
Universitat Autònoma de Barcelona

Master Thesis 1

An energy preserving discontinuous Galerkin
method for Vlasov-Poisson system

Author:
Soheil Hajian

Supervisor:
Dr. B. Ayuso de Dios

Abstract. One of the simplest model problems in the kinetic theory of plasma–physics is the Vlasov-Poisson

(VP) system with periodic boundary conditions. Such system describes the evolution of a plasma of charged

particles (electrons and ions) under the effects of the transport and self-consistent electric field Φx. We consider

a family of semi-discrete numerical schemes for the approximation of the Vlasov-Poisson system. The methods

are based on the coupling of discontinuous Galerkin (DG) approximation to the Vlasov equation and several

finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We investigate

the numerical performance of all the schemes in challenging questions such as the Landau damping and two

stream instability. We study and validate the conservation of physical properties such as Lp-norms, mass and

total energy.

September 25, 2011

1part of Erasmus Mundus program (MathMods) sponsored by European Commission scholarship and partially by CRM
grant.

Contents

1 Introduction 3

2 Vlasov-Poisson system properties 5

2.1 Mass conservation . 6

2.2 L2-conservation . 6

2.3 Energy conservation . 7

3 Discontinuous Galerkin Method 8

3.1 Vlasov equation . 8

3.2 Poisson equation . 11

3.2.1 Direct integration for Poisson equation . 11

3.2.2 Mixed-FEM for Poisson equation . 12

3.2.3 DG-FEM for Poisson equation . 12

4 Implementation 15

4.1 Linear transport equation in 1D . 15

4.1.1 Local Operators . 18

4.1.2 Mesh Generation . 20

4.1.3 Assembling . 21

4.1.4 Simulation in 1D . 22

4.2 Vlasov equation . 22

4.2.1 Notation and parameters . 22

4.2.2 Mesh objects in 2D . 24

1

4.2.3 Basis function in 2D . 25

4.2.4 DG-FEM for Vlasov equation . 26

5 Numerical experiments 38

5.1 Simple linear advection . 39

5.1.1 E(x) constant . 39

5.1.2 E(x) = x . 39

5.2 Convergence of Vlasov-Poisson . 40

5.2.1 Convergence rate for different Poisson solver . 41

5.3 Nonlinear Landau damping (strong case) . 41

5.3.1 Effect of polynomial degree (k) . 43

5.3.2 Effect of mesh refinement . 44

5.3.3 Effect of E(x)-boundary term approximation . 45

5.4 Landau damping (weak case) . 47

5.5 Two stream instability . 47

5.5.1 Effect of Poisson solvers . 48

5.5.2 Effect of mesh refinement . 49

5.6 Two stream instability II . 50

5.7 Non-smooth solution . 51

5.7.1 Effect of polynomial degree (k) . 51

5.7.2 Larger λ0 . 52

A Weighted average 55

Bibliography 58

2

Chapter 1

Introduction

Plasma is a kind of medium where electrons are separated from their nuclei and created a mixture of
interacting charged particles. In kinetic theory, the above system is described using a statistical approach
by assigning a probability density function (PDF) to the electrons, f(t, x, v), which depends on time, t
and the phase space (x, v). The mathematical model that describes the evolution of the system assumes
that the plasma is a collision-less system where the only interaction is produced by mean-field force
created by electrostatic interference and neglect electromagnetic effects. This simplified model is called
the Vlasov-Poisson system which consists of a transport equation coupled with a Poisson problem. More
precisely the V-P system reads ft + vfx − E(t, x)fv = 0 x ∈ Ωx, v ∈ R

−Φxx = −Ex = ρ(t, x)− 1
(1.0.1)

where E(t, x) is the electric field produced by electrostatic effect of ions and electrons and ρ(t, x) is mass
density function

ρ(t, x) =

∫
R
f(t, x, v) dv (1.0.2)

As ions are heavier than electrons, one can assume that their distribution is uniform. Assuming also
plasma is in a neutral background one has∫

Ωx

ρ(t, x) dx =

∫
Ωx

∫
R
f(t, x, v) dv dx = 1 (1.0.3)

There are many numerical schemes proposed for Vlasov-Poisson system. Finite volume schemes are
used for hyperbolic problems and conservation laws but achieving high order solution is very difficult.
On the other hand, Classical finite element (FEM) schemes can be high order approximation but they
suffer from numerical oscillation when applied them to hyperbolic problems. The discontinuous Galerkin
FEM (DG-FEM) is a finite element method where the continuity of the solution across each element is
relaxed and hence the computations can be done locally within each element. Due to this properties
hp-adaptivity can be achieved very easily and parallelization is built-in. Moreover inversion of the mass
matrices is very cheap since they are block diagonal. One should also mention that DG-FEM requires
much more degrees of freedom.

Vlasov-Poisson system has some physical properties such as energy conservation, mass conservation
and Lp-norms conservation. One would like to design schemes that are able to preserve such properties.
Although it is not clear if having such conservation properties at the discrete level might improve the
accuracy of the scheme, it might be expected that the overall performance in the numerical simulation
of physical application is enhanced.

3

In this thesis, we consider a family of DG schemes recently introduced in [3]. We study the actual
implementation of the numerical methods. In particular, we discuss how schemes should be modified
to ensure the overall efficiency of the methods. We also carry out the convergence validation of the
theoretical results given in [3]. The methods are compared for the approximation of linear, non-linear
Landau damping and two stream instability. Special attention is devoted to study the quality of the
approximation and the ability of the schemes for preserving mass and energy. We finally present some
results for the approximation of a plane diode with different boundary condition.

4

Chapter 2

Vlasov-Poisson system properties

We consider the Vlasov equation coupled with Poisson equation

ft + vfx − E(t, x) fv = 0 x ∈ Ωx := [xl, xr], v ∈ R

−Φxx = −Ex = ρ(t, x)− 1

f(t, 0, v) = f(t, 1, v) periodic boundary condition in x, v ∈ R
f(0, x, v) = f0(x, v) initial data, supp(f0(., v)) ⊂ Ωv := [vd, vu], x ∈ Ωx

(2.0.1)

Here the first equation is the Vlasov PDE where f(t, x, v) is a distribution function (non-negative) which
depends on t ∈ R+, (x, v) ∈ Ωx×R and is periodic with respect to x. According to [?] if the initial data,
f0 has compact support with respect to v then the solution, f will remain compact, (in other words f
is zero for large speeds). Moreover, one may note that the independent variables are (x, v) and hence
the problem is already in 2D. We start by writing the weak formulation of the (2.0.1) by introducing the
space of functions C∞0 (Ωx × Ωv) and the test function

ϕ ∈ C∞0 (Ωx × Ωv); which ‘0’ here means periodic in x and compact w.r.t. v.

Multiplying the PDE and integrating with respect to both x and v, we will have

0 =

∫
Ωx

∫
R
ft ϕdx dv︸ ︷︷ ︸
A(t)

+

∫
Ωx

∫
R
v fx ϕdv dx−

∫
Ωx

∫
R
E(x) fv ϕdv dx (2.0.2)

= A(t) +

∫
Ωx

∫
Ωv

v fx ϕdv dx−
∫

Ωx

∫
Ωv

E(x) fv ϕdv dx

= A(t) +

∫
Ωv

v

(∫
Ωx

fx ϕdx

)
dv −

∫
Ωx

E(x)

(∫
Ωv

fv ϕdv

)
dx

= A(t) +

∫
Ωv

v [fϕ]∂Ωx︸ ︷︷ ︸
=0

dv −
∫

Ωv

∫
Ωx

vfϕxdx dv


−

∫
Ωx

E(x) [fϕ]∂Ωv︸ ︷︷ ︸
=0

dx−
∫

Ωv

∫
Ωx

E(x)fϕvdx dv


0 =

∫
Ωx

∫
Ωv

ft ϕdx dv −
∫

Ωx

∫
Ωv

vfϕxdv dx+

∫
Ωx

∫
Ωv

E(x)fϕvdv dx ∀ϕ ∈ C∞0 (Ωx × Ωv)

We now check some other physical properties of V-P system: mass and energy conservations as well as
L2 conservation.

5

2.1 Mass conservation

The mass conservation reads:∫
Ωx

∫
Ωv

f(t, x, v)dv dx =

∫
Ωx

∫
Ωv

f0(x, v)dv dx ∀t > 0

Proof. Take ϕ as

ϕ(x, v) =

{
1 v ∈ Ωv, x ∈ Ωx

0 v ∈ R \ Ωv, x ∈ Ωx

then we will have:

0 =

∫
Ωx

∫
Ωv

ft 1 dx dv −
∫

Ωx

∫
Ωv

v f ϕx dv dx︸ ︷︷ ︸
=0

+

∫
Ωx

∫
Ωv

E(x) f ϕv dv dx︸ ︷︷ ︸
=0

0 =
d

dt

∫
Ωx

∫
Ωv

f dx dv

and hence ∫
Ωx

∫
Ωv

f(t, x, v) dv dx =

∫
Ωx

∫
Ωv

f0(x, v) dv dx ∀t > 0

2.2 L2-conservation

∫
Ωx

∫
Ωv

|f(t, x, v)|2 dv dx =

∫
Ωx

∫
Ωv

|f0(x, v)|2 dv dx ∀t > 0

Proof. Take ϕ = f and then

0 =

∫
Ωx

∫
Ωv

ft f dx dv −
∫

Ωx

∫
Ωv

v f fx dv dx+

∫
Ωx

∫
Ωv

E(x) f fv dv dx

0 =
d

dt

∫
Ωx

∫
Ωv

|f |2 dx dv − 1

2

∫
Ωv

v

(∫
Ωx

(f2)x dx

)
dv +

1

2

∫
Ωx

∫
Ωv

E(x) (f2)v dv dx

0 =
1

2

d

dt

∫
Ωx

∫
Ωv

|f |2dx dv − 1

2

∫
Ωv

v f2
∣∣
∂Ωx︸ ︷︷ ︸

=0

dv +
1

2

∫
Ωx

E(x) f2
∣∣
∂Ωv︸ ︷︷ ︸

=0

dx

0 =
d

dt

∫
Ωx

∫
Ωv

|f |2dx dv

where f2
∣∣
∂Ωx

is zero because of periodicity of f in x and f2
∣∣
∂Ωv

is zero because of compact support of
f with respect to v. ∫

Ωx

∫
Ωv

|f(t, x, v)|2dv dx =

∫
Ωx

∫
Ωv

|f0(x, v)|2dv dx ∀t > 0

6

2.3 Energy conservation

Defining the mass flux

j(t, x) :=

∫
R
v f(t, x, v) dv (2.3.1)

and integrating once w.r.t. v the Vlasov equation (2.0.1), we will have the continuity equation

∂tρ(t, x) + ∂xj(t, x) = 0 (2.3.2)

now if one take ∂t from the Poisson equation in (2.0.1), we will get

∂tEx = −∂tρ
∂tEx = ∂xj(t, x)∫

∂tEx dx =

∫
∂xj(t, x) dx

∂tE = j(t, x) (2.3.3)

moreover the energy measures of the V-P system are

Ek(t) =

∫
Ωx

∫
Ωv

|v|2

2
f(t, x, v)dv dx kinetic energy

Ep(t) =
1

2

∫
Ωx

|E(t, x)|2dx potential energy

Etot(t) = Ek(t) + Ep(t) total energy

where the energy conservation reads

Etot(t) = Etot(0) ∀t > 0

Proof. Take ϕ = |v|2
2 and then

0 =

∫
Ωx

∫
Ωv

ft
|v|2

2
dx dv −

∫
Ωx

∫
Ωv

v f

(
|v|2

2

)
x

dv dx︸ ︷︷ ︸
=0

+

∫
Ωx

∫
Ωv

E(t, x) f

(
|v|2

2

)
v

dv dx

0 =
d

dt

∫
Ωx

∫
Ωv

f
|v|2

2
dx dv +

∫
Ωx

E(t, x)

∫
Ωv

f v dv dx

0 =
d

dt

∫
Ωx

∫
Ωv

f
|v|2

2
dx dv +

∫
Ωx

E(t, x) j(t, x) dx substituting (2.3.3)

0 =
d

dt

(∫
Ωx

∫
Ωv

f
|v|2

2
dx dv +

∫
Ωx

E(t, x)2

2
dx

)

7

Chapter 3

Discontinuous Galerkin Method

3.1 Vlasov equation

In this section, we introduce the discontinuous Galerkin finite element method (DG-FEM) for the V-
P system. The method is different from the conforming finite element in the sense that the solutions
on the boundaries of each element are not necessarily continuous and hence we have more degree of
freedom compare to the FEM. Moreover, due to this discontinuity across the element boundaries the
computations will be done locally inside each element (instead of whole domain in the FEM).

In order to formulate the DG-FEM for the Vlasov equation, we introduce some notation that will be
used. For the first step we need to introduce the mesh (here we use a rectangular grid). Consider the
coordinate of elements boundaries as

xl = x 1
2
< x 3

2
< . . . < xi+ 1

2
< xNx+ 1

2
= xr

vd = v 1
2
< v 3

2
< . . . < vj+ 1

2
< vNv+ 1

2
= vu

v
j+1

2

x
i− 1

2
x
i+1

2Kij

v
j− 1

2

and in an element Kij

Ii := [xi− 1
2
, xi+ 1

2
] ∀i = 1..Nx

Jj := [vj− 1
2
, vj+ 1

2
] ∀j = 1..Nv

Kij := Ii × Jj ∀i, j
(3.1.1)

We define finite element space

Vh := {w|w ∈ L2(Ωx × Ωv), w|Kij
∈ Qk(Kij) ∀i, j} (3.1.2)

Furthermore, we define average and jump operators

{{fi+1/2}} :=
f+
i+1/2 + f−i+1/2

2
(average) (3.1.3)

[[fi+1/2]] := f+
i+1/2 − f

−
i+1/2 (jump) (3.1.4)

8

where

f+
i+1/2 := f(x+

i+1/2, .)

f−i+1/2 := f(x−i+1/2, .)

