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Abstract
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Advanced Branching Rules for Maximum Stable Set Integer Programs

by Fonyuy Theophile, FONDZEFE

The Maximum Independent Set (MIS) problem is one of the widely
known NP-hard optimization problems. Unlike other NP-hard problems,
there are no 1

n1−δ -approximation algorithms for finding the maximum in-
dependent set of a graph. For this reason, the Branch-and-Cut algorithm is
very useful for solving the mixed integer formulation of the MIS problem.
The algorithm repeatedly creates and solve subproblems (same problem on
subgraphs) that are relatively smaller in size than the original(parent) prob-
lem. As a recursive and resource intensive algorithm, it involves several
major steps that are repeated for each subproblem until a certified solution
is found. At the so called branching steps, one of many fractional variables
is chosen and the subproblems will be generated by assigning to it an in-
teger value. It is of utmost importance to choose this fractional variable
carefully, because this in turn affects the number of subproblems that are
created and solved before an optimal solution is found. Also, the choice
of the variable determines the difficulty of the subsequent problems gener-
ated. We present a branching strategy that enhances the performance of the
branch-and-cut algorithm by branching on violated odd cycles. Holes are a
subset of odd cycles. Graphs whose subgraphs and their complements do
not induce holes or antiholes are called perfect graphs. The maximum inde-
pendent set is solvable in polynomial time for perfect graphs. The validity
of the approach is empirically verified with the aid of DIMACS benchmark
problems.
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Chapter 1

Background

1.1 Introduction

As sciences advances, the complexity of the problems faced by both engi-
neers and scientists increases more or less proportionately. Today, many re-
searchers and industries are gradually shifting from humans (man power)
to machines for both labour intensive and computationally sophisticated
tasks. These machines themselves rely on algorithms written by other hu-
mans or generated by other machines. As the complexity of the problems
increases, the resources required to solve even the small instances becomes
less affordable. Moreover, many everyday real life instances of these prob-
lems are not easy. Some are the most difficult case scenarios of the problem
type. More efficient and simple algorithms are thus highly needed in almost
every scientific discipline. Over the last few decades, computational prob-
lems and their corresponding algorithms - where available - have gained a
lot of popularity. For some of these problems, even efficient(or polynomial
time) algorithms have been developed. But for many other problems, no
polynomial time algorithm is known. Many are known to belong to the
well known Non-deterministic Polynomial (NP) class of problems. One can
be formulate these problems as discrete optimization problems on graphs.
We begin by presenting a brief overview of the terminology in graph theory
that will be used in the subsequent chapters.

1.2 Simple Finite Undirected Graphs

Graphs are abstract structures which are often used in discrete mathematics
to model pairwise relationships between objects. They are commonly de-
scribed as ordered pairs of the form G = (V,E), where V is a set of vertices,
nodes or points and E is a set of arcs, edges or lines connecting the vertices.
If the elements of E have no specified direction, then the graph is said to be
undirected. And if the number of elements in V are finite in number, then
the graph is finite. It is also possible to have a graph with arcs (called loops)
that connect a point to it self, as well as one with multiple edges between
two points. A simple graph is one that does not contain any multiple edges
and loops. Throughout remaining part of this work, we will use the word
graph to mean a simple finite undirected graph. Also, the letter V will be
used to denote set V = {v0, v1, v2, ...vn−1}, where n is cardinality of the set.
Where an arc or line connects two distinct elements of V, say vi and vj , 1≤
i, j ≤ n, then the tuple (vi, vj) represents an element of E and the two points
are said to be adjacent. A graph is said to be empty if it has no edges. It is
said to complete if every point is connected to every other point. A subgraph
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that is complete is also called a clique, and it is said to be maximal clique if
no other node from the graph can be added to the clique to form a bigger
clique. Also, the degree of vertex, v, denoted deg(v), is the number of nodes
adjacent to that vertex in a graph. Thus in an empty graph, the degree of ev-
ery vertex is zero, and in a complete graph on n nodes, the degree of every
vertex is n-1.

1.3 Maximum Stable Set Problem

A stable set is a subset of the set of points such that every induced subgraph
graph is empty, that is no two vertices are adjacent. It is also known as an
independednt set. It will be evident that each arc or edge will have only one
or none of its endpoints in an independent set, and a graph can contain
many of such sets. Such a set is said to be maximal if it is not a subset
of another independent set. A graph can has many maximal independent
sets of varying cardinalities. The cardinality of largest independent set of a
graph G, is known as the independence number of G, denoted α(G).

FIGURE 1.1: Red colored vertices form a maximal indepen-
dent set for the Peterson graph.

Any independent set S, of cardinality α(G) is called a Maximum In-
dependent Set (MIS) of G. he problem of finding such a set for any given
graph, is referred to as the MIS problem. Like the Traveling Salesman Prob-
lem, it is one of the most important ’classical’ combinatorial optimization
problems. It is also known as the vertex packing, coclique or stable set problem.
Today, no polynomial time algorithm is yet known that finds a maximum
independent set on an arbitrary graph. A problem is said to be solvable in
polynomial time if there exist an algorithm that solves any instance of the
problem and the time taken by the algorithm in the worst case is a poly-
nomial function of the size of the problem. Otherwise, such a problem is
said to be NP-hard. Besides being an NP-hard optimization problem, the
MIS problems is also hard to approximate (Rebennack et al., 2011; Arora
and Safra, 1992). The MIS problem is not only theoretically valuable by has
applications in several fields. For some applications of the maximum inde-
pendent set problem in fields like information retrieval, signal transmission
analysis, classification theory, economics, scheduling, and biomedical engi-
neering see (Butenko, 2003). The MIS problem is not in general difficult for
all types of graphs; it is solvable in polynomial time for a class of graphs
perfect graphs.
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FIGURE 1.2: Red colored vertices form a maximum inde-
pendent set for the Peterson graph.

