end procedure

Simulating with α = 1 (non-concentrated initial density), we obtain the follow-

ing result.

Figure 3.8: An approximated solution for the PME with the triangular initial density: solving

with both Explicit Euler and Runge Kutta methods.

Also, we obtain the following results for simulating with α = 1
N .
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Figure 3.9: An approximated solution for the PME with the triangular initial density: solving

with both Explicit Euler and Runge Kutta methods.

Figure 3.10: A rescaled version of figure 3.9 showing clearly the final solution.

Comparing the results, we observe that simulating on the domain [−5, 5] (i.e

a = 5) gives the maximum value for the final density to be: 0.1049 when

we use the concentrated triangular initial density and 0.0668 for the non-

concentrated one. However, as seen earlier, simulating with a = 1 rather shows
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an insignificant change in the maximum value: 0.0045 for the concentated initial

density and 0.0044 for the non-concentrated one. Indeed, this observation

suggests that in generally for PME, using a concentrated initial density has an

effect on the results (the final density) especially in a bigger domain.

3.2 Similating the NLPME with the Particle Method

Our aim now is to obtain an approximated solution for the NLPME. Unlike

in the previous section where we simulated the PME with a classical method,

here, we simulate the NLPME via the so called particle method. As in the

case of the PME, we simulate with the constant initial distribution of the

organisms’ density; followed by the triangular one. Finally, we also simulate

for concentrated versions of the initial densities and then compare the results.

3.2.1 Procedure Using a Constant Distribution of Initial Den-

sity.

Let’s consider a total of N + 1 organisms with the initial density:

U0 =

1 for − 1
2 < x < 1

2

0 for x ∈ {− 1
2 , 1

2}
. (3.8)

One can easily show that U0 ∈ L1([− 1
2 , 1

2 ]) ∩ L∞([− 1
2 , 1

2 ]) ∩ Cc([− 1
2 , 1

2 ]). To

initiate the particle method, we need to first find the locations of the organisms

such that, their initial density is given by U0. This is known as the atomization

procedure. In this case of a constant density, one can easily obtain this by

splitting the support of the initial density into N intervals with grid points:

{x0, ..., xN} representing the initial locations of the organisms. Assumming an

equal distribution of mass in each interval, then the intervals must be equal

with a density of 1 in each one of them. We illustrate this initial step with

figure (3.11).

Formally, the total mass of the organisms is given by:
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∫ 1
2

− 1
2

U0 = U0

= 1.

Therefore, the mass within each interval is:
∫ xi+1

xi

U0 = xi+1 − xi =
1
N

, since

we are assuming an equal distribution. In addition to the above, we assume

that the law of conservation of mass, M holds. That is, M(0) = M(t) ∀ t ∈ [0, T],

for a large enough T as defined previously.

Figure 3.11: Showing the initial location of organisms with their constant density in [− 1
2 , 1

2 ].

Now, for the dynamics of the organisms, we recall from equation (2.21) that,

for a non-local interaction, the velocity of the ith organism is given by:

ẋi(t) = −
N

∑
j=0
j 6=i

miG′(xi(t)− xj(t)) ∀ i = 0, ..., N, (3.9)

Where mi is the mass of the ith organism and G is the repulsion potential which

describes dispersal among the organisms. As mentioned earlier, ν = G′ ∗ ρ

is the continuous analogue of ẋi(t). Particularly, while ν is obtained via the

Eulerian approach of considering the population density, ẋi(t) is obtained via

the Lagrangian approach of considering each individual embedded in a finite
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population of organisms of the same kind. [10]

In effect, the two different approaches (Lagrangian and Eulerian) describe the

velocity at different scales: the finer scale description based on the (stochastic or

deterministic) velocities of individuals (microscale) and the larger scale descrip-

tion based on the (continuum) velocities of population densities (macroscale).

[10] As demonstrated by Morale et. al., we consider a multiscale approach here

since the aim of our analysis is to provide a numerical framework for bridging

the gap between the two different scales: the microscale which represents a

non-local interaction (i.e the NLPME); and the macroscale which represent a

local interaction (i.e the PME).

With the multiscale approach, to consider a rigorous limit, we also include the

concept of mesoscale as introduced in [10, 11, 12]. That is, we view the velocity

in a scale which is much larger than the microscale and much smaller than the

macroscale, so that as the number of individuals increases, at the mesoscale

we have a sufficient number of particles so that a law of large numbers may

still be applied. The mesoscale can be obtained by a suitable rescaling of the

potential function modelling the interaction (dispersion) among organisms.