We multiply (2.0.1) by ϕ ∈ Vh and integrate by parts in an element Kij

0 =

∫
Kij

fht ϕdx dv︸ ︷︷ ︸
A(t)

+

∫
Kij

v fhx ϕdv dx−
∫
Kij

Eh(x) fhv ϕdv dx

= A(t) +

∫
Jj

v

(∫
Ii

fhx ϕdx

)
dv −

∫
Ii

Eh(x)

(∫
Jj

fhv ϕdv

)
dx

= A(t) +

∫
Jj

v fhϕ
∣∣
∂Ii︸ ︷︷ ︸

?

dv −
∫
Jj

∫
Ii

v fh ϕx dx dv

 (3.1.5)

−

∫
Ii

Eh(x) fhϕ
∣∣
∂Jj︸ ︷︷ ︸

?

dx−
∫
Jj

∫
Ii

Eh(x) fh ϕv dx dv


Now by defining value of fh at the boundaries as indicated by “?”, we would determine the DG method
of our interest so that the resulting method is L2 stable.

Proposition 1. Consider the Vlasov equation described in (2.0.1) and weak form (3.1.5). Define the
numerical fluxes as

v̂f(xi+ 1
2
, v) :=

{
v fh(x−

i+ 1
2

, v) v ≥ 0

v fh(x+
i+ 1

2

, v) v ≤ 0
(3.1.6)

Êf(x, vj+ 1
2
) :=

{
Eh(x) fh(x, v+

j+ 1
2

) Eh(x) ≥ 0

Eh(x) fh(x, v−
j+ 1

2

) Eh(x) ≤ 0
(3.1.7)

then the numerical solution is L2 stable

‖fh(t, ., .)‖L2 ≤ ‖f0(., .)‖L2 ∀t > 0

Proof. In order to prove the above proposition we set the test function to be ϕ ≡ f in (3.1.5). hence the
term A(t) will be ∫

Kij

ftϕdx dv =

∫
Kij

ftfdx dv

=

∫
Kij

1

2
(f2)tdx dv

=
1

2

d

dt

∫
Kij

f2dx dv

=
1

2

d

dt
‖f(t, ., .)‖2L2(Kij)

9

Carrying on with the other terms of (3.1.5), we will get

−1

2

d

dt
‖f‖2 =

∫
Kij

Eh(x)
(f2)v

2
dx dv −

∫
Kij

v
(f2)x

2
dx dv

+

∫
Jj

(
v̂f(xi+ 1

2
, v)f−

i+ 1
2 ,.
− v̂f(xi− 1

2
, v)f+

i− 1
2 ,.
dv
)

−
∫
Ii

(
Êf(x, vj+ 1

2
)f−

.,j+ 1
2

− Êf(x, vj− 1
2
)f+

.,j− 1
2

)
dx

where for simplicity of notation we set Êf ·,j+ 1
2

:= Êf(x, vj+ 1
2
) and v̂f i− 1

2 ,·
:= v̂f(xi− 1

2
, v). Integrating

first terms and collecting all terms gives

−1

2

d

dt
‖f‖2 =

∫
Ii

[
Eh(x)

2
(f−

j+ 1
2

)2 − (f+
j− 1

2

)2

]
dx

−
∫
Jj

v

2

[
(f−

i+ 1
2

)2 − (f+
i− 1

2

)2
]
dv

+

∫
Jj

[
v̂f i+ 1

2 ,·
f−
i+ 1

2

− v̂f i− 1
2 ,·
f+
i− 1

2

dv
]

−
∫
Ii

[
Êf ·,j+ 1

2
f−
j+ 1

2

− Êf ·,j− 1
2
f+
j− 1

2

]
dx

We introduce the auxiliary expressions

F̃i+ 1
2 ,.

:=

∫
Jj

[v
2

(f−
i+ 1

2

)2 − v̂f i+ 1
2 ,·
f−
i+ 1

2

]
dv (3.1.8)

G̃.,j+ 1
2

:=

∫
Ii

[
Eh(x)

2
(f−

j+ 1
2

)2 − Êf ·,j+ 1
2
f−
j+ 1

2

]
dx (3.1.9)

and so we can rewrite our identity as

− 1

2

d

dt
‖f‖2 = G̃.,j+ 1

2
− G̃.,j− 1

2
−
(
F̃i+ 1

2 ,.
− F̃i− 1

2 ,.

)
+

∫
Ii

Êf ·,j− 1
2

[
f+
j− 1

2

− f−
j− 1

2

]
dx (3.1.10)

−
∫
Jj

v̂f i− 1
2 ,·

[
f+
i− 1

2

− f−
i− 1

2

]
dv (3.1.11)

+

∫
Ii

Eh(x)

2

[
(f+

j− 1
2

)2 − (f−
j− 1

2

)2
]
dx (3.1.12)

−
∫
Jj

v

2

[
(f+

i− 1
2

)2 − (f−
i− 1

2

)2
]
dv (3.1.13)

Now considering the terms (3.1.10) to (3.1.13), we can choose the Êf and v̂f such that those terms
become positive. Following [3], we define

v̂f i+ 1
2 ,·

:= {{fi+ 1
2
}} − sign[v]

2
[[fi+ 1

2
]] =

{
v f(x−

i+ 1
2

, v) v ≥ 0

v f(x+
i+ 1

2

, v) v ≤ 0

Êf ·,j+ 1
2

:= {{fj+ 1
2
}}+

sign[Eh(x)]

2
[[fj+ 1

2
]] =

{
Eh(x) f(x, v+

j+ 1
2

) Eh(x) ≥ 0

Eh(x) f(x, v−
j+ 1

2

) Eh(x) ≤ 0

10

then the sum of terms (3.1.10) to (3.1.13) will be positive and hence

1

2

d

dt
‖f‖2 + G̃.,j+ 1

2
− G̃.,j− 1

2
−
(
F̃i+ 1

2 ,.
− F̃i− 1

2 ,.

)
≤ 0 ∀i, j∑

i,j

(
1

2

d

dt
‖f‖2L2(Kij) + G̃.,j+ 1

2
− G̃.,j− 1

2
−
(
F̃i+ 1

2 ,.
− F̃i− 1

2 ,.

))
≤ 0

1

2

d

dt
‖f‖2L2(Ωx×Ωv) + G̃.,Nv+ 1

2
− G̃., 12︸ ︷︷ ︸

≡0

−
(
F̃Nx+ 1

2 ,.
− F̃ 1

2 ,.

)
︸ ︷︷ ︸

≡0

≤ 0

hence

1

2

d

dt
‖f‖2L2(Ωx×Ωv) ≤ 0

‖f(t, ., .)‖2L2(Ωx×Ωv) ≤ ‖f0(., .)‖2 ∀t > 0

Note that

G̃.,Nv+ 1
2
− G̃., 12

and F̃Nx+ 1
2 ,.
− F̃ 1

2 ,.

vanish because of compact support in Ωv and periodicity of the solution at the boundaries of Ωx.

3.2 Poisson equation

In the 1D V-P system we have Vlasov equation in 2D and Poisson equation in 1D, hence we have to
consider a Poisson solver for 1D. More precisely we have to solve

− Φxx = ρ(t, x)− 1 x ∈ Ωx (3.2.1)

but actually we need the first derivative of Φ, E(t, x), in the Vlasov equation

Φx = E(t, x) (3.2.2)

Hence we consider methods that approximate the Poisson problem but also give an approximation to its
first derivative. In the following subsections we discuss three different methods for this purpose. First in
§3.2.1 we discuss about integrating (3.2.1) instead of solving Poisson since we just need Φx and we are
solving a 1D problem. In §3.2.2, we introduce a DG method for solving a system of first order ODEs
instead of a second order equation. Later on in §3.2.3, we consider a mixed finite element method with
less degrees of freedom that gives conforming electric field and a discontinues Φ. All of these methods
are discussed in [3] in detail.

3.2.1 Direct integration for Poisson equation

The first approach to the Poisson equation that we illustrate here is a simple integrator for the Poisson
equation since we just need E(t, x) = Φx for Vlasov equation (hence it is not suitable for 4D V-P system).
Note that in this approach Eh ∈ Pk+1(Ωx), so by integrating the Poisson equation, we will obtain

Φh(t, x) = Ch
E x+

x2

2
−
∫ x

0

∫ s

0

ρh(t, z) dz ds x ∈ [0, 1] (3.2.3)

where

Ch
E =

∫ 1

0

∫ s

0

ρh(t, s) ds dz − 1

2
(3.2.4)

Eh(t, x) = Ch
E + x−

∫ x

0

ρh(t, s) ds (3.2.5)

11

where in order to calculate ∫ x

0

ρh(t, s) ds

we first express the ρh by polynomials of degree k + 1 (note that ρh is a polynomial of degree k) since
Eh ∈ Pk+1(Ωx). Denoting NGauss the Gauss quadrature points of a numerical integrator, we know that
it can evaluate an integrand of degree ≤ 2NGauss − 1 exactly. Hence we choose

NGauss =
k + 2

2

for integrating.

3.2.2 Mixed-FEM for Poisson equation

In this section we introduce a method to approximate Φ and E(t, x) simultaneously. Before that we
simplify the notation by changing the right-hand side of Poisson equation with g(t, x) = ρ(t, x)− 1. The
idea now is to re-write the second order problem as a system of first order equations

− Φxx = g =⇒
{
E = Φx

Ex = −g (3.2.6)

where E(t, x) and Φ are unknowns. Next step is to write the weak formulation of this system and define
the spaces for approximating E(t, x) and Φ. We introduce the following finite element spaces

Φh ∈ Vh :=
{
w|w ∈ L2(Ωx), w|Ii ∈ P

k(Ii)
}

(same as before) (3.2.7)

Eh ∈ Σh :=
{
σ|σ ∈ H1(Ωx), σ|Ii ∈ P

k+1(Ii)
}
. (3.2.8)

The weak formulation reads of (3.2.6): find (Eh,Φh) ∈ Σh × Vh that satisfy∫
Ωx

Eh τ +

∫
Ωx

Φh τx = 0 ∀τ ∈ Σh (3.2.9)

−
∫

Ωx

(Eh)x ν =

∫
Ωx

g ν ∀ν ∈ Vh (3.2.10)

next we express Φh, Eh in terms of basis functions of Vh,Σh respectively. Notice that Eh belongs to the
space of conforming polynomials while Φh is discontinuous. In fact we have a saddle point system[

A B
B 0

] [
Eh

Φh

]
=

[
0
g

]
(3.2.11)

where Eh ∈ RNx(k+1)+1 and Φh ∈ RNx(k+1). We use an exact solver to solver (3.2.11) in the code since
it is a 1D problem.

3.2.3 DG-FEM for Poisson equation

The DG method for the Poisson equation is very similar to the one introduced in the previous section
but here we choose same space for Eh and Φh. More precisely we choose

Zh :=
{
w|w ∈ L2(Ωx), w|Ii ∈ P

k+1(Ii)
}

(3.2.12)

where k is the order of polynomial used for Vlasov equation. We take test functions τ, ν ∈ Zh, the weak
formulation to the system of equations in an element, Ii, reads: find (Eh(t, x),Φh) ∈ (Zh × Zh) that
satisfy ∫

Ii

Eh τ = −
∫
Ii

Φh τx + Φ̂ τ
∣∣∣
∂Ii

∀τ ∈ Zh (3.2.13)∫
Ii

Eh νx =

∫
Ii

g ν + Ê ν
∣∣∣
∂Ii

∀ν ∈ Zh (3.2.14)

12

method c11 c12 c22

LDG2 (k + 1)2/hx sign(v)/2 0
LDG3 (k + 1)2/hx 1/2 0

Table 3.1: coefficients for LDG2 and LDG3 method.

where the numerical fluxes Ê and Φ̂ are defined as

Êi+1/2 := {{Eh}}+ c12[[Eh]] + c11[[Φh]] (3.2.15)

Φ̂i+1/2 := {{Φh}} − c12[[Eh]] + c22[[Eh]] (3.2.16)

where following [3], we choose c22 ≡ 0 and c11 ≥ (k+1)2

hx
. Then we show two methods where c12 are

chosen differently

1. LDG2

In this case we choose the flux as

Êi+1/2 := {{Eh}}+
1

2
[[Eh]] +

(k + 1)2

hx
[[Φh]]

Φ̂i+1/2 := {{Φh}} −
1

2
[[Eh]]

2. LDG3; energy conservative method

It is proved in [3], choosing Poisson solver as above with c12 = sign(v)/2, coupled with the DG
approximation to Vlasov equation discussed before will yield a numerical method that preserves
energy

Êi+1/2 := {{Eh}}+
sign(v)

2
[[Eh]] +

(k + 1)2

hx
[[Φh]]

Φ̂i+1/2 := {{Φh}} −
sign(v)

2
[[Eh]]

To simplify, we present the coefficients of LDG2/3 in Table 3.1. For computation, we express the unknown
functions in terms of basis functions of Zh (i.e. using Lagrange polynomials {lm(x)}) and choosing test
functions to be one of those basis functions, ln(x), we obtain

k+1+1∑
m=1

Em
h

∫
Ii

ln(x)lm(x)︸ ︷︷ ︸
Mnm

−Φm
h

∫
Ii

lm(x)
d

dx
ln(x)︸ ︷︷ ︸

(ST)nm

− Φ̂ ln(x)
∣∣∣
∂Ii

= 0

k+1+1∑
m=1

Em
h

∫
In

lm(x)
d

dx
ln(x)︸ ︷︷ ︸

(ST)nm

− Ê ln(x)
∣∣∣
∂Ii

=

∫
Ii

g ln(x) ∀n = 1, ..., (k + 1 + 1)

Note that a method to calculate matrices M, S will be introduced in chapter 4 for an approximation of
order k. The system described above will finally look like[

A B
B C

] [
Eh

Φh

]
=

[
0
g

]
(3.2.17)

the size of left hand-side matrix in 1D will be {2Nx(k + 1 + 1)}2. In the actual code we are using an
exact solver for this system [

Eh

Φh

]
=

[
A B
B C

]−1 [
0
g

]
(3.2.18)

13

since the size of matrix is not very big. But generally, it is not a good way to solve the above system
as when we extend the problem to 4D (2D space + 2D velocity) then the size of the system grows very
much and inverting is very expensive. One may note that mixed-FEM has an advantage compare to the
DG approach to Poisson problem since it has 2Nx less degree of freedoms and hence is faster to solve.