1.4 Odd cycles, Holes, and Perfect Graphs

Consider a graph G, then a sequence of k distinct vertices of the graph
v1, v2, ..., vk having no other edges between them but for the edges (vk, v1)
and (vi, vi+1), i=1,2, ... k-1, is called a chordless cycle. A hole is a chordless
cycle on five or more vertices - that is k≥5. An antihole is the complement
of a hole. (Nikolopoulos and Palios, 2004). An example of a hole and an
antihole are shown below. Note that antihole with five nodes is isomorphic
to an odd hole with five nodes.

FIGURE 1.3: The 5 red vertices induce a hole..

FIGURE 1.4: An antihole of size 7.

Holes and antiholes are useful in the identification of a class of graphs
called perfect graphs. By the strong perfect graph theorem, a graph G is per-
fect if and only if G does not contain any odd circuit (or hole) of length
at least 5, or its complement, as an induced subgraph (Chudnovsky et al.,
2006; Grotschel, Lovasz, and Schrijver, 1980). As shown in Figure 1.5, the
Peterson graph is not perfect. It contains at least two holes induced by
the green coloured vertices and the red coloured vertices. We claim that,
though not every graph is perfect, every graph contains a perfect induced
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subgraph. As one removes some of the vertices of a non-perfect graph, the
induced subgraph can become perfect. If the vertices that are removed first,
are those that break the odd circuits, then one attains a perfect induced sub-
graph with just a few points removed. It is our assumption that one has
to remove only as many vertices as the number disjoint odd holes and/or
antiholes. This property of perfect graphs makes it possible to solve some
NP-hard combinatorial optimization problems in polynomial. It is worth
considering the possibility of an algorithm that benefits from this property.
Checking if a graph is perfect can be done in polynomial time, but the al-
gorithms are quite sophisticated. Some of the best known algorithms have
a running time of O(|V |6), (Rebennack, Reinelt, and Pardalos, 2012).

FIGURE 1.5: Similarly coloured vertices form a hole.

1.5 Integer Programs

Integer Programming (IP) problems are mathematical optimization prob-
lems in which the variables are restricted to be integers. This term is often
used interchangeably with Integer Linear Programming, in which the objec-
tive function and the constraints of the problem are linear. The generic form
of an IP problem is as follows

maximize cTx

subject to Ax ≤ b, ∀ (vi, vj) ∈ E

x ∈ Zn.

with integral decision variables x. The objective here is to find a vec-
tor x ∈ Zn that maximize the function cTx while satisfying the linear con-
straints Ax ≤ b. A special case of Integer Programs, is the Zero-One linear
programming. Here the variables are restricted to be either 0 or 1. The inte-
grality constraints of in IP makes the problems NP hard. When the integral-
ity constraint of a ILP problem is replaced by a non-negativity constraint,
we obtain a Linear Programming(LP) problem. The new problem is called
a LP relaxation of the former. LP problems can be solved in polynomial
time (Rebennack, Reinelt, and Pardalos, 2012). There exist some algorithms
that find exact solutions to integer programs. In particular we have the
so called Branch-and-Cut (BnC) algorithms. This is a combination of the so
called Branch-and-Bound algorithm and cutting plane like those of Rossi
and Smriglio (2001).

Also important for the understanding of this work are a few polyhe-
dral terminologies. We define a polyhedron as the solution set of a system
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of linear inequalities. Whenever such a solution set is bounded, then it is
referred to as a polytope. A linear inequality αTx ≤ b0 is thus valid with
respect to a polyhedron P, if P is a subset of {x|αTx ≤ b0}. Let F ⊂ of P such
that there is a valid inequality αTx ≤ b0 for P with F = x ∈ P |αTx ≤ b0
and the inequality is not dominated by any other valid inequality. Then F
is called a facet of P and the inequality is called a facet-defining inequality for
P. Also, the convex hull of points y1, y2, ..., yn is ∈ Rd is the set of points x
satisfying x =

∑n
i=1 λiyi with

∑n
i=1 λi = 1 and λi ≥ 0∀i. We denote this as

conv{y1, y2, ..., yn} (Rebennack, 2008). As we shall see later, the convex hull
of vectors associated to the stable set polytope concides with the polytope
of the inequalities of the so called clique formulation of the stable set of a
graph.

1.6 Branch-and-cut Algorithms

Many attempts have been made at developing algorithms that solve the
ILP problems for arbitrary graphs. Unfortunately, the worst-case complex-
ity of many classical algorithms is exponential function of the problem size.
Robson algorithm developed in 1985 for the finding the MIS in an arbitrary
graph has complexity O(22.786n) (Robson, 1986). Combinatorial algorithms
like the branch-and-cut are now the most used and successful tools for solv-
ing ILPs. The algorithm iteratively solves a set of LP relaxations of the MIP
problem. What follows are the main subroutines of the branch-and-cut op-
timization algorithm.

• A preprocessing routine that tightens the user-supplied formulation

• A heuristic that yields good integer feasible solutions quickly

• A cut generation procedure that tightens the linear programming re-
laxation.

