
Erasmus Mundus Consortium MathMods

Joint Degree of Master of Science in Mathematical Modelling in Engineering:
Theory, Numerics, Applications

In the framework of the Consortium Agreement and Award of a Joint/Multiple
Degree 2013-2019

Master’s thesis

Numerical approximation and error analysis of diffusion problems

Supervisor Candidate

Dr. Monika Twarogowska S. M. Atiqur Rahman Chowdhury

Matricola:227795

2014/2015

Laurea Magistrale in Ingegneria Matematica Dipartimento di Ingegneria e Scienze
dell’Informazione e Matematica Università degli Studi dell’Aquila

I hereby declare that this Thesis is my own work and effort. Where other sources
of information have been used, they have been acknowledged.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Dr. Monika
Twarogowska for the continuous support of my master thesis study and related re-
search, for her patience, motivation, and immense knowledge. Her guidance helped
me in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank gratefully to the coordinator of Math-
Mods program: Prof. Bruno Rubino for his guidance, teaching and encouragement
from the begging to the end of my study, specially at the first semester at University
of L’Aquila in Italy, I was demoralized because on that time I found study in abroad
is too hard for me and I had a decision to quit this program. He suggested me and
gave me courage to continue study by taking a challenge, and at the end of this stage,
I found I have learned a lot from MathMods and surely acquired knowledge will be
effective for my future life.

I thank my colleges of MathMods for all study discussions, for the sleepless
nights we were working together before exams, and for all the fun we have had in
the last two years. Also I thank to my all friends from University of Hamburg in Ger-
many for their support when I was studying there for my second semester.

Last but not the least, I would like to thank my family: my parents and to my
brother in law and sister for supporting me spiritually throughout finishing this excel-
lence MathMods program, writing this thesis and my life in general.

S. M. ATIQUR RAHMAN CHOWDHURY

To my parents.

Contents

Introduction I

1 Introduction to Numerical Solution for Diffusion Equation 1
1.1 Finite Difference Method (FDM) . 2
1.2 General solutions . 4
1.3 Discretizations . 6

1.3.1 Space discreatization . 7
1.3.2 Time Discreatization . 9
1.3.3 Boundary Conditions . 16

1.4 Monotonicity . 19
1.4.1 Monotone scheme . 21

1.5 System of Nonlinear Equation . 22
1.5.1 The Newton-Raphson Iteration 22
1.5.2 Geometric interpretation . 23
1.5.3 The Convergence of the Newton method 24

2 Numerical Simulation of Diffusion Equation 27
2.1 Total mass . 27
2.2 Time Integration . 29

2.2.1 Positivity of Numerical Scheme 30
2.3 Lp − error . 32

2.3.1 Error Analysis . 34

3 Numerical Simulation of Porous Media Equation 43
3.1 Self-similar solution of PME . 43
3.2 Numerical Schemes . 45

3.2.1 θ− scheme . 45
3.3 Simulation . 48

iii

Appendix A MATLAB codes 54
A.1 Mass execution . 54
A.2 Error execution for the linear DE equation 57
A.3 Error execution for PME . 64

Bibliography 68

Introduction

Partial differential equations (PDEs) form the basis of many mathematical mod-
els of physical, chemical and biological phenomena, and more recently their use has
spread into economics, financial forecasting, image processing and other fields. To
investigate the predictions of PDE models of such phenomena it is often necessary to
approximate their solution numerically, commonly in combination with the analysis of
simple special cases; while in some of the recent instances the numerical models play
an almost independent role.

This thesis deals with numerical methods for solving partial differential equa-
tions (PDEs) coupling linear and non-linear diffusion equation, with a focus on time
dependency. Comparison of numerical schemes and accuracy is presented of methods
for both linear and non-linear diffusion equation that has been elaborately described in
the book by W. Hundsdorfer and J. G. Verwer [9].
Many of those mathematical models are described by a (system of) partial differential
equations (PDEs). Well established laws of nature and their mathematical counterparts
have led to most of the development of suitable PDEs, e.g., heat conduction, fluid dy-
namics or deformation of solids [7, 4, 11, 9]. However, sometimes the development
and understanding of a particular mathematical model can only be tackled by a trial
and error approach, which is a two-step procedure.
In a first step, the simulated results are compared to experimental data and in a second
step, these comparisons are used to modify the mathematical model, i.e., most of the
case it is the underlying PDE. Hence, numerical simulations of PDEs are of tremen-
dous importance when trying to understand real world processes. On the one hand,
in the field of numerical ODEs highly valuable methods and results exist which are
of practical use for solving time-dependent PDEs, something which is often not fully
exploited by numerical PDE researchers [9].