14

Chapter 4

Implementation

The goal of this section is to describe the actual implementation of DG scheme for the Vlasov-Poisson
system. To ease the presentation, we begin with a linear transport equation and derive all local operators
(here matrices) that will be used in the code. Due to the structure of Vlasov-Poisson system, we restrict
our attention to a Cartesian grid.

4.1 Linear transport equation in 1D

Consider the following system: ut + a ux = ψ(t, x) x ∈ Ω := [0, 2π], a > 0, t > 0
u(t, x = 0) = u(t, x = 2π) ∀t
u(t = 0, x) = u0(x) ∀x ∈ Ω

(4.1.1)

We first partition the domain, Ω, to N non-overlapping elements, Ωn, defined as

x1/2 x3/2 xn−1/2 xn+1/2
. . . xN−1/2 xN+1/2

. . .
Ω1 Ωn ΩN

Ωn := [xn−1/2, xn+1/2], where x1/2 = 0, xN+1/2 = 2π

and {x1/2, ..., xN+1/2} is the set of physical coordinates. Now, we introduce the finite element space

Vh := {v|v ∈ L2(Ω), v|Ωi
∈ Pk(Ωn),∀n ∈ 1..N}

where Pk(Ωn) is the set of polynomials of degree ≤ k. Our approximate solution to (4.1.1), is a poly-
nomial of degree k within each element Ωn but is not necessarily continuous across each element. Inside
each element, we define some basis functions for the space Pk(Ωn). We can consider Lagrange (nodal
representation) or Legendre (modal representation) basis functions. We illustrate the Lagrange and
Legendre polynomial in the reference element I := [−1, 1] by

Lagrange Polynomial l̂i(r) :=
∏

1≤j≤k+1,j 6=i

r − rj
ri − rj

r ∈ I ∀i = 1, ..., k + 1 (4.1.2)

Normalized Legendre Polynomial P̃i(r) s.t.

∫
I

P̃i(r)P̃j(r)dr = δij ∀i, j = 0, ..., k (4.1.3)

P̃i(r) :=

√
2i+ 1

2
Pi(r)

15

where δij is the Kronecker delta, {r1, ..., rk+1} is the set of distinct nodal coordinates in the reference
element and Pi(r) is the i-th Legendre polynomial. They can be derived from the recursion

(i+ 1)Pi+1(r) = (2i+ 1)rPi(r)− iPi−1(r) ∀r ∈ I, i ≥ 1 (4.1.4)

P0(r) = 1, P1(r) = r

Note that Lagrange polynomials have the property:

l̂i(rj) = δij ∀i, j = 1..k + 1

where the above basis functions are defined for the reference element, I. We can define the basis functions
for an arbitrary element Ωn using the affine map

x(r) = F (r) :=
hn
2
r + cn

cn :=
xn−1/2 + xn+1/2

2
hn := xn+1/2 − xn−1/2 = |Ωn|

where x(r) ∈ Ωn, r ∈ I, and the basis functions in element Ωn will look like

lni (x) :=

{
l̂i(r) r ∈ I
0 r 6∈ I (4.1.5)

P̃n
i (x) :=

{
P̃i(r) r ∈ I
0 r 6∈ I (4.1.6)

Here lni (x) is the i-th Lagrange basis function in element Ωn and P̃n
i (x) the corresponding normalized

i-th Legendre basis function in Ωn. The approximate solution to (4.1.1) belongs to Vh so it can be
expressed in terms of the basis functions

Legendre (modal) unh(t, x) =

k+1∑
i=1

ũni (t)P̃n
i−1(x) ∀x ∈ Ωn

Lagrange (nodal) unh(t, x) =

k+1∑
j=1

unh(t, rnj)lnj (x) ∀x ∈ Ωn

with {rn1 , ..., rnk+1} is the set of nodal coordinates in element n, where rn1 = xn−1/2 and rnk+1 = xn+1/2.
In order to simplify the notation, we denote the solution in an element n evaluated at rni using

uni := unh(t, rni)

Remark 1. in order to see why the coefficient of the nodal form is chosen as above one may set x = rni
where rni is one of the nodal coordinates within the Ωn and get

uni (t) =

k+1∑
j=1

unh(t, rnj)lnj (rni)

=

k+1∑
j=1

unh(t, rnj)δij

= unh(t, rni)

Hence the coefficients of Lagrange basis functions are the values of the solution evaluated at the nodes
within each element. Finally the global solution of this approximation will be the sum of the local solutions

uh(t, x) =

N∑
n=1

unh(t, x)

16

The weak form of the (4.1.1), in each element is: find uh ∈ Vh s.t.∫
Ωn

∂tuhϕ−
∫

Ωn

auhϕx +

∫
∂Ωn

âuhϕ =

∫
Ωn

f(t, x)ϕ ∀ϕ ∈ Vh,∀Ωn (4.1.7)

Expressing the uh in terms of basis functions of Vh (i.e. Lagrange polynomials) and choosing the test
function as one of those, we will get in n-th element

k+1∑
j=1

∂tu
n
j

∫
Ωn

lnj (x)lni (x)dx−
∫

Ωn

unj l
n
j (x)

d

dx
lni (x)dx+ [âuhl

n
i (x)]

xn+1/2

xn−1/2
=

∫
Ωn

f(t, x)lni (x);∀i, n (4.1.8)

Defining

Mn
ij =

∫
Ωn
lnj (x)lni (x)dx mass matrix

Sn
ij =

∫
Ωn
lni (x) d

dx l
n
j (x)dx gradient matrix

un = [un1 (t), un2 (t), . . . , unk+1(t)] vector of solution in element n

fluxn = [−uh(x−n−1/2), 0, ..., 0, uh(x−n+1/2)] flux vector of size k + 1 designed for DG

(4.1.9)

then lhs of (4.1.8) will look like

∑k+1
j=1 ∂tu

n
j

∫
Ωn

lnj (x)lni (x)dx ≡ Mn.∂tun

unj

∫
Ωn

lnj (x)
d

dx
lni (x)dx ≡ (Sn)T .un

[âuhl
n
i (x)]

xn+1/2

xn−1/2
≡ uh(x−n+1/2)δi,k+1 − uh(x−n−1/2)δi,1

(4.1.10)

The third term in the lhs of (4.1.8) contains âuh, which is called numerical flux for DG. It can be defined
as

âuh(xi+1/2) = {{uh}} − sgn[a][[uh]]/2 = {{uh}} − [[uh]]/2

= uh(x−i+1/2)

and

âuh(xi−1/2) = uh(x−i+1/2)

where {{.}} is the average function across the element and [[.]] is the jump function. Hence

[âuhl
n
i (x)]

xn+1/2

xn−1/2
=


−uh(x−n−1/2)

0
...
0

uh(x−n+1/2)

 = fluxn

In other word, the flux vector of element n, in its first element has the value of the solution from the
previous element, n− 1, using −un−1

k+1 and its last element by unk+1 (the so-called upwind flux).

17

4.1.1 Local Operators

Mass matrix

We are interested in computing the elements of the mass matrix in the reference element, I, for an
approximation of degree k

M I
ij =

∫
I

l̂j(x)l̂i(x)dx ∀i, j ∈ 1..(k + 1)

Note that the mass matrix is symmetric and its relation with the mass matrix in element n is

Mn =
|Ωn|

2
MI

Now in order to find a procedure to compute this matrix for any order we may use the advantage of
orthogonal polynomials (modal form) instead of Lagrange basis functions (nodal representation). Recall
that the approximate solution in these two forms will look like

uh(x, t) =

k+1∑
j=1

ũj(t)P̃j−1(x) =

k+1∑
m=1

uh(rm, t)l̂m(x),∀x ∈ I

and if we set x to be ri, we will get

uh(ri, t) =

k+1∑
j=1

ũj(t)P̃j−1(ri)

denoting the Vij := P̃j−1(ri), the so-called Vandermonde matrix, we will get the relations

u = V.ũ (4.1.11)

where ũ is the coefficient of Legendre basis functions and u is the vector of nodal values of Lagrange
polynomials. Moreover if we change basis using

P̃i−1(r) =

k+1∑
j=1

P̃i−1(rj)l̂j(r)

we will obtain the following matrix form

VT .l = P̃ (4.1.12)

l :=


l̂1(r)

l̂2(r)
...

l̂k+1(r)



P̃ :=


P̃0(r)

P̃1(r)
...

P̃k(r)



18

then the mass matrix will be

M I
ij =

∫
I

k+1∑
m=1

(V T)−1
imP̃m−1

k+1∑
n=1

(V T)−1
jn P̃n−1

=

k+1∑
m=1

k+1∑
n=1

(V T)−1
im(V T)−1

jn

∫
I

P̃m−1P̃n−1

=

k+1∑
m=1

k+1∑
n=1

(V T)−1
im(V T)−1

jn δm,n

=

k+1∑
n=1

(V T)−1
in (V T)−1

jn

MI = (VVT)−1

and

Mn =
|Ωn|

2
(VVT)−1

Hence by constructing the Vandermonde matrix and using a procedure to iteratively construct the
Legendre polynomials we can easily have the mass matrix of any order. Moreover the inversion of the
VVT is not costly since it is a matrix of size (k + 1)2, where k is degree of polynomials and usually is
very small (i.e. 1,2,3) and it is done once and will be used during computation.

Gradient matrix

In the reference element, we have

Sn
ij =

∫
Ωn

lni ∂xl
n
j dx =

∫
I

l̂i∂r l̂jdr = SI
ij

The procedure to find high order gradient matrix will be the following. First we introduce a differentiation
matrix Dr such that

Dr,ij =
dl̂j
dx

∣∣∣∣∣
ri

,∀ri ∈ I

Now in order to construct the gradient matrix we express the derivative in Sij in terms of the Lagrange
basis functions introduced for our space of functions

SI
ij =

∫
I

l̂i∂x l̂jdx =

∫
I

l̂i

k+1∑
m=1

l̂m ∂x l̂j

∣∣∣
rm
dx

=

k+1∑
m=1

(∫
I

l̂i l̂mdx

)
∂x l̂j

∣∣∣
rm

=

k+1∑
m=1

MimDr,mj

SI = MDr

Now the problem changed to find the Dr in a way for high order approximation. We start from the
identity between the nodal and modal representation, VT l = P̃, which is derived in (4.1.12):

VT d

dx
l̂ =

d

dx
P̃

evaluating the derivatives at ri gives
VTDT

r = (Vr)T

19

where

V T
r,ij :=

d

dx
P̃j−1

∣∣∣∣
ri

and by using the Legendre’s polynomial identities we compute Vr by

d

dx
P̃j =

√
j(j + 1)P̃

(1,1)
j−1 (x)

where P̃
(1,1)
j−1 is the Jacobi polynomial [?].

4.1.2 Mesh Generation

Here we introduce the objects of a simple mesh, generated for our DG method in 1D and later for 2D
case. We start constructing the objects by numbering the physical coordinates:

x1/2 ↔ η1

x3/2 ↔ η2

...
xi−1/2 ↔ ηi

...
xN+1/2 ↔ ηN+1

as we are in 1D it is better to choose the set of vertices, {ηi}, as

V ertices := {η1 = 1, η2 = 2, ..., ηN+1 = N + 1}

Moreover we would like to label the set of elements {Ωn} by the same rule as

Elements := {Ω1 = 1,Ω2 = 2, ...,ΩN+1 = N + 1}

after defining those sets, we would like to know the relation between them using a matrix that we call
E2V:

E2V :=


1 2
2 3
...

...
N N + 1

 ∈MN×2

where E2Vi,j means that the element Ωi contains vertices {E2Vi,1, E2Vi,2}.

Furthermore, as we introduced before, we have some nodal coordinates defined in element n as
{rn1 , ..., rnk+1}. Remember that in this notation rn1 = xn−1/2 and rnk+1 = xn+1/2. As we labeled the
physical coordinates by the set of vertices, we would like also to label each nodal coordinates by a set
which we call faces, F := {ξi}. The relation between each nodal coordinates in an element i and the
corresponding face will be

rij ↔ ξ(i−1)(k+1)+j ;∀i = 1, ..., N, j = 1, ..., k + 1 (4.1.13)

For instance, consider the case where k = 1 (first order) and N = 2 (number of elements), then the set
of faces is

F = {ξ1, ξ2︸ ︷︷ ︸
∈Ω1

, ξ3, ξ4︸ ︷︷ ︸
∈Ω2

}

moreover as N = 2, there are N + 1 physical coordinates and hence the set of physical vertices is

V ertices = {η1, η2, η3}

Note that the coordinates of the ξ2 and ξ3 are same. We call these faces adjacent to each other. The
geometry of these objects is shown below

20

Ω1 Ω2
η1 η2 η3

ξ1 ξ2 ξ3 ξ4

Observe that using the above definition for labeling the nodal coordinates in (4.1.13) we can easily extract
the information regarding the relation of elements and faces. We denote by E2F ∈MN×(k+1) the matrix

E2F :=



ξ1 ξ2 . . . ξk+1

ξk+2 ξk+3 . . . ξ2(k+1)

...
ξ(i−1)(k+1)+j

...
. . . ξN(k+1)


Then knowing E2F and E2V, we can construct the relation between faces and vertices denoted by F2V ∈
MN(k+1)×2 and given by

F2V :=



ξ1 η1

ξ2 η2

ξ3 η2

ξ4 η3

...
ξN(k+1) ηN+1


Now all objects that we need for implementation are constructed. Finally we express the vector of nodal
values, uh, using the following vector uh ∈ RN(k+1):

uh[ξ(i−1)(k+1)+j] ≡ uh(rij) ∀i ∈ 1..N, j ∈ 1..k + 1

4.1.3 Assembling

The discretized equation (4.1.8) in an element n reads in terms of our “local operators”

Mn du
n
h

dt
= (Sn)Tun

h − fluxn + Ψn (4.1.14)

where

un
h = [un1 (t), un2 (t), . . . , unk+1(t)] vector of solution in element n

fluxn = [−uh(x−n−1/2), 0, ..., 0, uh(x−n+1/2)] flux vector of size k + 1 designed for DG

Ψn ≡
∫

Ωn

ψ(t, x)ln(x)dx right hand side; evaluated by Gauss quadrature

Moreover, one may note that in (4.1.14), we need an integrator in time to obtain the evolution of the
solution. For this advection problem using a first order explicit integrator with carefully chosen dt may
suffice.

un
h(t+ dt) = un

h(t) + dt · (Mn)−1
(
(Sn)Tun

h − fluxn + Ψn
)
∀n (4.1.15)

Finally by having all recipes for this 1D case and using a proper data structure for retrieving information
from the mesh and elements, we can update the values of the solution in each element (element-wise).
Recall that inversion of (Mn)−1 is low cost and is done once for all time.