• A branching strategy that selects the next branching variable and de-
termines the search tree.

The branch-and-cut algorithm begins by solving a linear relaxation of
the given problem using the simplex algorithm. If the optimal solution ob-
tained contains fractional values for variables that were supposed to be in-
tegers, then a cutting plane algorithm may be used to tighten the relax-
ation of the problem to a better approximation of the MIP problem. Then a
branch-and-bound algorithm is use to solve the problem via a divide and
conquer approach. That is, it divides the problem into two subproblems,
for which the LP relaxations are solve again and the optimal solutions are
checked for fractional variables and the process repeats. Evidently, there
may be many possibilities of how to split into the new subproblems. So it
becomes important to understand how splitting affects the overall perfor-
mance of the algorithm. During the branching process, non-integral solu-
tions to LP relaxations serve as upper bounds and integral solutions serve
as lower bounds. Another important property of the BnC algorithms is
that, they do not only return a final solution to a problem, but also provide
a measure of the quality of the solution. Such certificates of optimality are
the main basis of confidence in the solution return. A flowchart of a branch
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and cut algorithm for a maximization problem is shown in Appendix A. For
a more elaborate discussion of branch and cut algorithm for the maximum
stable set problem, see Rebennack et Al (Rebennack, Reinelt, and Pardalos,
2012). Our main interest in this project goes to the last main routine above;
the branching strategy. We develop a new branching rule and evaluate it
performance by testing it on some DIMACS benchmark problems.

1.7 Branching Strategies

As a very important part of the Branch-and-Cut algorithm, a lot of research
on this algorithm goes towards improving the branching rule. Usually, the
quality of any rule is measured by the change in the objective value of
the LP relaxation of the two subproblems compared to that of the parent
problem (Achterberg, Koch, and Martin, 2005).There are a wide variety of
branching heuristics. In particular, we focus on those that practically in-
volves choosing a variable xi with a fractional value in the optimal solution
of the current LP relaxation. And we rather evaluate our branching rule
the number of nodes explored during the optimization process. We discuss
some of already well known rules briefly below.

1.7.1 Most Infeasible Branching

This is a very popular heuristic that chooses a variable with the fractional
part closest to 0.5. The intuition here is to select the variable where the least
tendency can be recognized to which direction (up or down) the variable
should be rounded. Achterberg et al have shown that this is no better than
selecting the variables randomly (Achterberg, Koch, and Martin, 2005).

1.7.2 Pseudo Cost Branching

This strategy works by keeping a history for each variable xi, of the change
to the objective function when it was previously chosen as a branching vari-
able. The candidate variable that have caused the most change on the ob-
jective function is then chosen. There are many variations of this rule have
been develop. Unfortunately, the rule is uninformative at the beginning of
the branch-and-bound algorithm since most variables have not been used
for branching.

1.7.3 Strong Branching

The idea here is to choose the a few candidate variables that gives the most
improvement on the objective function. This is done by temporarily intro-
ducing lower bounds and/or upper bounds to each of the chosen variables
and solving the LP relaxations. The number of candidate variables tested is
decided by some paramter.

1.7.4 Full Strong Branching

As a variation of the strong branching, this heuristic tests all candidate vari-
ables. It becomes computationally expensive as the number of candidates
increases. Attempts to reduce the computational cost include methods like
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not completely solving the LP relaxations for a subset of the candidate vari-
ables.

1.7.5 Reliability Branching

This is the rule proposed by Achterberg et al. The strategy combines the idea
of pseudocost branching and strong branching. It uses strong branching
both on variables with uninitialized pseudocost values and those with un-
reliable pseudocost values. A reliability parameter is used to determine if
pseudo-cost values are reliable (Achterberg, Koch, and Martin, 2005).

The above rules are general branching rules implemented in most op-
timization solvers. However, for solving the maximum independent set,
it has been empirically shown by Carraghan and Pardalos (1990) that by
branching on nodes with a high degree, the size of the tree can be substan-
tially reduced (Rebennack, Reinelt, and Pardalos, 2012).

1.8 Problem Statement

The goal of this work is to present a branching rule that enhances the per-
formance of the branch-and-cut algorithm. With the aid of DIMACS bench-
mark problems, we empirically evaluate the approach using the IBM ILOG
CPLEX optimizer. In effect, we present results showing that with the pro-
posed branching strategy, the number of nodes evaluated by the Branch-
and-Bound algorithm is significantly reduced.

Our claim therefore is that, by branching on fractional variables that be-
long to violated odd cycles, we are able to arrive subgraphs that are perfect
in a shorter time, and thus the LP relaxations will provide better solutions
(smaller upper bounds).

"Any physical theory is always provisional, in the sense that it is only a hy-
pothesis: you can never prove it. No matter how many times the results
of experiments agree with some theory, you can never be sure that the next
time the result will contradict the theory... Each time new experiments are
observed to agree with the predictions, the theory survives and our confi-
dence in it is increased; but if ever a new observation is found to disagree,
we have to abandon or modify the theory", (Hawking, 2011).
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Chapter 2

Integer Program Formulation
and The Branching Rule

2.1 Integer Linear Programming (ILP) formulation

As with many graphs problems, the MIS problem can be formulated as In-
teger Linear Programming (ILP) problem. Formulating the MIS problem as
a MIP problem is important because it can then be solved by the combinato-
rial algorithms such as branch-and-cut method, which is an exact algorithm
consisting of cutting plane method and a branch-and-bound algorithm (E.,
2002). By letting the variables x1, x2...xn represent the vertices of a graph G
= (V,E). Such that each variable xi define

xi = 1 if the vertex vi is part of the independent and xi = 0 otherwise.
Then we must find the vector x = (x1, x2...xn) that

maximize
n∑

i=1

xi

subject to xi + xj <= 1, ∀ (vi, vj) ∈ E

xi ∈ {0, 1}.