As mentioned in subsection 2.1.1, the interaction among particles is mathe-

matically modelled by an interaction potential which depends on the distance

between any two organisms. As such, the range of the potential depends on

the scale of the interaction. Since we are considering a dispersion potential, G

here, we need to model the dependance of G on the three scales: microscale,

mesoscale and macroscale. Mathematically, one way to distinguish between

different scales, in the above sense, is based on the choice of a scaling parame-

ter in G. [10]

We denote the scaled version of potential by Gε with ε being its scaling parame-

ter which also represents its range. This means that, each organism repels other

organisms that are within a radial distance of ε away from it. In particular,

considering organisms in Rd, Gε(x) = ε−1G(ε
−1
d x) is the appropriate scaling
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for the potential. [10]

Moreover, a suitable choice for ε is: ε = 1
Nβ with β ∈ [0, 1] called the scal-

ing coefficient. Moreover, if β = 0, then we have a macroscale with the

McKean-Vlasov interaction (weak), a microscale with the hydrodynamic inter-

action (strong) if β = 1 and finally, a mesocsale with a moderate interaction if

β ∈ (0, 1). [10]

Hence, by the multiscale approach, a more suitable equation for the velocity of

the ith particle is:

ẋi(t) = −
N

∑
j=0
j 6=i

miG′ε(xi(t)− xj(t)) ∀ i = 0, ..., N. (3.10)

To proceed with the simulations, we need to first substitute an explicit for-

mular for G into the above equation. In this study, we focus on two types of

dispersion potentials: the Gaussian and Morse potentials.

The Gaussian Potential is given by:

G(x) =
1√
π

exp(−x2).

Therefore, its scaled form is: Gε(x) = Nβ
√

π
exp(−N2βx2) with G′ε = − 2N3βx√

π
exp(−N2βx2).

Equation (3.10) implies that, using the Gaussian potential, the velocity if the ith

organism is given by:

ẋi(t) =
2N3β−1
√

π

N

∑
j=0
j 6=i

(xi − xj) exp(−N2β(xi − xj)
2) ∀ i = 0, ..., N. (3.11)

The Morse potential is also given by:

G(x) =
1
2

exp(−|x|).

Its scaled form is: Gε(x) = Nβ exp(−Nβ|x|) with G′ε(x) = −sign(x)N2β

2 exp(−Nβ|x|).

Hence, equation (3.10) gives:



3.2. SIMILATING THE NLPME WITH THE PARTICLE METHOD 46

ẋi(t) =
N2β−1

2

N

∑
j=0
j 6=i

sign(xi − xj) exp(−Nβ|xi − xj|) ∀ i = 0, ..., N. (3.12)

With the above formulations, we are now ready to begin the simulations.

In the following lines of pseudocode, based on the type of potential under

consideration, we implement the velocity functions in equation (3.11) or (3.12).

After solving the system of ODE’s we obtain the final locations, Xi(T) for each

organism after dispersion. Ultimately, we make use of the final locations to

reconstruct the final density of the ith organism using the formular:

UN(i) =
N

∑
j=0
j 6=i

2mi
|Xi−1 − Xi + 1|1[xi−1(t), xi+1(t)](x(t)) for i = 1, ...N − 1.

As clearly seen in the above formular, we use a central difference approach

or better still, the Voronoi tessellation (in one dimension) for the density

reconstruction. This approach gives the symmetric final density that we desire.

However, the price we pay for it is that, we only obtain the densities of N − 1

(out of the N + 1) organisms. To compensate for the loss, we compute the

densities of the first and last organisms using a first order approximation given

by: UN(1) =
UN(2)

2 and UN(N + 1) = UN(N)
2 .

3.2.2 Simulating with the Gaussian Potential

Algorithm 8 : NLPME with the Gaussian potential and the constant initial density

- Part 1
1: procedure set the variables for the simulation

2: global N β . global variables

3: N = 100

4: T = 200

5: α = 1

6: β = 0.1 . A scaling parameter, β ∈ (0, 1)

7: m = 1
N . Assume equal mass for each organism

. We continue this algorithm in algorithm 9 on the next page.
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Algorithm 9 : NLPME with the Gaussian potential and the constant initial density

- Part 2
8: xmax = α

2

9: xmin = − α
2

10: h = 2xmax
N . Assume equal spatial grid size

Require: x0 = xmin : h : xmax . Initial position of organisms

11: length(x0) = lx

Require: U0 such that . Initial density

12: for i← lx do

13: if − α
2 < x0(i) < α

2 then

14: U0(i) = 1
α

15: else

16: U0(i) = 0

17: end if

18: end for

19: end procedure

20: procedure : using the gaussian to implement the organisms’ velocity

function

21: function Gauss1(t, x)