21

4.1.4 Simulation in 1D

We use the method described before for approximating the solution of the following advection problem ut + a ux = −2π sin(x+ 2πt) x ∈ Ω := [0, 2π], a = 2π, t > 0
u(t, 0) = u(t, 2π) boundary condition
u(0, x) = cos(x) ∀x ∈ Ω, initial data

(4.1.16)

The analytical solution of the (4.1.16) is

u(t, x) = cos(2πt) cos(x)

The DG approximation solution and the exact one is shown in Fig. 4.1(left). Note that in Fig. 4.1(right)

Figure 4.1: the approximate solution of (4.1.16) (red) at t = 0.7 (left). log-log plot of h−2 (dashed), L2

error of approximate solution (solid) using linear polynomials (right).

we show the order of convergence with respect to the L2-norm versus refinement of the mesh using
polynomials of degree 1 (N = 1) which yields an order of accuracy of magnitude 2.

4.2 Vlasov equation

We now use the the ingredients introduced in the previous section and considering extension of 1D
advection problem to solve the Vlasov equation: ft + vfx − E(t, x)fv = 0 x ∈ Ωx := [xl, xr], v ∈ Ωv := [vd, vu]

f(t, 0, v) = f(t, 1, v) periodic boundary condition in x, v ∈ Ωv

f(0, x, v) = f0(x, v) initial data, supp(f0(., v)) ∈ Ωv

(4.2.1)

where E(x) is a given electric field. Before introducing the space of functions, its basis and weak form
of (4.2.1), we introduce basic notation that will be needed.

4.2.1 Notation and parameters

First of all, the DG weak form of the (4.2.1) with the defined numerical flux in Proposition 1 suggests
to employ a Cartesian mesh. Hence we choose a Cartesian grid and will use same method for generating

22

the objects of the mesh in 2D (as we did for the 1D case). We begin by defining some global parameters
that will be used later very often. Regarding the mesh in 2D, we define:

1. Nx: number of elements in the x-coordinate.

2. Nv: number of elements in the v-coordinate.

3. Nx + 1: number of physical points in the x-coordinate.

4. Nv + 1: number of physical points in the v-coordinate.

5. Ωx: computation domain in x-coordinate.

6. Ωv: computation domain in v-coordinate.

7. Ii: computation domain in x-coordinate in element (i, j).

8. Jj : computation domain in y-coordinate in element (i, j).

9. hx(i) = xi+1/2 − xi−1/2: is the length of Ii.

10. hv(j) = vj+1/2 − vj−1/2: is the length of Jj .

11. cx(i) =
xi+1/2+xi−1/2

2 : is the center of Ii.

12. cv(j) =
vj+1/2+vj−1/2

2 : is the center of Jj .

13. k: is the degree of polynomial in an element.

14. N2D
p := N2

p = (k + 1)2: is the number of faces in an element in 2D case.

For a given computational domain Ωx × Ωv, we partition the domain to Nx × Nv elements where the
total number of elements is NxNv. Then we introduce two numbering procedure to label the elements
produced by the partitioning. First, we introduce a simple Cartesian one, which is a 2D labeling to each
element, for instance consider the following mesh with a 3× 3 partition:

- x

6

v

Ωx

Ωv (3, 2)

(1, 1)

(i, j)

We assign an array like (i, j) to each element where i = 1, ..., Nx represents the column of the element and
j ∈ 1..Nv is the row of an element. Another procedure consists in assigning an integer label (instead of
(i, j)) to each element starting from most left-down element and counting toward right elements. When
the most right element in a row is read, we go to the upper row and begin from the most left one to
count:

23

- x

6

v

Ωx

Ωv

NxNv

1 2 3

4 el

We define el ∈ 1, ..., NxNv as the index of an element in a NxNv partition of a Ωx × Ωv domain in the
integer labeling. The translation between these two approaches is

(i, j) → el := (j − 1)Nx + i
el → (i, j) := (FLOOR(el/Nx) + 1, el − FLOOR(el/Nx))

4.2.2 Mesh objects in 2D

Here, we will introduce the objects of the 2D mesh similar to what we introduced in 1D case. We begin
with the set of vertices in the computational domain by introducing V := {η1, η2, . . . , η(Nx+1)(Nv+1)}.
We label mesh nodes by {ηi} in the following way:

× × × ×
η1 η2 η3 η4

× × × ×
η5 η6 η7 η8

× × × ×

× × × ×
η15 η16

Ωx

Ωv

and with same procedure we can construct the matrix E2V ∈M(NxNv),4

E2V :=


1 2 5 6
2 3 6 7

...
. . . (Nx + 1)(Nv + 1)− 1 (Nx + 1)(Nv + 1)


The set of faces is constructed using F := {ξ1, ξ2, . . . , ξN2

pNxNv
}. The structure of the faces in the first

element, el = 1, can be represented in the following way

24

× × × × × × ×
ξ1 ξ2 ξ3 ξ4 . . . ξNp

× × × × × × ×ξNp+1 ξ2Np

× × × × × × ×ξ2Np+1 ξ3Np

× × × × × × ×ξi.Np+1 ξ(i+1).Np

× × × × × × ×
ξ(Np−1).Np+1

ξN2
p

and the matrix E2F ∈M(NxNv),N2
p

is

E2F :=


ξ1 ξ2 . . . ξN2

p

ξN2
p+1 ξN2

p+2 . . . ξ2N2
p

...
ξ(NxNv−1)N2

p+1 . . . ξNxNvN2
p


We may also define four class of faces that represent the adjacent faces to the edges of an element. They
will be very useful in calculation of local operators: facesdown, facesleft, facesright and facesup. In the
first element, el = 1, they are defined as:

facesndown := ξn ∀n ∈ 1..Np

facesnleft := ξ1+Np(n−1)

facesnright := ξNp·n

facesnup := ξNp(Np−1)+n

(4.2.2)

for instance in the case k = 2, we will have:

facesdown := {ξ1, ξ2, ξ3}
facesleft := {ξ1, ξ4, ξ7}

facesright := {ξ3, ξ6, ξ9}
facesup := {ξ7, ξ8, ξ9}

4.2.3 Basis function in 2D

We define the DG finite element space:

Vh := {w|w ∈ L2(Ωx × Ωv), w|Kij
∈ Qk(Kij)}

where Qk is the set of polynomials of degree at most k in each variables:

Qk := span{w|w ∈ xiyj , 0 ≤ i, j ≤ k}

where the dimension of Qk is (dimPk)2 and dimPk = (k + 1)2 = N2
p .

Now consider we are working in the reference element, I2, we can define a set of basis functions for
Qk such that basis functions are made by a tensor product of the bases relative to Pk. For instance,

25

consider k = 1, (Np = 2) then:

λ̂1(x, y) := l̂1(x)l̂1(y)

λ̂2(x, y) := l̂2(x)l̂1(y)

λ̂3(x, y) := l̂1(x)l̂2(y)

λ̂4(x, y) := l̂2(x)l̂2(y)

and for general case (arbitrary k), we will get

λ̂n(x, y) := l̂r(x)l̂s(y) r, s = 1, ..., Np (4.2.3)

n = r + (s− 1)Np

note that r, s indices runs from 1 to Np, while the n-index of the basis function in 2 dimension runs from
1 to N2D

p = (Np + 1)2. To clarify the index notation, we mention that here i, j are indices that will be
used for elements in the computational domain and n,m to identify the basis function inside an element.
Moreover, as we are using Cartesian grid for our computations and tensor product basis functions, then
it is possible to decompose a 2D-integral in an element (i, j) into two 1D-integrals∫

Ii

∫
Jj

λmλndx dv =

(∫
Ii

λXmλ
X
n dx

)(∫
Jj

λVmλ
V
n dv

)
∀n,m ∈ 1..N2D

p

where λVn , λ
X
n are the x and v decomposed parts of the λn(x, v). For instance if k = 1, we will have:

λ̂V1 (v) := l̂1(v) λ̂X1 (x) := l̂1(x)

λ̂V2 (v) := l̂1(v) λ̂X2 (x) := l̂2(x)

λ̂V3 (v) := l̂2(v) λ̂X3 (x) := l̂1(x)

λ̂V4 (v) := l̂2(v) λ̂X4 (x) := l̂2(x)

(4.2.4)

We express our approximate solution in an element Kij by

fh(t, x, v) =

N2
p∑

n=1

unh(t)λn(x, v) (t, x, v) ∈ R+ ×Kij (4.2.5)

4.2.4 DG-FEM for Vlasov equation

as we discussed, the DG formulation of (4.2.1) in an element Kij will be:

0 =

∫
Kij

ftϕdx dv +

(∫
Jj

∫
Ii

E(x)fϕvdx dv −
∫
Jj

∫
Ii

vfϕxdx dv

)
(4.2.6)

−

(∫
Ii

Êfϕ
∣∣∣
∂Jj

dx−
∫
Jj

v̂fϕ
∣∣∣
∂Ii

dv

)
ϕ, f ∈ Vh := {w|w ∈ L2(Ωx × Ωv), w|Kij

∈ Qk(Kij)}

where the numerical fluxes are

v̂f(xi+ 1
2
, v) :=

{
vf(x−

i+ 1
2

, v) v ≥ 0

vf(x+
i+ 1

2

, v) v ≤ 0

Êf(x, vj+ 1
2
) :=

{
E(x)f(x, v+

j+ 1
2

) E(x) ≥ 0

E(x)f(x, v−
j+ 1

2

) E(x) ≤ 0

{{fi+ 1
2
}} :=

f+
i+ 1

2

+ f−
i+ 1

2

2
average operator

[[fi+ 1
2
]] := f+

i+ 1
2

− f−
i+ 1

2

jump operator

26

Taking ϕ = λn(x, y) we will get:

0 =

∫
Kij

ftλndx dv +

(∫
Jj

∫
Ii

E(x)f∂vλndx dv −
∫
Jj

∫
Ii

vf∂xλndx dv

)
(4.2.7)

−

(∫
Ii

Êfλn

∣∣∣
∂Jj

dx−
∫
Jj

v̂fλn

∣∣∣
∂Ii

dv

)
∀n ∈ 1..N2

p

Mass matrix

∫
Kij

ftλndx dv =

N2
p∑

m=1

dumh
dt

∫
Kij

λmλndx dv

=
|Ii|.|Jj |

4

N2
p∑

m=1

dumh
dt

∫
I2

λ̂mλ̂ndx dv

now defining M2D
nm :=

∫
I2 λ̂mλ̂ndx dv as the mass matrix in 2D in the reference element, we are keen to

compute it for an arbitrary k. For the beginning we choose k = 1 (N2
p = 4) and define

λ̂n := λ̂Xn (x)λ̂Yn (y)

where λ̂Xn is the part of λ̂n that depends only on x. Hence we will have∫
I2

λ̂mλ̂ndx dv =

(∫
I

λ̂Xmλ̂
X
n dx

)(∫
I

λ̂Vmλ̂
V
n dv

)
then

λ̂V1 (v) := l̂1(v) λ̂X1 (x) := l̂1(x)

λ̂V2 (v) := l̂1(v) λ̂X2 (x) := l̂2(x)

λ̂V3 (v) := l̂2(v) λ̂X3 (x) := l̂1(x)

λ̂V4 (v) := l̂2(v) λ̂X4 (x) := l̂2(x)

(4.2.8)

therefore (∫
I

λ̂Xmλ̂
X
n dx

)
≡

[
M1D M1D

M1D M1D

]
4×4(∫

I

λ̂Vmλ̂
V
n dv

)
≡

[
M11F M12F
M21F M22F

]
4×4

F :=

[
1 1
1 1

]
finally

M2D
nm :=

∫
I2

λ̂nλ̂mdx dv (4.2.9)

M2D =

[
M1D M1D

M1D M1D

]
⊗
[
M11F M12F
M21F M22F

]
(4.2.10)

and in general case (arbitrary k)

M1D ∈ MNp×Np

F ∈ MNp×Np

M2D :=

 M1D M1D . . . M1D

...
M1D M1D . . . M1D


︸ ︷︷ ︸

N2D
p

⊗

 M11F M12F . . . M1,Np
F

...
MNp,1F MNp,2F . . . MNp,Np

F

 (4.2.11)

27

where M1D is the mass matrix generated using polynomials of degree k (Np = k + 1, N2D
p = N2

p) and
F is a full matrix with elements equal to 1. Finally the Mass matrix in an element Kij = Ii × Jj will be

M2D
(i,j) =

|Ii|.|Jj |
4

M2D

V -gradient matrix

∫
Jj

∫
Ii

E(x)f∂vλndx dv =

N2
p∑

m=1

(∫
Jj

∫
Ii

E(x)λm∂vλndx dv

)
umh

=:

N2
p∑

m=1

V olEn,m umh

=

N2
p∑

m=1

(∫
I2

E

(
cx(i) +

hx(i)

2
x

)
λ̂m∂vλ̂ndx dv

)
umh

=

N2
p∑

m=1

(∫
I

E

(
cx(i) +

hx(i)

2
x

)
λ̂Xmλ̂

X
n dx

)(∫
I

λ̂Vm
dλ̂Vn
dv

dv

)
umh

=

N2
p∑

m=1

IntE(i)
nm SV T

nmu
m
h ∀n ∈ 1..N2

p

where

V olEn,m :=

(∫
Jj

∫
Ii

E(x)λm∂vλndx dv

)
(4.2.12)

SVn,m :=

∫
I

λ̂Vn
dλ̂Vm
dv

dv (4.2.13)

IntE(i)
n,m :=

∫
I

E

(
cx(i) +

hx(i)

2
x

)
λ̂Xmλ̂

X
n dx (4.2.14)

Starting with the simplest case, k = 1, and using the identities in (4.2.4), we obtain

SV2D :=

[
S1D

11 F S1D
12 F

S1D
21 F S1D

22 F

]
(4.2.15)

where S1D is the gradient matrix we derived in §4.1.1 for 1D case and in the general case (arbitrary k)
reads

S1D ∈ MNp×Np

F ∈ MNp×Np

SV2D :=

 S1D
11 F S1D

12 F . . . S1D
1,Np

F
...