We observe that this formulation has only |E| constraints and |V| vari-
ables and restricts the variables xi to be binary. So the MIS problem is in-
deed a 0-1 Integer Programming problem.

The stable set polytope of a graph G, is defined as the convex hull of all
stable set vectors in G. It is denoted by,

PSTAB(G) := conv{XS |S ⊂ V stableset},

where XS is the incidence vector of set S. From the IP formulation above,
we see that PSTAB(G) is a polyhedron and since its bounded by the |V |-
dimensional cube, it is also a polytope. The definition of a stable set implies
that the unit vectors are always stable sets. Trivially, the zero vector is a sta-
ble set, the empty set, therefore, the stable set polytope is full-dimensional.
Unfortunately, the binary constraints on x make it hard to solve this lin-
ear program. The LP relaxation of the MIS problem above can be solved
efficiently (or in polynomial time), and has the unusual property that any
variable that is interger in its optimal solution has the same integer value
in some optimal solution to the 0-1 ILP problem above. Unfortunately, it
is generally the case that an optimal solution to the LP relaxation of the
edge formulation above has variable equal one-half. (Nemhauser and Sigis-
mondi, 1992).
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The LP relaxation of this problem is obtained by replacing the con-
straints

xi ∈ {0, 1}with the constraints xi ≥ 0 ∀i = 1, 2, ..., n
From this relaxation, we have the so called stable set polytope relax-

ation, denoted

PRSTAB(G) := {x ∈ Rn|xi + xj ≤ 1, 0 ≤ x ≤ 1, ∀(vi, vj) ∈ E}

It is evident from this that PSTAB(G) ⊂ PRSTAB(G). As an example, con-
sider a complete graph with n ≥ 3 vertices. The vector x with 1

2 in each
component belongs to PRSTAB(G) but not to PSTAB(G), since the MIS for a
complete graph has cardinality at most one. This example shows that the re-
laxation above is very weak and hence cannot be a good choice for a Branch-
and-Cut algorithm for a general graphs (Grotschel, Lovasz, and Schrijver,
1980; Rebennack, 2008). There may be more than one ILP or Mixed Integer
Programming (MIP) formulations to a mathematical optimization problem.
The LP relaxations of these formulations may result in different solutions.
Thus one formulation can be better or stronger than another if the LP re-
laxation always have a smaller upper bound. Another well-known better
formulation for the MIS problem is based on the fact that at most one vertex
in any maximal clique, which we denote as Q, of a graph can be part of the
independent set.

maximize
n∑

i=1

xi

subject to
∑
xi∈Q

xi <= 1, ∀ Q ∈ G

xi ∈ {0, 1}.

This formulation is known as the clique formulation. The constraint are
called clique constraints and they ensure that any solution satisfying the inte-
grality clause also satisfies the edge constraints used in the previous formu-
lation. Thus, the a LP relaxation to the clique formulation in general will
provide a much tighter bound than a LP relaxation to the edge formula-
tion. Unfortunately, the LP relaxation of the clique formulation is NP-hard
for general graphs (Nemhauser and Sigismondi, 1992). We define the clique-
constraint stable set polytope as,

PQSTAB(G) := conv{x ∈ R|V||xi + xj ≤ 1, 0 ≤ x ≤ 1,
∑
xi∈Q

xi <= 1,∀Q ∈ G}

We note that for a perfect graph, PQSTAB(G) = PSTAB(G), which means
that the inequalities of PQSTAB are sufficient to describe the stable set poly-
tope. Another constraint not necessarily implied or dominated by the clique
constraints above, is the so called odd cycle constraint. Infact, if G is an odd
cycle, the vector x = (12 ,

1
2 , ...,

1
2) ∈ R

V also belongs to PRSTAB(G) but does
not belong to PSTAB(G). The odd cycle constraint requires that the sum of
the values of the vertices in an odd cycle be at most the integer part of half
the cardinality of the odd cycle. That is,
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∑
xi∈C

xi <= b
|C| − 1

2
c (2.1)

where C represents the set of points in an odd cycle of graph G. The solu-
tion of a linear relaxation contains a violated odd cycle (VOC) if this inequal-
ity is not satisfied for some odd cycle in the graph G. Since the odd cycle
inequalities cannot be obtained from linear combinations of the clique in-
equalities, they can be used to tighten the LP relaxation of the clique formu-
lation (Nemhauser and Sigismondi, 1992). In the subsequent paragraphs,
we will show how this new inequality could be used to decide or choose
the next branching variable of a branch-and-cut algorithm.