Although many problems can be solved by Euler’s method or the Crank-Nicolson
method, better alternatives are often available which can significantly reduce the com-
putational effort needed to solve practical problems [7]. On the other hand, many nu-
merical ODE researchers are unaware of the vast amount of highly interesting results
on discretization methods for PDEs [9]. Moreover, when solving PDEs, discretizations
in space and time have to be matched, and different spatial discretizations may require
different temporal discretizations.

Numerical approximation

Partial differential equations (PDEs) have become enormously successful as mod-

I

els of physical phenomena. With the rapid increase in computing power in recent
years, such models have permeated virtually every physical and engineering problem.
The phenomena modeled by partial differential equations become increasingly com-
plicated, and so do the partial differential equations themselves. Often, one wishes a
model to capture different aspects of a situation, for instance both convective transport
and dispersive oscillations on a small scale. These different aspects of the model are
then reflected in a partial differential equation, which may contain terms (operators)
that are mathematically very different, making these models hard to analyze, both the-
oretically and numerically. (See [1, 9, 10, 11, 15, 18, 19, 20, 21, 22, 24]).

In order to study numerically any kind of problem we need a stable and consis-
tent numerical scheme [7, 11, 9]. Besides, a good scheme has to reproduce all of the
important features of the original model, which arise from the physical background of
the problem. First of all the scheme has to preserve the non negativity of solutions
as we deal with densities and concentrations. Then, if we consider bounded domains
with no-flux boundary conditions, the numerical approximation has to conserve the
total mass. Conservation laws with reaction terms are characterized by a special bal-
ance between the fluxes and the sources, which can lead to non constant stationary
solutions. Their preservation is essential and in the case of geometric sources, contain-
ing for example space derivatives, it is impossible by using standard schemes treating
the flux and the source at different time steps. Moreover, the presence of the vacuum
states brings another difficulty as many schemes produce oscillations at the interface
between the regions, where the density is strictly positive and where it vanishes. In
order to study the behaviour of the boundary, the approximate solution not only has to
be free from oscillations, but also it has to deal with tracking the movement of exact
front. Using an appropriate numerical scheme for parabolic model of porous medium
type that can satisfy all these properties is not an easy task (see [3, 12]).

Numerical Analysis

We focus our attention on degenerate parabolic equations such as the porous
medium equation (PME). It is well known that the degeneracy implies a finite speed
of propagation [4, 6]. Equivalently it means that when the initial density has compact
support, it will remain compact for all times [14]. In this case, the classical smooth
solution may not always exist in general, even if the initial solution is smooth. It is nec-
essary to consider the weak energy solution, whose behavior causes many difficulties
for a good numerical simulation. For example, the weak solution may lose its classical
derivative at some (interface) points, and the sharp interface of support may propagate
with finite speed if the initial data have compact support. Enamored of these interest-
ing facts, there have been many works on the simulation for the non smooth solution
of the PME, for example, the finite different method by Graveleau and Jamet [25], the
interface tracking algorithm by DiBenedetto and Hoff [26], and the relaxation scheme

II

referred to in [1].
In numerical point of view, implicit θ-scheme possesses several properties to

make it very attractive for practical computations, such as parallelization, adaptivity,
and simple treatment of boundary conditions. The most important properties of this
method is its strong stability and high-order accuracy; as a result, it is very good at cap-
turing discontinuous jumps and sharp transient layers. Explicit reluxation scheme has
a good L2 and L∞-stability for the standard nonlinear diffusion equation, including the
PME for short time simulation where as for long time time simulation explicit-implicit
Crank-Nicolson scheme is better in the sense of L2 and L∞-stability [1]. We will
compare between fully implicit Backward Euler scheme and explicit-implicit Crank-
Nicolson scheme and measured the accuracy by the L1, L2 and L∞-norm.

There are two main components in this thesis. The first is the simulation by
the finite difference method (FDM) for smooth and non-smooth solutions of the linear
diffusion equation and PME (see [9, 6]). We design a non-negativity-preserving the
physical relevancy of the numerical solutions (Q. Zhang and Z. Wu. has been done
by local degenerate Galarkin (LDG) method, see [12]). The given numerical results
verify the above advantage of the FDM method that it has the ability to capture sharp
interfaces accurately without or with very little numerical oscillation (see the Figure
3.8). As a comparison, time integration method based of non-negativity is also consid-
ered to show the importance to avoid the numerical difficulties. (See section 2.2.1 in
Chapter 2).

The second component is an analysis for the non-negativity preservation prin-
ciple of the considered θ-method, i.e., in each cell of numerical discretization of the
Barenblatt solution [8] for the PME remains non-negative for different adiabatic expo-
nents (see the Figure 3.8). At the same time we point out in this thesis that we need to
take care of the oscillation for the the PME that for any choice of the adiabatic param-
eter ensures the stability not only in the L2 sense but also in the sense of L∞, then we
are guaranteed that the approximation to our desired solution response will lie within
the illustrated bounds.