S1D
Np,1

F S1D
Np,2

F . . . S1D
Np,Np

F


N2D

p ×N2D
p

(4.2.16)

The other term, IntE
(i)
n,m, which is the electric field integral in an element (i, j), can be evaluated by

Gauss quadrature. Note that the electric field function is a polynomial of degree k+ 1 where the degree
of solution, fh, is k, so the integrand is a polynomial of degree 3k + 1. For the Gauss quadrature we

28

should specify the number of Gauss nodes, NGauss which determines the degree of precision 2NGauss−1
(i.e. integrates exactly any polynomial of degree ≤ 2NGauss − 1). We choose

NGauss := CEILING[
3k + 2

2
]

The V -gradient matrix in an element el ≡ (i, j) is

VolE(i,j) := IntE(i) ⊗ SVT (4.2.17)

X-gradient matrix

∫
Jj

∫
Ii

vf∂xλndx dv =

N2
p∑

m=1

(∫
Jj

∫
Ii

vλm∂xλndx dv

)
umh

=:

N2
p∑

m=1

V olV (i,j)
nm umh

=

N2
p∑

m=1

(
hy(j)

2

∫
I2

(
cy(j) +

hy(j)

2
v

)
λ̂m∂xλ̂ndx dv

)
umh

=
hy(j)

2

N2
p∑

m=1

(∫
I

(
cy(j) +

hy(j)

2
v

)
λ̂Vmλ̂

V
n dv

)(∫
I

λ̂Xm
dλ̂Xn
dx

dx

)
umh

=
hy(j)

2

N2
p∑

m=1

(IntMnm + IntRnm)SXT
nmu

m
h

where

V olV (i,j)
nm :=

∫
Jj

∫
Ii

vλm∂xλndx dv (4.2.18)

SXnm :=

∫
I

λ̂Vn
dλ̂Vm
dx

dv (4.2.19)

IntMnm := cy(j)

∫
I

λ̂Vmλ̂
V
n dv (4.2.20)

IntRnm :=
hy(j)

2

∫
I

vλ̂Vmλ̂
V
n dv (4.2.21)

As before we begin with k = 1. Using identities in (4.2.4), we obtain

SX2D :=

[
S1D S1D

S1D S1D

]
(4.2.22)

where as before S1D is the gradient matrix we derived for the 1D case. Generalizing to the higher order
(arbitrary k) reads

S1D ∈ MNp×Np

F ∈ MNp×Np

SX2D :=

 S1D S1D . . . S1D

...
S1D S1D . . . S1D


N2D

p ×N2D
p

(4.2.23)

29

Moreover, the
∫
I
cy(j)λ̂Vmλ̂

V
n dv term in the X-gradient equation is same as the second term in (4.2.11)

multiplied by cy(j):

IntM = cy(j)

 M11F M12F . . . M1,Np
F

...
MNp,1F MNp,2F . . . MNp,Np

F

 (4.2.24)

Now the last step is to find a way to evaluate the last term,
hy(j)

2

∫
I
vλ̂Vmλ̂

V
n dv. We are going to use some

properties of the Legendre polynomials for evaluating this integral. We begin with the recursive formula
that generates the Legendre polynomials:

(n+ 1)Pn+1(r) = (2n+ 1)rPn(r)− nPn−1(r) ∀r ∈ I, n ≥ 1

P0(r) = 1

collecting terms without r, we get

n

2n+ 1
Pn−1(r) +

n+ 1

2n+ 1
Pn+1(r) = rPn(r) (4.2.25)

Now for the moment, we focus on evaluating the following integral

MRnm :=

∫
I

rλ̂n(r)λ̂n(r)dr n,m ∈ 1..Np

using (4.1.12), we obtain∫
I

rλ̂n(r)λ̂m(r)dr =

Np∑
q=1

Np∑
s=1

(V T)−1
nq (V T)−1

ms

∫
I

rP̃q−1P̃s−1dr

now expanding and applying (4.2.25), we obtain∫
I

r P̃qP̃s dr =

∫
I

r
Pq√

2
2q+1

Ps√
2

2s+1

dr

=

√
(2s+ 1)(2q + 1)

2

∫
I

rPqPsdr

=

√
(2s+ 1)(2q + 1)

2

∫
I

Pq

[
s

2s+ 1
Ps−1(r) +

s+ 1

2s+ 1
Ps+1(r)

]
dr

=

√
(2s+ 1)(2q + 1)

2

[
s

2s+ 1

∫
I

PqPs−1(r)dr +
s+ 1

2s+ 1

∫
I

PqPs+1(r)dr

]
=

√
(2s+ 1)(2q + 1)

2

[
s

2s+ 1

2

2q + 1
δq,s−1 +

s+ 1

2s+ 1

2

2q + 1
δq,s+1

]
=

1√
(2s+ 1)(2q + 1)

[sδq,s−1 + (s+ 1)δq,s+1]

and hence

MRnm =

Np∑
s=1

Np∑
q=1

(V T)−1
nq (V T)−1

ms

∫
I

rP̃q−1P̃s−1dr

=

Np∑
s=1

Np∑
q=1

(V T)−1
nq (V T)−1

ms

[(s− 1)δq−1,s−2 + sδq−1,s]√
(2s− 1)(2q − 1)

=

Np−1∑
s=1

(V T)−1
n,s+1(V T)−1

ms

s√
(2s− 1)(2s+ 1)

+

Np∑
s=2

(V T)−1
n,s−1(V T)−1

ms

s− 1√
(2s− 1)(2s− 3)

30

and finally using (4.2.4), IntRnm is the following matrix

IntR :=
hy(j)

2

 MR MR . . . MR
...

MR MR . . . MR


N2D

p ×N2D
p

(4.2.26)

Coming back to give a short notation for our main equation in a given element el ≡ (i, j) , we obtain

IntV(j) :=
hy(j)

2
(IntR + IntM) , (4.2.27)

VolV(i,j) = IntV(j) ⊗ SXT . (4.2.28)

V -boundry term matrix

for this part we assume that the sign of v during integration remain constant (either v > 0 or v < 0).
We are dealing with ∫

Jj

v̂fλn

∣∣∣
∂Ii

dv

1. Case v < 0: then v̂f
∣∣∣
∂Ii

= v(f(x+
i+1/2, v)− f(x+

i−1/2, v)). Now consider we are in an element (i, j),

then we denote the solution in the element on the left, (i − 1, j) by f left and also for the right
element by (i+ 1, j) by f right.∫

Jj

v̂fλn

∣∣∣
∂Ii

dv =

∫
Jj

v[f(x+
i+1/2, v)λn(xi+1/2, v)− f(x+

i−1/2, v)λn(xi−1/2, v)]dv

=

∫
Jj

v f(x+
i+1/2, v)λn(xi+1/2, v)dv −

∫
Jj

v f(x+
i−1/2, v)λn(xi−1/2, v)dv

=

∫
Jj

v f right(xi+1/2, v)λn(xi+1/2, v)dv −
∫
Jj

v f(xi−1/2, v)λn(xi−1/2, v)dv

=

N2
p∑

m=1

∫
Jj

v λright
m (xi+1/2, v)λn(xi+1/2, v)um,right

h dv

−
N2

p∑
m=1

∫
Jj

v λm(xi+1/2, v)λn(xi+1/2, v)umh dv

Now we define these two terms (keep in mind v < 0) in the following way

V FRn :=

N2
p∑

m=1

∫
Jj

v λright
m (xi+1/2, v)λn(xi+1/2, v)um,right

h dv

=

N2
p∑

m=1

[
λX,right
m (xi+1/2)λXn (xi+1/2)

](∫
Jj

v λV,right
m λVn dv

)
um,right
h

=

N2
p∑

m=1

Bnm

(∫
Jj

v λV,right
m λVn dv

)
um,right
h

where

Bnm = λX,right
m (xi+1/2)λXn (xi+1/2) (4.2.29)

31

As before, we begin with the simplest case k = 1, and using (4.2.4). But we should also mention
some more identities as:

λV,right
1 = λV2 λX,right

1 (xi+1/2) = λX2 (xi+1/2) = 1

λV,right
3 = λV4 λV,right

3 (xi+1/2) = λV4 (xi+1/2) = 1

λX,right
2 (xi+1/2) = λX1 (xi+1/2) = 0

λX,right
4 (xi+1/2) = λX3 (xi+1/2) = 0

(4.2.30)

and hence

B =


0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0


V FRn =

N2
p∑

m=1

Bnm

(∫
Jj

vλV,right
m λVn dv

)
um,right
h

VFR =


0 0 0 0

IntV22 0 IntV24 0
0 0 0 0

IntV42 0 IntV44 0

 .uright
h

Now we focus on the easier term:

V FLn :=

N2
p∑

m=1

(∫
Jj

vλm(xi−1/2, v)λn(xi−1/2, v)dv

)
umh

=

N2
p∑

m=1

[
λXm(xi−1/2)λXn (xi−1/2)

](∫
Jj

vλVmλ
V
n dv

)
︸ ︷︷ ︸

IntVnm

umh

VFL =


IntV11 0 IntV13 0

0 0 0 0
IntV31 0 IntV33 0

0 0 0 0

 .uh (4.2.31)

and hence the total expression for V -boundary term will be∫
Jj

v̂fλn

∣∣∣
∂Ii

dv = V FRn − V FLn ∀n = 1..N2
p (4.2.32)

In order to get a general expression that works for any degree (arbitrary k), we have to generalize

some concepts regarding the basis functions. The basis functions, {λ̂n}, we introduced in the
reference element I2 is related to the set of faces {fn} in the reference element shown in §4.2.2,

where λ̂n(ξm) = δnm for all n,m ∈ 1..N2
p . In this reference element we defined four class of faces,

which correspond to the faces on the boundary of the element. Coming back to calculate VFR
terms, we will get

Bnm = λX,right
m (xi+1/2)λXn (xi+1/2) =

{
1 n ∈ facesright,m ∈ facesleft
0 else

and

V FRnm = Bnm

∫
Jj

vλV,right
m λVn dv =

{
IntVnm n,m ∈ facesright
0 else

Moreover for the VFL terms we obtain

B′nm := λXm(xi−1/2)λXn (xi−1/2) =

{
1 n,m ∈ facesleft
0 else

(4.2.33)

VFL = IntV ⊗B′ (4.2.34)

32

and finally ∫
Jj

v̂fλn

∣∣∣
∂Ii

dv = V FRn − V FLn ∀n = 1..N2
p (4.2.35)

2. Case v > 0: then v̂f
∣∣∣
∂Ii

= v(f(x−i+1/2, v) − f(x−i−1/2, v)). Using the same procedure as above for

calculating VFL and VFR, we will obtain

Bnm = λX,left
m (xi+1/2)λXn (xi+1/2) =

{
1 n ∈ facesleft,m ∈ facesright
0 else

and

V FLnm = Bnm

∫
Jj

vλV,left
m λVn dv =

{
IntVnm n,m ∈ facesleft
0 else

Moreover for the VFR terms we obtain:

B′nm := λXm(xi−1/2)λXn (xi−1/2) =

{
1 n,m ∈ facesright
0 else

(4.2.36)

VFR = IntV ⊗B′ (4.2.37)

E(x)-boundry term matrix

Upto now, all terms could be calculated with little effort but the E(x)-boundary term is a little bit
crucial because

Êf(vj+ 1
2
) :=

{
E(x)f(x, v+

j+ 1
2

) E(x) ≥ 0

E(x)f(x, v−
j+ 1

2

) E(x) ≤ 0

E(x) can change sign inside the interval. Hence∫
Ii

Êfϕ
∣∣∣
∂Jj

dx

cannot be calculated as before, since the integrand is defined in two different ways. One idea is to find
roots of E(t, x) and decompose the integral into∫

Ii

Êfϕ
∣∣∣
∂Jj

dx =

∫
I+
i

E(x)fup(x, vj+1/2)ϕ(x, vj+1/2)dx+

∫
I−i

E(x)f(x, vj+1/2)ϕ(x, vj+1/2)dx

−

(∫
I+
i

E(x)f(x, vj−1/2)ϕ(x, vj−1/2)dx+

∫
I−i

E(x)fdown(x, vj−1/2)ϕ(x, vj−1/2)dx

)
(4.2.38)

where

I+
i = {x|x ∈ Ii, E(x) ≥ 0}
I−i = {x|x ∈ Ii, E(x) ≤ 0} (4.2.39)

Moreover, If the E(t, x) is known then one may find its roots analytically (but in very exceptional cases).
Note that in V-P system the E(t, x) is even not known.