2.2 Branching Rule

Since our goal is to develop a branching strategy that leads us towards per-
fect subgraphs early on in the branch-and-cut tree, we have to choose our
branching variable in such away that at least one odd hole or antihole is
destroyed, or equivalently, set the value one or zero for at least one violated
odd cycle inequality if any exsits. To be able to do so, one has to be able to
identify odd holes (or odd cyles respectivelly) in a subgraph induced by the
remaining fractional variables. However, instead of searching for holes and
antiholes, we focus on violated odd cycles of length greater than or equal
5. Odd holes are a subset of odd cycles. Moreover, no odd cycle contain-
ing a node whose corresponding variable has value of 0 or 1 can violate
the odd-cycle inequality (Rebennack, Reinelt, and Pardalos, 2012). Thus,
by branching such that violated odd cycles are destroyed, we will have the
same intended results whenever our odd cycle is an odd hole. On the other
hand, this ensures that the number of violated odd cycles inequalities are
increasingly reduced as the branch and cut algorithm progresses, thus the
stable set polytope is closely represented by the clique formulation for the
subgraphs (or subproblems) generated. In the following section we discuss
the algorithm used to detect violated odd cycles.

2.3 Violated Odd Cycle

A computationally effective but not exact algorithm for detecting violated
odd cyles was proposed by Hoffman and Padberg, see (Hoffman and Pad-
berg, 1993). We begin this section by discussing this violated odd cycle
detection algorithm, and afterwards we show how we modified it to ease
implementation and speed up the process of finding these odd cycles. We
used the graph in Figure 2.1 to demonstrate various intermediate and final
results of the algorithms.

The odd cycle algorithm begins by choosing a vertex, say v1 ∈ V which
is called the root node. Our preferred choice for such a root node, is a frac-
tional vertex with the least degree and feasible for branching. The next step
is to build a layered graph L starting from the root node while adding edges
and nodes from the original graph G. Each level of L is defined by the edge
distance from the root node. That is, the path from each level k to the root
node v1, has exactly k edges. So we have all the vertices adjacent to v1 on
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FIGURE 2.1: A sample graph

level one, and those adjacent to level one vertices except those already on
same or lower level on level 2 and so forth. Below is the corresponding
layered graph, with the vertex v1 as the root node, for the graph in Figure
2.1.

FIGURE 2.2: A layered graph for graph in Fig 2.1

By using the current LP relaxation solution as the values of the vertices,
we are able to construct a layered graph with weighted edges. An edge,
(vi, vj), in the layered graph has weight equivalent to 1 − xi − xj . As an
example we have provided below a sample of our graph in Figure 2.1 with
weighted nodes satisfying the clique constraints presented in the beginning
of this chapter. We have also shown the corresponding layered graph, to-
gether with the weights of the edges (v1 is still the root node).

To find an odd cycle, one is required to choose two vertices, at the same
level in the layered graph. The two vertices should be adjacent in the orig-
inal graph. Also, since we are interested in odd cycles of length greater or
equal to 5, the two vertices must be at a level greater than 1. Vertices at
level 1 can only form odd cycles of length 3 according to the method we
intend to follow. An odd cycle of length 3 is a clique. Such a cycle cannot
violate the odd-cycle inequality since it is a subset of the clique constraints
(or it is dominated by the maximal clique inequalities). The next step is
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FIGURE 2.3: The weighted graph and the corresponding
weighted layered graph

then find the shortest path from the root node to each of these vertices on
the weighted layered graph. Since all weights of the layered graph are pos-
itive, Dijstra’s algorithm is good enough for this purpose. The two paths
found must not have any common edges and/or nodes besides the root
node. To ensure that the two paths do not have any common edges, it is
required that after finding the shortest path to one of the vertices, the edges
in this path should be ’blocked’. In other words, given large weights such
that every other path from the root node to the second vertex not using the
same edges is shorter. We use the following example to demonstrate the
flow of the algorithm. Beginning at level 2, we observe that the only two
vertices that are adjacent in G are the vertices v5 and v6. Thus no other pair
of vertices in level can be used to find an odd cycle according to the descrip-
tion above. It is also important which vertex that we find the shortest path
for first. Suppose we search first for the shortest path from v5 to v1 , we get
the [v5, v2, v1], shown in green in Figure 2.4.

−

FIGURE 2.4: The shortest path to root node from v5, and the
corresponding ’blocked’ edges
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Now, if the edges (v1, v2) and (v2, v5) of this path are ’blocked’ by increas-
ing the corresponding weights of the edges to say 10, the shortest path from
v1 to v6 becomes [v1, v3, v6] and not [v1, v2, v6].

−

FIGURE 2.5: The shortest path to root node from v6, corre-
sponding odd cycle in sample graph

The path from the root node to both vertices does not contain any com-
mon vertices. Thus, satisfying the necessary conditions to form an odd cy-
cle. The cycle is obtained by concatenating the two paths to form a new path
in the graph G from v5 through v1 to v6. The cycle is completed by adding
the edge connecting the v5 and v6 to the new path. Thus C = [v5, v2, v1, v3, v6]
induced an odd cycle in G. Since we have that

∑
xi∈C

xi = 0.69+0.3+0.5+0.3+0.3 = 2.09 > 2 = b5− 1

2
c = b |C| − 1

2
c (2.2)