22: global N β

23: dx = zeros(N, 1) . Structure of the velocity: a column vector

24: for i← 1 : N do

25: Hx = x(i)− x

26: V(i) = 2N3β−1
√

π ∑
i

Hx. exp−
(

N2β(Hx).2
)

27: end for

28: dx = Vt . Transpose V

29: end function

30: end procedure

31: procedure Solve the system of ode’s

32: [NT , Xt] = ode23s(@Gauss1, [0, T], U0) . Use the ODE solver, NT is a

vector containing all time grid points

. This algorithm continues on the next page



3.2. SIMILATING THE NLPME WITH THE PARTICLE METHOD 48

Algorithm 10 : NLPME with the Gaussian potential and the constant initial density

- Part 3
33: lt = length(NT)

34: end procedure

35: procedure reconstruct the density

36: UN = zeros(lt, lx) . Building the structure of the density matrix

37: for i← 2 : lx− 1 do

38: for j← 1 : lt do

39: UN(j, i) = 2m
Xt(k,i+1)−Xt(k,i−1) . Using a central difference

40: end for

41: end for

42: end procedure

As seen in line 32 of the algorithm, we use adaptive time steps here in order to

obtain our results faster. The following figures illustrate the simulation result

for some values of the scaling coefficient, β.

Figure 3.12: Showing an approximated solution for the NLPME with: the Gaussian potential,

the constant initial condition in [− 1
2 , 1

2 ] and β = 0.9.
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Figure 3.13: Showing an approximated solution for the NLPME with: the Gaussian potential,

the constant initial condition in [− 1
2 , 1

2 ] and β = 0.5.

Figure 3.14: Showing an approximated solution for the NLPME with: the Gaussian potential,

the constant initial condition in [− 1
2 , 1

2 ] and β = 0.1.

To check if a concentrated version of the initial condition would give a different

result or not, we also perform the above simulation with a ”Dirac δ-like” initial

density. That is, for α = 1
N , we use as initial density:
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U0 =


1
α for − α

2 < x < α
2

0 for x ∈ {− α
2 , α

2}
, (3.13)

Figure 3.15: Showing the ”Dirac δ-like” initial condition in the domain [− α
2 , α

2 ] with β = 0.9.

One can easily check that, all the computations shown for the non-concentrated

version still holds here. In particular, the total mass of the organisms is still

equal to 1. The simulation results are as follows.
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Figure 3.16: Showing an approximated solution for the NLPME with: the Gaussian potential,

a ”Dirac δ-like” initial density in [− α
2 , α

2 ] and β = 0.9 .

Figure 3.17: Showing an approximated solution for the NLPME with: the Gaussian potential,

a ”Dirac δ-like” initial density in [− α
2 , α

2 ] and β = 0.5.
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Figure 3.18: Showing an approximated solution for the NLPME with: the Gaussian potential,

a ”Dirac δ-like” initial density in [− α
2 , α

2 ] and β = 0.1.

Comparing the above figures with the previous, we get the indication that

starting with a concentated constant density does not alter the results of the

simulation with a non-concentrated initial density.

3.2.3 Simulating with the Morse Potential

Next, considering the Morse potential and still using the constant distribution

of the initial density, we simulate the NLPME in a similar way as before.
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Algorithm 11 : NLPME with the Morse potential and the constant initial density -

Part 1

1: procedure set the variables for the simulation

2: global N β . global variables

3: N = 100

4: T = 200

5: α = 1

6: β = 0.1 . A scaling parameter, β ∈ (0, 1)

7: m = 1
N . Assume equal mass for each organism

8: xmax = α
2

9: xmin = − α
2

10: h = xmax
N . Assume equal spatial grid size

Require: x0 = xmin : h : xmax . Initial position of organisms

11: length(x0) = lx

Require: U0 such that . Initial density

12: for i← lx do

13: if − α
2 < x0(i) < α

2 then

14: U0(i) = 1
α

15: else

16: U0(i) = 0

17: end if

18: end for

19: end procedure

20: procedure : using the morse potential to implement the organisms’

velocity function

21: function Morse1(t, UN)

22: global N β

23: dx = zeros(N, 1)

. We break this algorithm here in order to continue on the next page.
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Algorithm 12 : NLPME with the Morse potential and the constant initial density -

Part 2
24: for i← 1 : N do

25: Hx = |x(i)− x| . A vector

26: sgnx = (x(i)− x)./Hx . Vector containing normalized

x(i)− x(k)