In order to compute this term one may use a brute force procedure to find approximately the E(x)
roots in each interval and decompose domain to I+

i and I−i and calculate (4.2.38). Below, we begin
to treat this integral by assuming that E(x) does not change sign within an interval where we have
an exact expression for any k. Later we will introduce two different methods to handle the problem of
discontinuity of the integrand in an interval.

33

1. E(x) > 0 then∫
Ii

Êfλn

∣∣∣
∂Jj

dx =

∫
Ii

E(x)fup(x, vj+1/2)λn(x, vj+1/2)dx

−
∫
Ii

E(x)f(x, vj−1/2)λn(x, vj−1/2)dx

=

N2
p∑

m=1

(∫
Ii

E(x)λup
m (x, vj+1/2)λn(x, vj+1/2)dx

)
umh

−
N2

p∑
m=1

(∫
Ii

E(x)λm(x, vj−1/2)λn(x, vj−1/2)dx

)
umh ∀n = 1..N2

p

Defining ‘up’ and ‘down’ terms

EFUn :=

N2
p∑

m=1

(∫
Ii

E(x)λup
m (x, vj+1/2)λn(x, vj+1/2)dx

)
umh (4.2.40)

=

N2
p∑

m=1

[
λV,up
m (vj+1/2)λVn (vj+1/2)

](∫
Ii

E(x)λX,up
m λXn dx

)
umh (4.2.41)

then [
λV,up
m (vj+1/2)λVn (vj+1/2)

]
=

{
1 n ∈ facesup,m ∈ facesdown

0 else
(4.2.42)(∫

Ii

E(x)λX,up
m λXn dx

)
= IntEn,m ∀n,m ∈ facesup (4.2.43)

and for vj−1/2 (down)

EFDn :=

N2
p∑

m=1

(∫
Ii

E(x)λm(x, vj−1/2)λn(x, vj−1/2)dx

)
umh (4.2.44)

=

N2
p∑

m=1

[
λVm(vj−1/2)λVn (vj−1/2)

](∫
Ii

E(x)λXmλ
X
n dx

)
umh (4.2.45)

then [
λVm(vj−1/2)λVn (vj−1/2)

]
=

{
1 n,m ∈ facesdown

0 else
(4.2.46)(∫

Ii

E(x)λXmλ
X
n dx

)
= IntEn,m (4.2.47)

finally ∫
Ii

Êfλn

∣∣∣
∂Jj

dx = EFUn − EFDn ∀n = 1..N2
p (4.2.48)

34

2. E(x) < 0 then∫
Ii

Êfλn

∣∣∣
∂Jj

dx =

∫
Ii

E(x)f(x, vj−1/2)λn(x, vj+1/2)dx

−
∫
Ii

E(x)fdown(x, vj+1/2)λn(x, vj−1/2)dx

=

N2
p∑

m=1

(∫
Ii

E(x)λm(x, vj+1/2)λn(x, vj+1/2)dx

)
umh

−
N2

p∑
m=1

(∫
Ii

E(x)λdown
m (x, vj−1/2)λn(x, vj−1/2)dx

)
umh ∀n = 1..N2

p

Defining ‘up’ and ‘down’ terms

EFUn :=

N2
p∑

m=1

(∫
Ii

E(x)λm(x, vj+1/2)λn(x, vj+1/2)dx

)
umh (4.2.49)

=

N2
p∑

m=1

[
λVm(vj+1/2)λVn (vj+1/2)

](∫
Ii

E(x)λXmλ
X
n dx

)
umh (4.2.50)

then [
λVm(vj+1/2)λVn (vj+1/2)

]
=

{
1 n,m ∈ facesup
0 else

(4.2.51)(∫
Ii

E(x)λXmλ
X
n dx

)
= IntEn,m ∀n,m (4.2.52)

and for vj−1/2 (down)

EFDn :=

N2
p∑

m=1

(∫
Ii

E(x)λdown
m (x, vj−1/2)λn(x, vj−1/2)dx

)
umh (4.2.53)

=

N2
p∑

m=1

[
λV,down
m (vj−1/2)λVn (vj−1/2)

](∫
Ii

E(x)λX,down
m λXn dx

)
umh (4.2.54)

then [
λVm(vj−1/2)λVn (vj−1/2)

]
=

{
1 n ∈ facesdown,m ∈ facesup
0 else

(4.2.55)(∫
Ii

E(x)λXmλ
X
n dx

)
= IntEn,m ∀n,m ∈ facesdown (4.2.56)

hence ∫
Ii

Êfλn

∣∣∣
∂Jj

dx = EFUn − EFDn ∀n = 1..N2
p (4.2.57)

Approximating E(x)-boundary term

If Eh(x) = 0 for some x ∈ Ii then the definition of the numerical flux (3.1.7) would require finding
roots of Eh(x) in Ii and then partitioning the interval into I+

i and I−i , introduced in (4.2.39). Denoting
f(x, v+

j+ 1
2

) by f+ and f(x, v−
j+ 1

2

) by f−, we would have ideally∫
Ii

Êf ϕ =

∫
I+
i

Eh(x)f+ ϕ+

∫
I−i

Eh(x)f− ϕ (4.2.58)

35

In practice Eh is a polynomial of degree k + 1 and therefore except in very particular situations (k = 1)
finding its roots could be extremely difficult. We now introduce two methods to deal with this difficulty
and as we will show in §5.3.3 they are very efficient to compute the expression (4.2.58).

One should mention that in order to determine whether or not Eh(x) has some roots in Ii, we use
a simple controller that checks if electric field is strictly positive or negative. The check is done in the
following way, we first express Eh(x) in an element Ii using Bernstein polynomials of degree k + 1

Eh(t, x) :=

Np+1∑
n=1

Ẽn
i (t)Bn

k+1(x) x ∈ Ii

where

Bn
k+1(x) ≥ 0 ∀n

Hence if all coefficients, {Ẽn
i }, are positive (or all negative) then we can conclude that Eh(x) 6= 0 for

x ∈ Ii. But if at least one of them changes sign then, Eh(x) vanishes in Ii, we need to compute the flux
in a different way. We now consider the following two approaches.

1. Projection to P0

A very simple idea is to project the electric field function onto the piecewise constants in the element
where Eh(x) changes sign (note we do the projection only in those elements where Eh(x) changes
sign not all). In that way we guarantee that P0(Eh) is constant along Ii. The new numerical flux
reads

Êf(x, vj+ 1
2
) :=


Eh(x) fh(x, v+

j+ 1
2

) Eh(x) ≥ 0

Eh(x) fh(x, v−
j+ 1

2

) Eh(x) ≤ 0

P0(Eh)f+ if∃x∗ : Eh(x∗) = 0 andP0(Eh) > 0
P0(Eh)f− if∃x∗ : Eh(x∗) = 0 andP0(Eh) < 0

. (4.2.59)

Therefore with this definition, we can proceed as before to compute the X-boundary term. We will
show in numerical experiments that this approach should be used only for low order approximations.

2. Weighted average

If Eh(t, x) = 0 for some x ∈ Ii then we use the following definition for numerical flux

Êf(x, vj+ 1
2
) :=


Eh(x)f(x, v+

j+ 1
2

) ∀x ∈ Ii, Eh(x) > 0

Eh(x)f(x, v−
j+ 1

2

) ∀x ∈ Ii, Eh(x) < 0

{{Ef}}w ∃x∗ ∈ Ii, Eh(x∗) = 0

(4.2.60)

where {{Ef}}w is a weighted average function that we define as

{{Ef}}w = w+Eh(x)f(x, v+
j+ 1

2

) + w−Eh(x)f(x, v−
j+ 1

2

) (4.2.61)

(w+ + w− = 1)

Now the question is how to determine the optimal values for w± that minimize the difference

between the new flux, Êf , and the old one in the sense of (4.2.58). From (4.2.58) we like to choose

w+ ≈ |I+
i |

w− ≈ |I+
i |.

However, obtaining information about |I+
i | or |I−i | is as difficult as approximating the zeros of Eh

(which we do not want to do). The idea now is to relate |I±i | to computable quantities. To explain
how w± are picked in practice, consider an element, Ii = I+

i ∪ I
−
i , and the electric field behaves

like

36

xi−1/2 xi+1/2

Ii

I+
i I−i

Eh(t, x)

d f−
f+

Since Eh is a polynomial (smooth function) then |I−i | will be proportional to the |minIi Eh|.
Similarly |I+

i | is proportional to |maxIi Eh|. Hence we choose

w+ =
|maxIi Eh|

|maxIi Eh|+ |minIi Eh|

w− =
|minIi Eh|

|maxIi Eh|+ |minIi Eh|

(4.2.62)

with the property w+ + w− = 1 (see Appendix A). Note that (4.2.58) becomes∫
Ii

Êf ϕ = w+

∫
Ii

Eh(x)f+ ϕ+ w−
∫
Ii

Eh(x)f− ϕ.

Moreover we wish to stress that obtaining w+ and w− is low cost. We will see in the following
chapter that using this approximation will give really good result in simulation of V-P systems.
Also the result for energy conservation is better than projecting to P0 approximation for several
order of magnitudes (beside projecting to constant preserves energy better than other methods
applied to V-P system in literature).

37

Chapter 5

Numerical experiments

In this section, we apply the numerical scheme that was described in the previous sections to a group of
test cases that are generally used to verify the reliability and efficiency of the numerical schemes. We
first begin with a linear transport problem to check the accuracy of the Vlasov solver then in §5.2, we
check the convergence rate of the Vlasov-Poisson solver for a forced V-P system.

Pursuing this further, we also examine the method for two typical test cases, non-linear Landau
damping in §5.3 and two stream instability in §5.5 where we compared the conservation of energy and
Lp-norms for different Poisson solvers and the effect of mesh refinement and increase the degree of
polynomials on conservation of those quantities.

Ek(t) =

∫
Ωx

∫
Ωv

|v|2

2
fh(t, x, v)dv dx discrete kinetic energy

Ep(t) =
1

2

∫
Ωx

|Eh(t, x)|2dx+
(k + 1)2

hx

Nx∑
i=0

[[Φh]]2i+1/2 discrete potential energy

Etot(t) = Ek(t) + Ep(t) discrete total energy

‖fh‖pLp =

∫
Ωx

∫
Ωv

|fh(t, x, v)|p dx dv discrete Lp norm

E0
tot :=

∫
Ωx

∫
R

|v|2

2
f0(x, v)dx dv +

1

2

∫
Ωx

|E0(x)|2dx exact initial energy

‖f0‖pLp =

∫
Ωx

∫
R
|f0(x, v)|p dx dv exact initial Lp norm

(5.0.1)

In addition we show the effect of different approaches in evaluating E(x)-boundary term in §4.2.4 on
physical quantities like total energy. For all test cases, we use a Runge-Kutta time integrator, so-called
RK4 which is a fourth order integrator. Although this kind of integrator, RK4, is explicit and generally
not energy preserving for physical systems, we prefer to use and avoid using energy preserving symplectic
Runge-Kutta methods since symplectic RK methods are all implicit and expensive. We also mention
that Poisson equation is solved in each stage of the Runge-Kutta time integration (not in each time step)
and applied in the Vlasov equation in that stage.

In the following sections, whenever we solved the V-P system, we use the energy conservative LDG
solver for Poisson equation in §3.2.2 and also “weighted average” flux when electric field changes sign in
an element unless otherwise stated.

38

5.1 Simple linear advection

In order to check the DG scheme for the Vlasov equation (transport equation) with a given electric field
and reliability of the algorithm, we perform a convergence test on the code with the following initial data

f(t = 0, x, v) = f0(x, v) = sin(πx)e−
v2

2 ∀x ∈ Ωx = [−1, 1], v ∈ Ωv = [−10, 10] (5.1.1)

where the boundaries of the Ωv are chosen such that f0(x, v)|v=∂Ωv
≈ 0 to ensure the compact support

of the f0 and so the solution.

5.1.1 E(x) constant

First, we choose a constant electric field, E(x) = 5. In this example, as the electric field is chosen

Figure 5.1: log-log plot of x−(k+1) (dashed), L2 error of approximate solution (solid) using polynomials of
degree k = 1, 2, 3 where E(x) = 5 (left) and E(x) = x (right).

constant, we can find the exact solution by solving the characteristics of (4.2.1):

f(t, x, v) = f0(x− vt− 1

2
Et2, v + Et) ∀x ∈ Ωx = [−1, 1], v ∈ Ωv = [−10, 10], t ≥ 0 (5.1.2)

We performed tests with this initial condition using polynomials of degree 1, 2 and 3. In Fig. 5.1(left),
one may find accuracy of the scheme for k = 1, 2, 3 which yields order of accuracy 2, 3 and 4.

5.1.2 E(x) = x

The second test we perform to check the accuracy of transport problem is formulated by choosing
E(x) = x. Hence the Vlasov equation reads

ft + vfx − E(x)fv = 0

ft + vfx − xfv = 0

ft + w.∇f = 0, w = (v,−x)

note that w is a rotation vector that force the initial data to revolve around (0, 0) clockwise. The period
of a complete rotation is 2π, so we can measure the error by calculating ‖fh(0, ., .)− fh(2π, ., .)‖L2 . The
initial data is a 2D Gaussian function centered at (1, 1)

f0(x, v) = e−10{(x−1)2+(v−1)2}, ∀x ∈ Ωx = [−6, 6], v ∈ Ωv = [−6, 6] (5.1.3)

39

We perform some simulation using polynomials of different degrees and a computational domain [−6, 6]×
[−6, 6] upto t = 2π. At this time, we expect the approximate solution to be close to fh(0, ., .) in phase
space. In Fig. 5.1(right) are given the convergence results for k = 1, 2, 3. In Fig. 5.2, we show the
evolution of solution in phase space for t = π/2 (centered at (1,−1)), t = π (centered at (−1,−1)),
t = 3π/2 (centered at (−1, 1)) and t = 2π (centered at (1, 1)).