we found a violated odd cycle. Thus whenever we find an odd cycle, it
is not necessary called a violated odd cycle unless the corresponding odd
cycle inequality is violated by this odd cycle. It is important to note here
that, if in the above process we started first with the vertex v6, and the re-
sulting path found was [v1, v2, v6], then there will be no disjoint path going
from the root node to v5. Also, the algorithm does not prevent the two paths
from the root node to the chosen vertices from having common nodes be-
sides the root node. For this reason, the resulting solution might indeed not
be an odd cycle. For example, consider the two paths, [v1, v2, v6, v8] and
[v1, v3, v6, v9] having no common edges but 2 common nodes, v1 and v6.
They are not the shortest paths for the LP relaxation solution provided, but
there is the possibility that an instance could occur that these are the short-
est path. Concatenating the paths and connecting the vertices v8 and v9 as
explained above, one does not get an odd cycle but a self-crossing path, see
Figure 2.6. So it is necessary to ’block’ not only the edges belonging to the
initial path from root node to the first vertex, but also the edges incident
to any node along this path. Moreover, suppose that there were more than
1 distinct (not having any common vertices) pairs of adjacent vertices at
the level two or higher. If the first pair of nodes in the layered graph does
not contain a violated odd cycle, the original weights of the ’blocked’ edges
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have to be recomputed before moving to the next pair of edges. This is re-
peated for each pair of adjacent vertices at any level until a violated odd
cycle is found. As the size of the graph increases and the degrees of the
nodes increases, the more the weight of the edges that have to be changed
and recomputed. The algorithm is not exactly very scalable.

FIGURE 2.6: Two paths in layered graph having more than
1 common node

For these reasons, we modified the above odd cycle algorithm in the
following way. We also begin by choosing a root node. However, instead
of building a layered graph, we build a tree, in the sense that each vertex
of graph G will have at most one parent. Again only nodes whose corre-
sponding variables have value different from 0 and 1 are included in the
tree graph. As we already mention, one single node with such a property
implies that no odd cyle containing this node can violate the odd-cycle in-
equality.

FIGURE 2.7: A tree graph for graph in Fig 2.1

Unlike in the layered graph where the vertices v6 and v7 had 2 and 3
parents respectively, the tree graph will associate to each node (except the
root node), the parent with the largest corresponding variable value, xi.
This being the case, the tree generated from the sample graph in Figure 2.1,
is shown in Figure 2.7. As this point, instead of looking for the shortest
paths between nodes at a level 2 (or higher) and the root node, we look
for the shortest path between two nodes at the same level in the tree. It is
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still required that the two nodes be connected in the original graph G, and
in addition, that the two nodes do not share the same parent node. Also,
we can use the Dijkstra’s shortest algorithm to compute this path. Since,
the complexity of this algorithm is O(|E|log|V |), the tree greatly reduces
the number of edges and the fact that only nodes whose corresponding
variable has value different from 0 and 1 helps to reduce the size of |V | in
tree. Thus, we have a speed up in the violated odd cycle algorithm.

FIGURE 2.8: The shortest path from v5 to v6 in the tree

In both algorithms, if a violated odd cycle is not found by choosing a
particular node as the root node, the process can always be repeated for
a different candidate root node. As shown above, the resulting shortest
path between the vertices v5 and v6 is the same that was found in the
layered graph. But this time, without any intermediate changes to the
weights of the edges. This modification solves the problem of common
edges and nodes, by ensuring that a node can only be reach from the root
node through one parent. It is also easy to implement.

−

FIGURE 2.9: The shortest path from v8 to v9 in the tree does
not include root node, and is odd cycle in G

Moreover, using the method of the layered graph presented before, one
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is constraint us to finding paths that include the root node. Also, at a given
level k, the only paths that can be found are those containing the root node
and must be of length 2k+1. Fortunately, this is not the case in the modified
version. Consider the following possible tree. The shortest path between
vertices v8 and v9 (shown in green) does not include the root node, and con-
tains 5 nodes while the two vertices are at level 3. The advantage of having
this, is that probability of finding a violated odd cycle is less dependent the
root node chosen. Thus the tree based heuristic does not loose any chances
of finding a violated odd cycle that could be done by the layered graph
approach method but rather improves a lot its efficiency.

The above algorithm helps to find a violated odd cycle. To conclude
that no violated odd cycle exist, one has to build the tree graph for every
node as root node and find the shortest path between each pair of adjacent
vertices at every level greater than or equal 2. This is time consuming, so be-
sides considering only nodes whose corresponding variable has a fractional
value, we propose to put a time limit to how long the algorithm uses to find
a violated odd cycle. However, one could find minimum-weight odd cycle
for the graph G, and if the solution to LP relaxation at the current node in
the enumeration tree, satisfies the corresponding odd-cycle inequality, then
all odd-cycle inequalities are satisfied.

2.4 Branching Variable

As mentioned earlier, this is not an exact algorithm for finding violated
odd cycles in arbitrary weighted graphs but it is computationally effective.
So at some points, we might not find violated cycles. Moreover, since it
is time consuming to do this for all the nodes. It is there better to limit
the algorithm to run only on a few nodes or for a limited time in order to
make it time effective. If a violated odd cycle is found within this period,
then it is returned. Otherwise, at the end of the time frame, the subroutine
stops. Since we are using the IBM ILOG CPLEX Optimization Solver, we
call the violated odd cycle algorithm from within the Branch Callback Class,
and select our branching variable as follows. When a violated odd cycle
is found, the variable in the odd cycle with the maximum degree in the
graph G is chosen as the branching variable. Two branches are then created
base on this variable, the UP and the DOWN branch. On the other hand,
if a violated odd cycle is not found, a fractional variable that is feasible for
branching with maximum degree is chosen. As already meantioned, by
branching on with a higher degree vertices, the size of the tree is reduced.