27: sgnx(i) = 0 . Get rid of the 0
0 terms in the sgnx vector

28: V(i) = N2β−1

2 ∑
i

sgnx. exp−(Nβ Hx)

29: end for

30: dx = Vt . Vt is the transpose of V

31: end function

32: end procedure

33: procedure Solve the system of ode’s

34: [NT , Xt] = ode23s(@Morse1, [0, T], U0) . Use the ODE solver with

adaptive time steps

35: length(NT) = lt

36: end procedure

37: procedure Reconstruct the density

38: UN = zeros(lt, lx) . Building the structure of the density matrix

39: for i← 2 : lx− 1 do

40: for j← 1 : lt do

41: UN(j, i) = 2m
Xt(k,i+1)−Xt(k,i−1) . Using a central difference

42: end for

43: end for

44: UN(:, 1) = UN(:,2)
2

45: UN(:, lx) = (UN(:,lx−1)
2 . Set a boundary densities

46: end procedure

The following figures illustrate the simulation results for some values of β.
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Figure 3.19: Showing an approximated solution for the NLPME with: the Morse potential, the

constant initial density in [− 1
2 , 1

2 ] and β = 0.9.

Figure 3.20: Showing an approximated solution for the NLPME with: the Morse potential, the

constant initial density [− 1
2 , 1

2 ] and β = 0.5.
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Figure 3.21: Showing an approximated solution for the NLPME with: the Morse potential, the

constant initial density in [− 1
2 , 1

2 ] and β = 0.1.

Additionally, repeating the above simulation for a concentrated initial density,

i.e Dirac δ-like density, we obtain the following results for some values of β.

Figure 3.22: Showing an approximated solution for the NLPME with: the Morse potential, the

Dirac δ-like initial density in [− α
2 , α

2 ] and β = 0.9.
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Figure 3.23: Showing an approximated solution for the NLPME with: the Morse potential, the

Dirac δ-like initial density in [− α
2 , α

2 ] and β = 0.5.

Figure 3.24: Showing an approximated solution for the NLPME with: the Morse potential, the

Dirac δ-like initial density in [− α
2 , α

2 ] and β = 0.1.

The above figures illustrate that, as in the case of the Gaussian potential, in this

case also, simulating with a concentrated constant initial density does not give

a different result from the simulation with the non-concentrated one.
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3.2.4 Procedure Using a Triangular Distribution of the Initial

Density

Now, we consider a triangular initial density which is compactly supported in

the domain [−1, 1] with the L1 norm (or mass) of 1, just as the constant initial

density.

U0 =

1− |x| for − 1 < x < 1

0 otherwise
. (3.14)

By the particle method, the organisms are initially located at points such that

their density (initial) is given by U0. Hence, using the simplicity assumption of

the mass of each organism being 1
N , one may compute their initial locations as

follows.

Assuming that there exists only one organisms in each interval, then the mass

contained between any kth position and its subsequent one is given by:

1
N

=
∫ k+1

k
1− |x| dx. For x < 0, we get

1
N

=
∫ k+1

k
1 + x dx = xk+1 +

xk+1
2
− xk −

xk
2

=⇒ 2
N

= (xk+1 + 1)2 − (xk + 1)2

=⇒ xk+1 = ±
√

2
N

+ (xk + 1)2 − 1

Particularly for −1 ≤ xk < 0, the addmissible solution is:

xk+1 =

√
2
N

+ (xk + 1)2 − 1.

Also, for x > 0, we have:

1
N

=
∫ k+1

k
1− x dx = xk+1 −

xk+1
2
− xk +

xk
2

=⇒ 2
N

= −(xk+1 − 1)2 + (xk − 1)2

=⇒ xk+1 = ±
√
(xk − 1)2 − 2

N
+ 1
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Particularly for 0 < xk ≤ 1, the addmissible solution is:

xk+1 = −
√
(xk − 1)2 − 2

N
+ 1.

Therefore, initializing with xk = −1, the location of the 1st organism, we

can compute the locations of the remaining N − 2 organisms through an

interpolation procedure.

Figure 3.25: Showing the initial location of the organisms and their triangular density in the

domain [−1, 1].

Using the above initial density, we simulate the NLPME again with the Gaus-

sian and Morse potentials.