(a) t = π
2

(b) t = π

(c) t = 3π
2

(d) t = 2π

Figure 5.2: solution of the Vlasov equation with E(x) = x at different times.

5.2 Convergence of Vlasov-Poisson

In this section we study the accuracy of DG-DG scheme for nonlinear Vlasov-Poisson system. We are
able to perform this check by adding a right-hand side to the Vlasov equation and solving the following
system: 

ft + vfx − E(t, x)fv = ψ(t, x, v)

− ∂
∂xE(t, x) = ρ(t, x)−

√
π

(5.2.1)

where

ψ(t, x, v) = e−
1
4 (4v−1)2

({
(4
√
π + 2)v − (2π +

√
π)
}

sin(2(x− πt)) +

{√
π

4
−
√
πv

}
sin(4(x− πt))

)

40

then the general solution for this system will be:

f(t, x, v) = {2− cos(2x− 2πt)} e− 1
4 (4v−1)2 (5.2.2)

E(t, x) =

√
π

4
sin(2x− 2πt) (5.2.3)

Notice that the general solution is periodic in time which means the solution will be at the same place
at t = 1

f(t = 1, x, v) = f(t = 0, x, v)

Therefore, we performed the simulation until t = 1 on a computational domain [−π, π] × [−4, 4] using
polynomials of degree k = 1, 2, ..., 6. The results for accuracy can be found in Fig. 5.3(left). Moreover
we show the convergence diagram varying the polynomial degree (k = 1, 2, 4, 8, 12) for different mesh
20× 20, 40× 40 and 80× 80 in Fig. 5.3(right). From the latter convergence diagram it can be observed
the exponential convergence as we plot it in a semi-log scale.

Figure 5.3: log-log plot of L2 error for different mesh size (left) and different polynomial degree (right) for
V-P system with right-hand side.

In order to check the conservative properties of the method, we perform a check on the physical
quantities such as L∞, L2, mass m(t) and total energy Etot(t). We use k = 6 with a mesh 40 × 40.
In Fig. 5.4, we show the relative error of the mass conservation (left-top), L∞ (right-top), total energy
(bottom-left) and L2 (bottom-right). One may note that the errors are close to machine precision.

5.2.1 Convergence rate for different Poisson solver

In this section we compare the convergence rate for different Poisson solver applied to the V-P system.
we use different meshes, 20 × 20, 40 × 40 and 80 × 80 together with polynomial degrees, k = 2, 3. In
Table 5.1, is given the L2 error for mixed-FEM, LDG2 and LDG3 Poisson solver (introduced in §3.2)
where we do not see significant difference either in error or in the order of accuracy. But one may notice
that LDG3 solver (the energy conservative method) seems to be more accurate since produce smaller
errors.

5.3 Nonlinear Landau damping (strong case)

Nonlinear Landau damping is commonly used to check the reliability of the V-P system solvers since the
properties of the L2 norm of the electric field (

√
2Ep(t)) are well known [7]. The initial data that we will

41

Figure 5.4: relative error for L∞, L2, mass m(t) and total energy Etot(t) for V-P system with rhs test case.

k = 2
mesh L2 error (mixed) order L2 error (LDG3) order L2 error (LDG2) order

202 3.0154 × 10−2 - 3.0134 × 10−2 - 3.0134 × 10−2 -

402 6.4640 × 10−3 2.221873 6.4623 × 10−3 2.2213132 6.4623 × 10−3 2.2213157

802 7.5804 × 10−4 3.092085 7.5775 × 10−4 3.0922407 7.5775 × 10−4 3.0922409

k = 3
mesh L2 error (mixed) order L2 error (LDG3) order L2 error (LDG2) order

202 5.8300890 × 10−3 - 5.8295897 × 10−3 - 5.8295895 × 10−3 -

402 3.6364382 × 10−4 4.00291991 3.6361315 × 10−4 4.00291807 3.6361315 × 10−4 4.00291802

802 2.2582894 × 10−5 4.00922378 2.2580954 × 10−5 4.00922603 2.2580954 × 10−5 4.00922603

Table 5.1: Order of accuracy using different Poisson solver for k = 2, 3 for V-P system with rhs.

use for this case is

f(t = 0, x, v) =
1√
2π

(1 + α cos(K x)) e−
v2

2 (5.3.1)

where K = 0.5 and α = 0.5. The Ωx is [0, 4π] and typically in literature the Ωv is set to be [−5, 5].
We found that as f(t, x, v)|v=∂Ωv

≈ 10−5, so for high accurate methods as those considered here
the solution cannot be longer considered of compact support. Therefore we consider Ωv = [−10, 10]
where f(t, x, v)|v=∂Ωv

≈ 10−22. We plot the evolution of the electric field norm in a semi-log scale
in Fig. 5.5(left) for a mesh 100 × 160 using polynomials of degree 3 (k = 3). We also present fitted
functions of the form c exp(−γt) on the local maximums of ‖E(t, .)‖L2 for t ∈ [0, 10] (initial decay) and
t ∈ [20, 40] where the coefficients are estimated as c1 = 2.383814, γ1 = −0.305920, c2 = 0.015360 and
γ2 = 0.085241. We also investigate the conservation properties of our scheme on the evolution of the
L1-norm and L2-norm of the solution using

|‖fh(t)‖L1 − ‖fh(t = 0)‖L1 |
‖fh(t = 0)‖L1

(5.3.2)

|‖fh(t)‖L2 − ‖fh(t = 0)‖L2 |
‖fh(t = 0)‖L2

(5.3.3)

and the evolution in time of these quantities is depicted in Fig. 5.6.

As we claim that our scheme will preserve the total energy, Etot(t), we plot the long-run behavior of

42

Figure 5.5: (left) The evolution of the electric field L2-norm in a semi-log scale where c1 = 2.279673,
γ1 = −0.292285, c2 = 0.015228 and γ2 = 0.086126. (right) The evolution of total energy error
in a semi-log scale for non-linear Landau damping.

Figure 5.6: The evolution of ‖fh‖L1 and ‖fh‖L2 in a semi-log scale where using a mesh 100× 160.

total energy error using

|Etot(t)− Etot(0)|
Etot(0)

(5.3.4)

for non-linear Landau damping in Fig. 5.5 (right). Note that upto t ≈ 10 the error in total energy
decreases to 10−12 and after that due to the process of filamentation we will have a slowly increasing
error until t ≈ 40 when strong oscillations occur in v-direction. Therefore, the error increases to 10−10

which to the knowledge of us was never seen before in literatures. We present the solution of this test
case for different times in Fig. 5.7, where one may note the details produced by our scheme. In addition
in Fig. 5.8, we present a profile of the solution in v∫

Ωx

fh(t, x, v)dx

to show the ability of scheme to capture the strong oscillation in v-direction.

5.3.1 Effect of polynomial degree (k)

We check the method’s response to different polynomials degrees in this section. First we fix the mesh size
(100× 160) and change the polynomial degree (k = 1, 2, 3) then we compare results in Fig. 5.9(top). In
order to make a fair comparison between polynomials with different orders we fix the degree of freedoms
in the mesh and find the corresponding mesh size, (Nx, Nv). One should mention that the number of
degree of freedoms for x and y directions (DG approximation) are Nx.(k+1) and Nv.(k+1) respectively.
Hence, for instance we set the degrees of freedoms to 400 × 640 and we get (Nx, Nv) to be (200 × 320)
for 2nd order, (134 × 214) 3rd order and (100 × 160) 4th order. In Fig. 5.9(left-bottom) we show that
increasing the degree of polynomials while keeping the degree of freedoms constant will yield a better
conservation of total energy and L2-norm error.

43

(a) t = 15 (b) t = 35

(c) t = 45 (d) t = 65

Figure 5.7: solution of the V-P system for non-linear Landau damping at different times using mesh 100×160
and k = 3.

5.3.2 Effect of mesh refinement

In this part, we show the effect of mesh refinement on the observable quantities of the system for the
non-linear Landau damping test case. In order to check the conservation properties of the scheme like
total energy, L1 and L2-norms we evaluate those values at t = 0 using the initial data, f0(x, v), instead
of discrete solution fh(t = 0, x, v) in double precision and compute the following identities∣∣Etot(t)− E0

tot

∣∣ error in total energy

|‖fh(t, x, v)‖Lp − ‖f0(x, v)‖Lp | error in Lp norm
(5.3.5)

where E0
tot is the exact initial energy

E0
tot :=

∫
Ωx

∫
Ωv

|v|2

2
f0(x, v)dx dv +

1

2

∫
Ωx

|E0(x)|2dx (5.3.6)

We present the initial decay of the electric field L2-norm and increments parameters for three different
mesh using an exponential fit of the form c exp(−γt) in Table 5.2. In addition, we present the error
illustrated in (5.3.5), in Fig. 5.10 for L2 and total energy. One may note that by refining the mesh we
have less error in those measurements. The estimated γdecay is same as the reported one by (-0.292)
Rossmanith and Seal in [21] and close to Cheng and Knorr (-0.281) in [9].

44

(a) t = 15 (b) t = 45

(c) t = 65 (d) t = 90

Figure 5.8: x-integrated solution of the non-linear Landau damping for different times where it shows the
strong oscillations in v-axis.

Figure 5.9: evolution of the relative error in L2-norm and total energy for polynomials of different degree
(non-linear Landau damping). (top) comparison with fixed mesh size and different k, (bottom)
comparison with fixed degrees of freedom and different k.

5.3.3 Effect of E(x)-boundary term approximation

As we introduced in §4.2.4, in the case that electric field has roots in an element Ii, we consider two
different approach to evaluate the E(x)-boundary term: projecting to P0 and transforming the integrals.

45

mesh γdecay cdecay γincrement cincrement
50× 80 -0.292286 2.279682 0.085114 0.015669
100× 160 -0.292285 2.279673 0.086126 0.015228
150× 240 -0.292285 2.279673 0.086116 0.015232

Table 5.2: estimated coefficients of initial decay and increment of the electric field L2-norm where the fitted
function is c exp(−γt) (non-linear Landau damping).

Figure 5.10: evolution of the relative error in L2, and total energy for different mesh size in a semi-log scale
(non-linear Landau damping).

In Fig. 5.11, one may see that using weighted average flux preserves energy better for many order of

Figure 5.11: The evolution of total energy error in a semi-log scale for non-linear Landau damping using a
mesh 100× 160 and k = 1, 3 with projection to P0 (left) and weighted average flux (right) for
evaluating electric field terms.

magnitudes.

46

5.4 Landau damping (weak case)

The weak Landau damping is also important to the numerical schemes of V-P system because of its
similarities to the linear Landau damping problem. Here the initial data is same as nonlinear Landau
damping

f(t = 0, x, v) =
1√
2π

(1 + α cos(K x)) e−
v2

2 (5.4.1)

except that α is chosen very small (small perturbation). Here we choose α = 0.01 and same K, Ωx and
Ωv as before. The mesh is chosen as 60 × 60 and degree of polynomials k = 4. In Fig. 5.12, we show
the evolution of total energy error, electric field norm, L∞ and L1. Moreover, we fit c exp(−γt) to the
“local maximums” of L2 norm of the electric field where γ = −0.153272 (compare to −0.1533 in [21]).

Figure 5.12: evolution of total energy error, electric field norm, L∞ and L1 norm for weak nonlinear Landau
damping.

5.5 Two stream instability

The two stream instability is a standard benchmark for checking the reliability of the schemes face to
strong oscillations. The initial data consists of the two instable flow moving in the opposite direction of
each other

f(t = 0, x, v) =
v2

√
8π
{2− cos(K(x− 2π))} e− v2

2 (5.5.1)

where K = 0.5, Ωx = [0, 4π] and as discussed in §5.3, Ωv = [−10, 10] to insure that f(t, x, v)|v=∂Ωv
≈ 0.

We present the solution, fh(t, x, v), at different times in Fig. 5.13 for a mesh 150 × 150. Furthermore,
we plot Lp-norms and total energy error upto t = 90 in Fig. 5.14. One may note that we again have a
good conservation of energy for this test case.

47

(a) t = 15 (b) t = 30

(c) t = 45 (d) t = 60

Figure 5.13: solution of the V-P system for two stream instability at different times using mesh 100 × 160
and k = 3.

Figure 5.14: evolution of the relative error in L1 and total energy in a semi-log scale (two stream instability).

5.5.1 Effect of Poisson solvers

Here we check the effect of the different Poisson solver for V-P system on L2 and total energy. We used
the LDG method with and without energy preserving flux described in §3.2.2 and mixed-FEM in §3.2.3.
The result for L2 and total energy preserving is shown in Fig. 5.15. Note that Poisson solver with energy
preserving flux (LDG3) has slightly better conservation for total energy compare to others.

48

Figure 5.15: evolution of the relative error in L2-norm and total energy in a semi-log scale (two stream
instability).

Figure 5.16: evolution of the relative error in L2-norm and total energy in a semi-log scale (two stream
instability).

5.5.2 Effect of mesh refinement

As we mentioned the mesh refinement for non-linear damping case, we also investigate the effect of mesh
refinement on the observable quantities for the two stream instability test case. Here, we check the
effect of refining the Ωx and Ωv separately. Moreover, we will use ‖f0‖Lp as initial Lp-norm of solution
instead of ‖fh(0)‖Lp where ‖f0‖Lp is Lp-norm of initial data and similarly for total energy, we choose
E0
tot introduced in (5.0.1). Hence we will compare the errors introduced in (5.3.5) for different meshes.

We found out that the error in L1, L2 and L∞ depends only on refinement of Ωv and not Ωx. Moreover
we observe a different effect for error in energy, while it depends more on refinement of Ωx (since it will
refine the mesh of the Poisson solver). One may see these effects in Fig. 5.16 for Etot and L2.