At this point we discuss the basis and reason for how the first root node
is chosen. First we point out that every odd cycle between vertices at level
two, has the root node as one of it vertices. Since we choose our branching
variable from amongst the variables in the odd cycle, we must ensure that
the cycle has at least one variable that is fractional and feasible for branch-
ing. Also, it preferable to build a tree that grows deep rather than wide.
Choosing a vertex with a large degree, will place more nodes on the first
level of the tree and fewer nodes on the higher levels. We look for the odd
cycles by considering vertices on the second and higher levels. Thus it is
better to build a tree with the root node having fewer neighbors despite the
independence of our algorithm from the choice of the root node.
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Chapter 3

Empirical Validation

3.1 Introduction

In order to evaluate the performance our proposed branching rule, we im-
plemented it in the Python. Since the time used We begin this chapter by
presenting some of the software tools we use implement and evaluate the
performance of our branching rule. We also discuss some parameters in-
troduced to keep the algorithm time effective. Then we present a table of
the results obtained from testing the branching rule on a computer with an
AMD V120 Processor 2.2GHz, 3GB RAM x64-based processor.

3.2 Software tools

3.2.1 Optimization solvers

The development of Branch-and-Cut solvers was driven by Mannino and
Sassano through their introduction of the edge projection. Rossi and Sm-
riglio developed a good Branch-and-Cut algorithm with the aid of separa-
tion routines. Their algorithm still provides one of the best dual bounds
obtained by cutting plain approaches and their handling of the Branch-
and-Bound tree has no competition, see (Rebennack et al., 2011; Rossi and
Smriglio, 2001). There are several optimization solvers that include an im-
plementation of the Branch-and-Cut algorithm which we use to evaluate
the performance of our branching strategy. We considered the following
two optimization solvers for this project: The Gurobi optimizer and the IBM
ILOG CPLEX Optimizer. Both solvers provides the possibility of modifying
the optimization process via callback functions. Gurobi is a new optimizer
and is gaining a lot of popularity. It is also a very user friendly software and
provide free academic licenses. However, as we found in the process of this
work, the Gurobi optimizer does not provide the possibility of choosing
the branch variable. This being a very important aspect to be able to im-
plement our branching strategy, we turn to the IBM ILOG CPLEX optimizer
(version 12.6.3.0). This optimizer provides us with a Callback class which
we use to choose our branching variable. The first is the BranchCallback
class which we use to make a branch from the current node on the chosen
branching variable. Finally, we also compare our optimization results with
those of the branching strategy chosen by CPLEX optimizer for 13 different
MIS problems.
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3.2.2 Graph Objects

To be able create and handle graphs, we needed a graph class or module.
Our preference immediately went to the Python graph module networkx.
The version at the time of this project is 1.10. Besides the graph object and
graph routines in this module, we also make use of the Djikstra’s shortest
path algorithm implemented in the same module.

3.3 Parameters

The following parameters were also introduced to the optimization process.
VOC-L: This limits the number of violated odd cycles that were to be

found by the algorithm. That is to say, whenever the total number of vi-
olated odd cycles found across the Branch Callbacks reaches VOC-L we
stopped calling the odd cycle algorithm within subsequent callbacks. This
meant that we hence branch on the feasible fractional variable with maxi-
mum degree in the graph G. Whenever this parameter is set to 0, it means
the algorithm does not to attempt to find any violated odd cycles but in-
stead the branching variable would be that with the maximum degree amongst
the feasible variables. This was used to show that in some problems, where
almost every attempt to find violated odd cycles failed, branching on the
maximum degree variable resulted in the same number of nodes explored
and only time would be gained by not searching for odd cycles. On the
other hand, if the parameter were set to infinity,(∞), then at every node the
algorithm attempted to find violated odd cycles. The table below shows
the final upper bound, denoted (UBfinal), the optimal value(IntOpt), the
time, and number of nodes explored by both branching rule use by CPLEX
optimizer (left) and also that use by our branching rule. It also shows the
different settings used for the parameter aforementioned and the number
of violated odd cycles (VOC) found in each problem.
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TABLE 3.1: Results of Branch-and-Cut Algorithm on 12
Problems

. Default CPLEX Branching Rule Branching on Violated Odd Cycles/Maximum degree

Problems UBfinal IntOpt Nodes Time UBfinal IntOpt Nodes Time VOC/VOC-L

brock200_1 22.0389 21 165620 1973.13 21.0000 21 109618 1311.38 0/0
brock200_1 21.0000 21 106099 7750 51454/∞

brock200_2 13.2582 12 3807 166.36 12.0000 12 1176 57.22 0/0
brock200_2 12.0000 12 1176 829.50 0/∞

brock200_3 16.3130 15 20129 369.13 15.0000 15 5330 147.20 0/0
brock200_3 15.0000 15 4681 2992.75 270/∞

brock200_4 17.7500 17 41471 531.03 17.0000 17 30373 769.16 0/0
brock200_4 17.0000 17 23155 10566.72 6000/∞

C125.9 36.4613 34 1220 5.25 34.0000 34 1733 13.24 0/0
C125.9 34.0000 34 2006 156.31 1008/∞

DSJC125.1 36.3889 34 1295 4.58 34.0000 34 3248 21.19 0/0
DSJC125.1 34.0000 34 3254 40.95 1628/∞

DSJC125.5 10.0000 10 254 7.08 10.0000 10 206 10.61 0/0
DSJC125.5 10.0000 10 206 162.31 1/∞

keller4 12.5000 11 3907 36.05 11.0000 11 2026 28.03 0/0
keller4 11.0000 11 2014 1218.81 57/∞

p_hat300-1 9.4195 8 1480 494.89 8.0000 8 706 492.72 0/0
p_hat300-1 8.0000 8 706 1633.81 0/∞

p_hat300-2 26.2193 25 850 81.95 25.0000 25 682 58.56 0/0
p_hat300-2 25.0000 25 548 508.70 80/∞

p_hat300-3 ** ** ** ** 36.0000 36 95582 3520.31 0/0
p_hat300-3 36.0000 36 70371 15845.00 31409/∞

san200_0.7 19.2658 18 96815 1008.84 18.0000 18 45640 632.06 0/0
san200_0.7 18.0000 18 36492 10422.64 13085/∞

sanr200_0.9 43.0000 42 832427 4145.66 42.0000 42 448537 3146.50 0/0
sanr200_0.9 42.0000 42 333090 5727.50 166746/∞