3.2.5 Simulating with the Gaussian Potential

Algorithm 13 : NLPME with the Gaussian potential and a triagular initial density-

Part 1
1: procedure set the parameters for the simulation (N, T, β, m, x0, U0)

2: global N β . Make global variables

3: N = 101

4: T = 200

. We continue this algorithm with algorithm 14 on the next page.
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Algorithm 14 : NLPME with the Gaussian potential and a triagular initial density-

Part 2

5: β = 0.1 . Scaling parameter, β ∈ (0, 1)

6: m = 1
N . Assume uniform mass of organisms for simplicity

7: x0(1) = −1 . Initial location of 1st and Nth organisms

8: x0(N) = 1

Require: x0 such that

9: for k← 1 : N − 2 do

10: if x0(k) < 0 then

11: x0(k + 1) =

√(
x0(k) + 1

)2
+ 2

N − 1

12: else

13: x0(k + 1) = −
√(

x0(k)− 1
)2
− 2

N + 1

14: end if

15: end for

16: U0 = 1− |x0|

17: h = x0(2 : N)− x0(1 : N − 1)

18: end procedure

19: procedure : using the gaussian to implement the organisms’ velocity

function

20: function Gauss1(t, x)

21: global N β

22: dx = zeros(N, 1) . Structure of the velocity: a column vector

23: for i← 1 : N do

24: Hx = x(i)− x

25: V(i) = 2N3β−1
√

π ∑
i

Hx. exp−
(

N2β(Hx.2)
)

. Use derivative of

scaled G. kernel

26: end for

27: dx = Vt . Transpose V

28: end function

29: end procedure

. We continue this algorithm with algorithm 15 on the next page.
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Algorithm 15 : NLPME with the Gaussian potential and a triagular initial density-

Part 3

30: procedure Solve the system of ode’s

31: [NT , Xt] = ode23s(@Gauss1, [0, T], U0) . Use the ODE solver with

adaptive time steps

32: length(NT) = lt

33: end procedure

34: procedure Reconstruct the densities(Xt, UN)

35: UN = zeros(lt, lx) . Building the structure of the density matrix

36: for i← 2 : lx− 1 do

37: for j← 1 : lt do

38: UN(j, i) = 2m
Xt(k,i+1)−Xt(k,i−1) . Using a central difference

39: end for

40: end for

41: end procedure

42: U(:, 1) = 0.5.U(:, 2) . Setting a first order boundary condition

43: U(:, lx) = 0.5.U(:, lx− 1)

The following are results for some values of β.
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Figure 3.26: Showing an approximated solution for the NLPME with: the Gaussian potential,

a triangular initial density in the domain [−1, 1] and β = 0.9 .

Figure 3.27: Showing an approximated solution for the NLPME with: the Gaussian potential,

a triangular initial density in the domain [−1, 1] and β = 0.5 .
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Figure 3.28: Showing an approximated solution for the NLPME with: the Gaussian potential,

a triangular initial density in the domain [−1, 1] and β = 0.1 .

As before, we also repeat the above simulation for the concentrated triangular

initial condition. In order to maintain the total mass of 1, one can show that

the rescaled triangular initial density is given by:

U0 =


1
α

(
1− 1

α |x|
)

for − α < x < α

0 for x ∈ {−α, α}
. (3.15)

Moreover, given that the initial location of the 1st particle is −α, we can obtain

the initial locations of the successive N − 2 organisms from the interpolation

equations:

xk+1 = −
√(

xk − α
)2
− 2α2

N
+ α for 0 < xk ≤ α

and

xk+1 =

√(
xk + α

)2
+

2α2

N
− α for − α ≤ xk < 0.

Again, the initial locations of the organisms are computed as before.
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Figure 3.29: Showing the initial location of the organisms and their triangular density in the

domain [−ε, ε].

After simulating, we observe from the following figures that, the results here

do not vary with the results obtained from using the non-concetrated triangular

initial density.

Figure 3.30: Showing an approximated solution for the NLPME with: the Gaussian potential,

the triangular initial density in [−α, α] and β = 0.9 .
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Figure 3.31: Showing an approximated solution for the NLPME with: the Gaussian potential,

the triangular initial density in [−α, α] and β = 0.5 .

Figure 3.32: Showing an approximated solution for the NLPME with: the Gaussian potential,

the triangular initial density in [−α, α] and β = 0.1 .
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3.2.6 Simulating with the Morse Potential

Algorithm 16 : NLPME with the Morse potential and a triagular initial density-

Part 1

1: procedure set the parameters for the simulation (N, T, β, m, x0, U0)

2: global N β . Make global variables

3: N = 100

4: T = 200

5: β = 0.1 . Scaling parameter, β ∈ (0, 1)