49

5.6 Two stream instability II

In this section, we use a different initial data for the two stream instability test case

f(t = 0, x, v) =
1

2vth
√

2π

{
exp

(
− (v − w)2

2v2
th

)
+ exp

(
− (v + w)2

2v2
th

)}
(1 + 0.05 cos(K x)) (5.6.1)

where vth = 0.3, w = 0.99 and K = 2
13 . For this experiment, we set Ωx = [0, 13π] and Ωv = [−8, 8]. We

show the relative error in energy of the V-P system using k = 3 for different mesh in Fig. 5.17(left) and
for different k using a fixed mesh in Fig. 5.17(right). Furthermore, in Fig. 5.18, we present the solution
of the system at t = 70 for different k =.

Figure 5.17: evolution of the relative error in total energy in a semi-log scale (two stream instability II).

(a) k = 2 (b) k = 3

Figure 5.18: solution of the V-P system for two stream instability II at t = 70 using mesh 256× 100.

5.7 Non-smooth solution

Let’s consider the boundary value problem
ft + vfx + E(t, x)fv = 0 (t, x, v) ∈ R+ × [0, 1]× R

f(t, 0, v) = g(t, v), v > 0; f(t, 1, v) = 0, v < 0

Φxx = ∂xE(t, x) = ρ(t, x)

(5.7.1)

50

with 
{Φ(t, 0) = 0,Φ(t, 1) = λ0} ⇔

∫ 1

0

E(t, x) dx = λ0

λ0 >

∫ 1

0

∫
R

(1− x)f0 dv dx

(5.7.2)

where

g(t, v) =
1√
2π
v2 exp(−v2/2)

using initial data

f0(x, v) = n0(x)
1√
2π
v2 exp(−v2/2)

n0(x) =

{
(1 + γx)(1− 4x2)4 x ∈ [0, 0.5]
0 else

following [24] and [15], we show that for λ0 satisfying condition (5.7.2), we will have change in regularity
of solution. In practice we use λ0 = 2.10947 that satisfies condition and λ0 = 0 for normal case. In

Figure 5.19: Evolution of ‖∇fh‖L2 (left) and ‖fh‖L∞ (right) for different mesh size and different λ0.

Fig. 5.19(left), one may note that for λ0 = 2.10947, the ‖∇fh‖L2 is diverging by refining the mesh while
converge for λ0 = 0. In Fig. 5.19(right), it is shown that the ‖fh‖L∞ will converge by refining the mesh.
We also presented the solution using λ0 = 2.10947 in Fig. 5.20.

5.7.1 Effect of polynomial degree (k)

In this section, we show the behavior of the system for different degrees of polynomial as well as refining
the mesh while keeping λ0 = 2.10947. In Fig. 5.21(left), for different k = 1, 2, 3, 4 we showed that the
gradient of the solution is diverging by increasing k and refining the mesh, while on the (right) we have
convergence in ‖fh‖L∞ .

5.7.2 Larger λ0

We choose a higher value for λ0 to check its effect on the solution and ‖∇fh‖L2 . We take λ0 = 10 and
plot the density solution in Fig. 5.22 and a profile of the solution at x = 0 in Fig. 5.23. Finally we present
‖∇fh‖L2 and ‖fh‖L2 in Fig. 5.24.

51

(a) t = 0.0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

Figure 5.20: solution of the V-P system for non-smooth solution test case at different times using mesh
60× 60 and k = 2.

Figure 5.21: Evolution of ‖∇fh‖L2 (left) and ‖fh‖L∞ (right) for different mesh size and different k.

52

(a) t = 0.0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

Figure 5.22: solution of the V-P system for non-smooth solution test case at different times using mesh
60× 60 and k = 2.

(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

Figure 5.23: The profile of the solution at x = 0.5 and different times for λ0 = 10.

53

Figure 5.24: Evolution of ‖∇fh‖L2 (left) and ‖fh‖L2 (right) for different mesh size and different k.

54

Appendix A

Weighted average

The idea is to approximate the exact calculation of the integral∫
I

Êff dx =

∫
I+

E(x)f+f dx+

∫
I−
E(x)f−f dx (A.0.1)

to the following approximation∫
I+

E(x)f+f dx ≈ w+

∫
I

E(x)f+f dx (A.0.2)∫
I−
E(x)f−f dx ≈ w−

∫
I

E(x)f−f dx; w+, w− ∈ R (A.0.3)

where f+, f− are the solutions that will be used when x ∈ I+ and x ∈ I− respectively. Note that the
approximate integrals will be evaluated on I instead of I+ and I− and hence are very easy to compute
as illustrated in previous section. So the difficulty is to find values w+ and w− that minimize the error
of approximation. We are going to evaluate the following error∣∣∣∣∫

I

Êf f dx−
(
w+

∫
I

E(x)f+f dx+ w−
∫
I

E(x)f+f dx

)∣∣∣∣ =∣∣∣∣∫
I+

E(x)f+f dx− w+

∫
I

E(x)f+f dx+

∫
I−
E(x)f−f dx− w−

∫
I

E(x)f+f dx

∣∣∣∣ ≤ |A|+ |B|

where

A :=

∫
I+

E(x)f+f dx− w+

∫
I

E(x)f+f dx,

B :=

∫
I−
E(x)f−f dx− w−

∫
I

E(x)f+f dx (A.0.4)

then

A = w+

∫
I

E(x)f+f dx−
∫
I+

E(x)f+f dx

= w+

∫
I+

E(x)f+f dx+ w+

∫
I−
E(x)f+f dx−

∫
I+

E(x)f+f dx

= (w+ − 1)

∫
I+

E(x)f+f dx︸ ︷︷ ︸
A1

+w+

∫
I−
E(x)f+f dx︸ ︷︷ ︸
A2

taking square of both side

A2 = A2
1 +A2

2 + 2w+(w+ − 1)

(∫
I+

E(x)f+f dx

)(∫
I−
E(x)f+f dx

)

55

subtracting A2
1 and A2

2 and taking square again

(
A2 −A2

1 −A2
2

)2
= (2w+(w+ − 1))2

(∫
I+

E(x)f+f dx

)2(∫
I−
E(x)f+f dx

)2

≤ (2w+(w+ − 1))2

(∫
I+

E2(x) dx

)(∫
I+

(f+f)2 dx

)
·(∫

I−
E2(x) dx

)(∫
I−

(f+f)2 dx

)
≤ (2w+(w+ − 1))2 ·

[
max
I+

E2

] ∣∣I+
∣∣ · [max

I−
E2

] ∣∣I−∣∣ · ‖f+f‖4L2(I)

taking square root of both side

A2 ≤ A2
1 +A2

2

+
∣∣2w+(w+ − 1)

∣∣ . [max
I+

E2

] 1
2
[
max
I−

E2

] 1
2

.
∣∣I+
∣∣ 12 ∣∣I−∣∣ 12 .‖f+f‖2L2(I) (A.0.5)

moreover

A2
1 = (1− w+)2

∫
I+

E(x)f+f dx

≤ (1− w+)2

(∫
I+

E2(x) dx

)(∫
I+

(f+f)2 dx

)
≤ (1− w+)2

[
max
I+

E2

] ∣∣I+
∣∣ ‖f+f‖2L2(I)

similarly

A2
2 ≤ (w+)2

[
max
I−

E2

] ∣∣I−∣∣ ‖f+f‖2L2(I)

substituting to (A.0.5) we will have

A2 ≤
(

(1− w+)2

[
max
I+

E2

] ∣∣I+
∣∣+ (w+)2

[
max
I−

E2

] ∣∣I−∣∣
+

∣∣2w+(w+ − 1)
∣∣ . [max

I+
E2

] 1
2
[
max
I−

E2

] 1
2

.
∣∣I+
∣∣ 12 ∣∣I−∣∣ 12) ‖f+f‖2L2(I)

=

(
(1− w+)

∣∣I+
∣∣ 12 [max

I+
E2

] 1
2

− w+
∣∣I−∣∣ 12 [max

I−
E2

] 1
2

)2

‖f+f‖2L2(I)

=

(∣∣I+
∣∣ 12 [max

I+
E2

] 1
2

− w+

{∣∣I+
∣∣ 12 [max

I+
E2

] 1
2

+
∣∣I−∣∣ 12 [max

I−
E2

] 1
2

})2

‖f+f‖2L2(I)

now we can minimize the right-hand side (and hence the error) by choosing w+ as

w+ =
|I+|

1
2
[
maxI+ E2

] 1
2

|I+|
1
2 [maxI+ E2]

1
2 + |I−|

1
2 [maxI− E2]

1
2

(A.0.6)

similar calculation for B in (A.0.4) will yield

w− =
|I−|

1
2
[
maxI− E

2
] 1

2

|I+|
1
2 [maxI+ E2]

1
2 + |I−|

1
2 [maxI− E2]

1
2

(A.0.7)

Note that the values obtained for w+ and w− are consistent in the sense that

w+ + w− = 1

56

moreover

(w+ → 1)&(w− → 0) when I+ → I

(w+ → 0)&(w− → 1) when I− → I

although we found a nice approximation to our integral, we are still unable to find |I+| and |I−| (but
it is still better than calculating the roots and partitioning), hence we make a further simplification and
we assume

|I+|
|I|

=
|I−|
|I|

= 1/2

and the final expression for w± reads

w+ =
|maxIi Eh|

|maxIi Eh|+ |minIi Eh|

w− =
|minIi Eh|

|maxIi Eh|+ |minIi Eh|

(A.0.8)

57

Bibliography

[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary
of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(5) (2001/02), pp. 1749–1779
(electronic).

[3] B. Ayuso, J. A. Carrillo, and C.-W. Shu, Discontinuous Galerkin methods for the one-
dimensional Vlasov-Poisson system, to appear in Kinetic and Related Models. (See also Brown
University, technical report 2009-41 (2009).)

[4] B. Ayuso de Dios, J. A. Carrillo, and C.-W. Shu, Discontinuous Galerkin methods for the
multi-dimensional Vlasov-Poisson problem, Newton Institute Preprint Series 2010 NI10038-KIT.
http://www.newton.ac.uk/preprints/NI10038.pdf

[5] C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation, McGraw-Hill,
New York, 1985.

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Com-
putational Mathematics, vol. 15, Springer-Verlag, New York, 1991.

[7] J. A. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-based
models, SIAM J. Sci. Comput., 29(3) (2007), pp. 1179–1206.

[8] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of
the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 38(5) (2000),
pp. 1676–1706 (electronic).

[9] C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.
Comp. Phys., 22 (1976), pp. 330–348.

[10] G.-H. Cottet and P.-A. Raviart Particle methods for the one-dimensional Vlasov-Poisson
equations, SIAM J. Numer. Anal., 21(1) (1984), pp. 52–76.

[11] N. Crouseilles, M. Mehrenberger, and F. Vecil, Discontinuous Galerkin semi-Lagrangian
method for Vlasov-Poisson, preprint hal-00544677.

[12] N. Crouseilles, G. Latu, and E. Sonnendrücker, A parallel Vlasov solver based on local
cubic spline interpolation on patches, J. Comput. Phys., 228(5) (2009), pp. 1429–1446.

[13] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys.
Comm., 150(3) (2003), pp. 247–266.

[14] F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the
Vlasov equation, J. Comput. Phys., 172(1) (2001), pp. 166–187.

[15] Filbet, Francis; Guo, Yan; Shu, Chi-Wang Analysis of the relativistic Vlasov-Maxwell model
in an interval, Quart. Appl. Math. 63 (2005), no. 4, 691714.

58

[16] I. Gamba, R. E. Heath, P. Morrison, and C. Michler, A discontinuous Galerkin method for
the Vlasov-Poisson system, to appear in Jour. Comp. Phys., 2011.

[17] R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1996.

[18] R. E. Heath, Analysis of the discontinuous galerkin method applied to collisionless plasma physics,
PhD thesis, University of Texas at Austin, Austin TX (2007).

[19] A. J. Klimas and W. M. Farrell, A splitting algorithm for Vlasov simulation with filamentation
filtration, J. Comput. Phys., 110(1) (1994), pp. 150–163.

[20] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport
equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sym-
pos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), publication no. 33, Math. Res.
Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123.

[21] J. A. Rossmanitha, and D. C. Sea, A positivity-preserving high-order semi-Lagrangian discon-
tinuous Galerkin scheme for the Vlasov-Poisson equations, to appear in Journal of Computational
Physics (2011), arXiv:1012.2494v2

[22] S. I. Zaki and L. R. T. Gardner, A finite element code for the simulation of one-dimensional
vlasov plasmas. i. theory, J. Comput. Phys., 79(1) (1988), pp. 184–199.

[23] S. I. Zaki, B. T.J.M., and L. R. T. Gardner, A finite element code for the simulation of
one-dimensional vlasov plasmas. ii. applications, J. Comput. Phys., 79(1) (1988), pp. 200–208.

[24] T. Zhou, Y. Guo, and C.-W. Shu, Numerical study on landau damping, Physica D, 157 (2001),
pp. 322–333.

59

	Introduction
	Vlasov-Poisson system properties
	Mass conservation
	L2-conservation
	Energy conservation

	Discontinuous Galerkin Method
	Vlasov equation
	Poisson equation
	Direct integration for Poisson equation
	Mixed-FEM for Poisson equation
	DG-FEM for Poisson equation

	Implementation
	Linear transport equation in 1D
	Local Operators
	Mesh Generation
	Assembling
	Simulation in 1D

	Vlasov equation
	Notation and parameters
	Mesh objects in 2D
	Basis function in 2D
	DG-FEM for Vlasov equation

	Numerical experiments
	Simple linear advection
	constant electric field
	linear electric field

	Convergence of Vlasov-Poisson
	Convergence rate for different Poisson solver

	Nonlinear Landau damping (strong case)
	Effect of polynomial degree
	Effect of mesh refinement
	Effect of electric field-boundary term approximation

	Landau damping (weak case)
	Two stream instability
	Effect of Poisson solvers
	Effect of mesh refinement

	Two stream instability II
	Non-smooth solution
	Effect of polynomial degree
	Larger lambda

	Weighted average
	Bibliography