** = could not be determine, computer ran out of memory

3.4 Analysis of the results

The violated odd cycle branching rule was better than the default strat-
egy used by CPLEX in 10 out of 12 problems in terms of the number of
nodes explored. Also, we are able to see from over 7 problems includ-
ing brock200_1, brock200_3, brock200_4, and p_hat300-3, that branching
strictly on the maximum degree variable was at least not better than branch-
ing on vertices on a violated odd cycle. The strength of our approach is
strongly reflected in the sanr200_0.7 and sanr200_0.9 where our the num-
ber of nodes explored is significantly less than have the number of nodes
by the default CPLEX algorithms. Also, the smaller number of violated
odd cycles found in keller4 and p_hat300-2 is greatly reflected in the dif-
ference made by the rule compared to branching on maximum degree ver-
tices. On the other hand, an extremely different result is observed for C125.9
where branching on maximum degree vertices or using our branching rule
increases the number of nodes explored in the branch-and-cut tree. The
properties of this graph should be further considered to be able to explain
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this strange result. Moreover, the gap between the final upper bound, and
the Optimal value of the objective function was zero only for 2 of 12 prob-
lems for the default strategy used by CPLEX. While for every problem, our
branching rule, ended with a zero gap. The longer times taken can also be
justified by the extra computations involve and the fact it provided a 100%
certificate of optimality of the solution for all problems considered.
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Chapter 4

Conclusion

4.1 Observations

The violated cycles detected in some of the graphs were all unexpectedly
high in some graphs and low in other graphs. This had a significant effect
on how the branching rule affected the brand-and-bound tree. And in some
cases worsen the algorithm by increasing the number of nodes explored.

It is also evident from the results, that simply branching on the vertex
with the maximum degree was not as good as branching on those vertices
that belong to a violated odd cycles. The violated odd cycle branching rule
was 10 of 12 times better than the rule use by CPLEX optimizer in terms of
the number of nodes explored by the branch and bound tree. In the same
line, 7 of 12 times better than branching simply on the maximum degree
vertex.

To sum it all, branching on violated odd cycles proved to be a potentially
excellent branching rule for maximum stable set integer programs.

4.2 Recommendations

In the violated odd cycle algorithm, we were only interested in finding any
violated odd cycle. Defining a most violated odd cycle inequality as the
odd cycle having minimum weight, we find it very likely that the following
suggestions would improve the computational effectiveness of the violated
odd cycle algorithm, see (Rebennack, Reinelt, and Pardalos, 2012).

• Instead of branching simply on a vertex in a violated odd cycle, it
would be better to ensure that the cycle is the most violated odd cycle,
or choose a violated odd cycle if the path weight was smaller than
1
2 − ε, for some ε ≥ 0.

• Compute only odd cycles in G for a node, say v. That is, generate
the tree or layered graph for at most one node of G as root node. Al-
thought this is a heuristic, the speed up of the odd cycle algorithm
could quite substantial. It also make the odd cycle found largely de-
pendent on the root node.

4.3 Future works

Finally, one can already count one or two parts of this work that could be
revisited and/or improved upon.
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• Instead of using the violated odd cycles to choose a branching vari-
able, it might be better to add this as a lazy constraint to the model, al-
though this might lead to an exponential increase in constraints. Also,
the algorithm used for finding violated odd cycles is not an exact al-
gorithm, this makes the process less efficient.

• An exact algorithm for odd hole and antihole detection could rather
be used on the subgraph induced by the fractional variables. From
there, the resulting odd hole will contain the candidates for the branch-
ing variable. More on Odd hole and antihole detection is provided by
Stavros and Leonidas, ((Nikolopoulos and Palios, 2004)).

• Also, it might have be better to restrict the search for violated odd cy-
cles to some depth of the branch-and-bound tree. Unfortunately, one
could not determine the depth of the tree from within the Branch Call-
back of the CPLEX Optimizer. So, an optimization solver that provides
this functionality would be of great help for enhancing this branching
rule.

• CPLEX Optimizer has over 5 built in branching rules and can be con-
figured to use a particular rule to solve a given problem. We com-
pared our results with the default branching rule chosen by CPLEX
Optimizer for each problem. Indeed, the results does not clearly indi-
cate how well our branching rule performs compared to a particular
rule, but shows the default rule use by is not better than our proposed
rule.

• Finally, another important property of a good algorithm is its speed.
Due to possible variations that would arise from differences in imple-
mentation, we could not compare the running times required by the
different branching rules. By doing this, one could also determine if
the time needed to find violated odd cycles is justified by the number
of nodes reduced in the branch-and-bound tree.
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Appendix A

Flowchart of a Branch-and-Cut
algorithm

FIGURE A.1: A flowchart of the Branch-and-Cut Algorithm
for maximization problem, see (Rebennack, Reinelt, and

Pardalos, 2012)
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