6: m = 1
N . Assume uniform mass of organisms for simplicity

7: x0(1) = −1 . Initial location of 1st and Nth organisms

8: x0(N) = 1

Require: x0 such that

9: for k← 1 : N − 2 do

10: if x0(k) < 0 then

11: x0(k + 1) =

√(
x0(k) + 1

)2
+ 2

N − 1

12: else

13: x0(k + 1) = −
√(

x0(k)− 1
)2
− 2

N + 1

14: end if

15: end for

16: U0 = 1− |x0|

17: h = x0(2 : N)− x0(1 : N − 1)

18: end procedure

19: procedure : using the morse potential to implement the organisms’

velocity function

20: function Morse1(t, UN)

21: global N β m lx

22: dx = zeros(N, 1) . Building the stucture of the velocity vector

. We continue this algorithm with algorithm 17.
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Algorithm 17 : NLPME with the Morse potential and a triagular initial density-

Part 2

23: for i← 1 : N do

24: Hx = |x(i)− x|

25: sgn = (x(i)− x)./Hx . Normalize x(i)− x(k)

26: sgn(i) = 0 . Get rid of the 0
0 terms in the sgn vector

27: V(i) = N2β−1

4 ∑
i

sgn. exp−
(Nβ Hx

2

)
28: end for

29: dx = Vt . Vt is the transpose of V

30: end function

31: end procedure

32: procedure Solve the system of ode’s : NLPMEGauss2(dx, Xt, UN)

33: [NT , Xt] = ode23s(@NLPMEMorse1, [0, T], U0) . Use the ODE solver

with adaptive time steps

34: length(NT) = lt

35: end procedure

36: procedure Reconstruct the densities(Xt, UN)

37: UN = zeros(lt, lx− 1) . Building the structure of the density matrix

38: for i← 2 : lx− 2 do

39: for j← 1 : lt do

40: UN(j, i) = 2m
Xt(k,i+1)−Xt(k,i−1) . Using a central difference

41: end for

42: end for

43: U(:, 1) = 0.5.U(:, 2) . Setting the boundary densities

44: U(:, lx) = 0.5.U(:, lx− 1)

45: end procedure
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The simulation results are as follows.

Figure 3.33: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−1, 1] and β = 0.9.

Figure 3.34: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−1, 1] and β = 0.5.
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Figure 3.35: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−1, 1] and β = 0.1.

Again, repeating the algorithm for a concentrated triangular density, we obtaind

the following results.

Figure 3.36: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−α, α] and β = 0.9.
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Figure 3.37: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−α, α] and β = 0.5.

Figure 3.38: Showing an approximated solution for the NLPME with: the Morse potential, the

triangular initial density in [−α, α] and β = 0.1.
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3.2.7 A comparison of the PME and the NLPME.

We conclude this chapter by comparing the simulation results of the PME

and the NLPME. For this, we make sure to set equal parameters for the two

simulations and plot their solutions together as shown in the figures below.

In particular, setting the parameter a = 10 (in the algorithm), we simulate the

PME in the interval [−10, 10] and set all initial densities set in the same way as

before. In addition, for a time step-by-time steps comparison, we use 200 equal

time steps within a period of 150 (units of time in Matlab).

Simulating with the Gaussian potential, for the constant initial density, we

obtain:

Figure 3.39: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.1.
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Figure 3.40: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.5.

Figure 3.41: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.9.

For the triangular initial density, we obtain:
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Figure 3.42: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.1.

Figure 3.43: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.5.
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Figure 3.44: Showing both UP and UN together at their first and final time step: for the

Gaussian with β = 0.9.

Also, simulating for the Morse potential with the constant initial density, we

get:

Figure 3.45: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.1.
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Figure 3.46: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.5.

Figure 3.47: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.9.

And for the triangular initial density, we get:
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Figure 3.48: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.1.

Figure 3.49: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.5.
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Figure 3.50: Showing both UP and UN together at their first and final time step: for the Morse

with β = 0.9.

From the figures above, it is quite clear that the Gaussian potential with scaling

coefficient, β = 0.1, justifies our hypothesis better. We accertain this observation

with an error analysis of the two solutions in the next chapter.



Chapter 4
Numerical Analysis 2: L1 Error

Analysis

In this chapter, we present the results for the numerical analysis of the L1 error

between the solutions: UP and UN . We analyse the error for various values of

the scaling parameter, β and the number of organisms, N.

4.1 A variation of the L1 error with β.

We begin by computing the error between the approximated solutions: UP

and UN . Reasonably, we compute it with respect to the L1 norm since both

solutions belong to that functional space. We obtain this by using the formular:

Error =
N

∑
i=1
|UP(end, i)−UN(end, i)|h; where h refers to the equal spatial step

size. As the formular indicates, the focus here is only on the final error simply

because the error reduces as the simulation time increases. Furthermore, we

simulate with both potentials at the same time and compare their results.

78
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4.1.1 L1 Error Analysis with the both potentials and the con-

stant initial density

Algorithm 18 : A variation of L1 error with β: using the constant initial density-

Part 1

1: procedure simulate for various values of β.

2: global N β ly h . Make global variables

3: count = 0

4: β = 0 . Scaling coefficent

5: while β < 0.8 do . For varying β

6: β = β + 0.1

7: count = count + 1

8: βspan(count) = β . Vector containing all values of β

9: N = 100

10: T = 200

11: α = 1

12: m = 1
N

13: procedure constructing the initial density for the pme

14: for i = 1 : ly do

15: if − α
2 < y0(i) < α

2 then

16: U0(i) = 1
α

17: else

18: U0(i) = 0

19: end if

20: end for

21: end procedure

. This algorithm continues on the next page.
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Algorithm 19 : A variation of L1 error with β: using the constant initial density-

Part 2

22: procedure solve the system of ode’s- runge kutta

23: options = odeset(′RelTol′, 1e− 4,′ AbsTol′, 1e− 4)

24: [Tp, Up] = ode23s(@PMEConst, tspan, U0, options)

25: [Tng, Xtg] = ode23s(′@NLPME′Gauss, tspan, x0, options)

26: [Tnm, Xtm] = ode23s(′@NPPLE′Morse, tspan, x0, options)

27: end procedure

28: procedure reconstruct UN with both potentials

29: UNg = zeros(lt, lx) . For the Gaussian

30: for i = 2 : lx− 1 do

31: for j = 1 : lt do

32: UNg(j, i) = 2m
Xtg(j,i+1)−Xtg(j,i−1)

33: end for

34: end for

35: UNg(:, 1) = 0.5.UNg(:, 2); UNg(:, lx) = 0.5.UNg(:, lx− 1)

36: UNm = zeros(lt, lx) . For the Morse

37: for i = 2 : lx− 1 do

38: for j = 1 : lt do

39: UNm(j, i) = 2m
Xtm(j,i+1)−Xtm(j,i−1)

40: end for

41: end for

42: UNm(:, 1) = 0.5.UNm(:, 2)

43: UNm(:, lx) = 0.5.UNm(:, lx− 1)

44: end procedure

45: procedure compute the L1 error with both potentials

46: Eg = |UNg(end, :)−UP(end, :)| . Error with Gaussian

47: L1g error(count) = h ∑(Eg)

48: Em = |UNm(end, :)−UP(end, :)| . Error with Morse

49: L1m error(count) = h ∑(Em)

50: end procedure

51: end while

52: end procedure
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For various values of β ∈ (0, 1), the L1 error varies as follows..

Figure 4.1: Showing the variation of the L1 error with the constant initial density β ∈ (0, 1)

for both Gaussian and Morse Potentials.

Similarly, for the triangular initial density, after replacing the following lines of

pseudocode in the above algorithm ?? and plotting the result, we obtain the

following figure.

Algorithm 20 : A variation of L1 error with β: using the triangular initial density-

Part 1
1: procedure spatial descretisation

2: h = 2xmax
N−1

3: y0 = xmin : h : xmax . For the PME

4: ly = length(y0)

Require: x0 such that . For the NLPME

5: for k← 1 : N − 2 do

6: if x0(k) < 0 then

7: x0(k + 1) =

√(
x0(k) + α

)2
+ 2

N − α

. This algorithm continues on the next page.
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Algorithm 21 : A variation of L1 error with β: using the triangular initial density-

Part 2
8: else

9: x0(k + 1) = −
√(

x0(k)− α
)2
− 2

N + α

10: end if

11: end for

12: lx = length(x0)

13: end procedure

14: procedure constructing the initial density for the pme

15: for i = 1 : ly do

16: if −α < y0(i) < α then

17: U0(i) = 1
α −

1
α2

∣∣∣x(i)∣∣∣
18: else

19: U0(i) = 0

20: end if

21: end for

22: end procedure

Figure 4.2: Showing the variation of the L1 error with the triangular initial density β ∈ (0, 1)

for both Gaussian and Morse Potentials.
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4.2 A variation of the L1 error with N

Now, setting the value of β as 0.1, we compute the error for some values of N,

the number of organisms.

Algorithm 22 : A variation of L1 error with N: using the constant initial density-

Part 1

1: procedure simulate for various values of N.

2: global N β ly h . Make global variables

3: count = 0

4: N = 0

5: while N < 500 do . For varying N

6: N = N + 50

7: count = count + 1

8: Nspan(count) = N . Vector containing all values of β

9: β = 0.1

10: T = 200

11: α = 1

12: m = 1
N

13: procedure time descretisation

14: t0 = 0

15: t f = 150

16: dt =
t f

T−1

17: tspan = t0 : dt : t f

18: lt = length(tspan)

19: end procedure

20: procedure spatial descretisation

21: h = 2xmax
N−1

22: y0 = xmin : h : xmax . For the PME

23: ly = length(y0)

. This algorithm continues on the next page.
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Algorithm 23 : A variation of L1 error with β: using the constant initial density-

Part 2

Require: x0 = − α
2 : α

N−1 : α
2 . For the NLPME

24: lx = length(x0)

25: end procedure

26: procedure constructing the initial density for the pme

27: for i = 1 : ly do

28: if − α
2 < y0(i) < α

2 then

29: U0(i) = 1
α

30: else

31: U0(i) = 0

32: end if

33: end for

34: end procedure

35: procedure solve the system of ode’s- runge kutta

36: options = odeset(′RelTol′, 1e− 4,′ AbsTol′, 1e− 4)

37: [Tp, Up] = ode23s(@PMEConst, tspan, U0, options)

38: [Tng, Xtg] = ode23s(′@NLPME′Gauss, tspan, x0, options)

39: [Tnm, Xtm] = ode23s(′@NPPLE′Morse, tspan, x0, options)

40: end procedure

41: procedure reconstruct UN with both potentials

42: UNg = zeros(lt, lx) . For the Gaussian

43: UNg(:, 1) = 0.5.UNg(:, 2); UNg(:, lx) = 0.5.UNg(:, lx− 1)

. This algorithm continues on the next page.
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Algorithm 24 : A variation of L1 error with β: using the constant initial density-

Part 3

44: for i = 2 : lx− 1 do

45: for j = 1 : lt do

46: UNg(j, i) = 2m
Xtg(j,i+1)−Xtg(j,i−1)

47: end for

48: end for

49: UNm = zeros(lt, lx) . For the Morse

50: for i = 2 : lx− 1 do

51: for j = 1 : lt do

52: UNm(j, i) = 2m
Xtm(j,i+1)−Xtm(j,i−1)

53: end for

54: end for

55: UNm(:, 1) = 0.5.UNm(:, 2)

56: UNm(:, lx) = 0.5.UNm(:, lx− 1)

57: end procedure

58: procedure compute the L1 error with both potentials

59: Eg = |UNg(end, :)−UP(end, :)| . Error with Gaussian

60: L1g error(count) = h ∑(Eg)

61: Em = |UNm(end, :)−UP(end, :)| . Error with Morse

62: L1m error(count) = h ∑(Em)

63: end procedure

64: end while

65: end procedure

Plotting the L1 error of both potentials against the vector Nspan defined algo-

rithm 22, we obtain the following figure.
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Figure 4.3: Showing the variation of the L1 error with the constant initial density and N for

both Gaussian and Morse Potentials.

And finally, for the triangular initial density, we again replace in the algorithm

above, the lines of peudocode in algorithm 20. After plotting the results, we

obtain the figure below.

Figure 4.4: Showing the variation of the L1 error with the triangular initial density and N for

both Gaussian and Morse Potentials.



Chapter 5
Conclusion

One can draw the following conclusions from our simulations.

1. In simulating the porous medium equation, using a concentrated initial

density has a significant effect on the results especially for large domains.

The results differ more as the domain gets increases.

2. In simulating the non-local porous medium equation, using a concen-

trated initial density does not show a significant effect on the final density.

This could be due to the fact that we did not define a domain for the

simulation but only specified the initial locations.

3. An analysis of results for the L1 error computations indicates that, we

record a minimal error for small values of the scaling parameter, β. In

addition, the Gaussian potential performs sligthly better for values of

β in the range (0, 0.5) while the Morse potential rather performs much

better for values in (0.5, 1). β = 0.5 seems to be a threshold value since it

appears that both potentials perform equally with it.

4. Using a more regular initial density (the triangular initial density) records

a lesser error as compared to using the less regular one (the constant

initial density).

5. While increasing the total number of organisms for the triangular initial

density shows a decrease in error, we record an oscillatory behavior of

87
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the error for the irregular constant initial density. However, it appears

that the amplitude of the oscillations decreases as the we simulate with

more particles.

Undoubtedly,our result is in line with the hypothesis of this thesis. As a future

endeavour to continue this work, should consider a more regular initial density

like a parabola. Also, gathering the appropriate machinery (computers) to

simulate for a very large number of organisms would definately be a useful

attempt.
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