To learn more about numerical methods for parabolic equations including PME,
we invite the reader to take a closer look at one or several of the references [7, 9, 10,
11, 16, 17, 18, 20, 21, 24, 25, 26]

Outline of the thesis

The content of this thesis is organized as follows:
In Chapter 1, we studied the background of the research. There we give an

introduction for the numerical solution of PDE using finite diffenece method (FDM),
its numerical schemes and algebraic formulations. We talk about its stability, non-
negativity, describe the endowed boundary conditions regarding on time dependency
that has been elaborately described in some books of the references [7, 9, 10, 11]

In Chapter 2, we studied the numerical solution of linear diffusion equation (DE).

III

We show the numerical difficulties in the simulation for the DE, where the FDM is used
to resolve the Gaussian solution (See sec 1.2 of chapter 1 for the general solution). In
Sect. 2.1, we describe the total mass for DE for the different boundary conditions, in
particular we have tested numerically the result in the case of Dirichlet, periodic and
Neumann boundary condition. Numerical result is presented in Figure 2.1. A short
analysis on time integration and importance of positivity test in numerical simulation
is given in Sect. 2.2. Numerical results regarding stability and accuracy in the sense of
Lp-norm (see sec. 2.3 [10]) are presented at the end of this chapter. For more details
see [7, 9].

In Chapter 3, we studied the numerical solution of porous media equation (PME).
We show the difference between PME and DE and difficulties in the simulation for the
PME, FDM is used to resolve the self-similar Barenblatt solution. (for more details
about self similar solution, see the book by Barenblatt [2]). In Sect. 3.2, we describe
the numerical schemes to solve PME and use to the standard porous media equation
([8, 15]) using the Neumann boundary condition. Numerical result regarding accuracy
is presented in Figure ?? and in Figure 3.7. By paying more attention to the movement
of the numerical interface for different adiabatic exponents is presented in Figure 3.8.
Results are compared with the exact Barenblatt solution and we conclude that implicit-
explicit scheme is better to solve the PME.

At the end in Appendix A, generated MATLAB codes are presented for all sim-
ulations.

IV

CHAPTER 1

INTRODUCTION TO NUMERICAL
SOLUTION FOR DIFFUSION

EQUATION

Mathematics has applications in almost all subjects including physics, chemistry,
computer science and engineering. Biologists, sociologist,economists and psycholo-
gists have vastly benefited from mathematics in their work for drawing conclusions
and developing novel techniques of investigation.

In the past decades mathematical thinking has been intensively applied on natural
life sciences, especially in the field of ecology, physical processes in nature and many
biological phenomena in general. The common goal is to map observable features of
the real physical and biological processes to an abstract mathematical model and a
corresponding discrete numericalsimulation in order to gain new insights in the under-
lying real world objectives. Moreover, in several cases the mathematical description
of the real world system is the only possibility to provide reliable predictive analysis
for the underlying process of nature, which results in templates for, e.g., industrial or
medical purposes.

Many of those mathematical models are described by a (system of) partial dif-
ferential equations (PDEs). Well established laws of nature and their mathematical
counterparts have led to most of the development of suitable PDEs, e.g., heat conduc-
tion, fluid dynamics or deformation of solids. However, sometimes the development
and understanding of a particular mathematical model can only be tackled by a trial-
and-error approach, which is a two-step procedure. In a first step, the simulated results
are compared to experimental data and in a second step, these comparisons are used
to modify the mathematical model, i.e., most of the case it is the underlying PDE.
Hence, numerical simulations of PDEs are of tremendous importance when trying to
understand real world processes.

The finite difference method uses for the numerical solution of the equations of
fluid dynamics. The fundamental idea is straightforward and implementation is rela-

1

1.1. FINITE DIFFERENCE METHOD (FDM) 2

tively simple. Approximations of various levels of accuracy can be readily computed
by the use of different finite difference formula. Consistency, stability and error anal-
ysis can be carried out.

1.1 Finite Difference Method (FDM)
The aim of finite difference method is to build a numerical scheme . It is based on

approximation of the differential operator. The derivatives are replaced by differential
quotients. Approximations of solutions are computed at the discretized space and time
with respect to the initial and boundary conditions.

Here, we present a short description on finite difference approach for a differn-
tial equation, describe the way of finding accuracy by using Taylor Expansion for the
simple differential equation, its discreatization in space and time. Then we introduce
the concept of Numerical Scheme in PDE and a brief description of the consistency
and stability of the secheme. In the end, method to solve the algebraic equation on the
basis of different schemes and approximation of Dirichlet and homogeneous Neumann
boundary conditions will be carried out at the same time.

The simplest finite difference approximation is the difference quotient. Con-
sider the differential equation y′ = u(y) with initial condition y(α) = y0 defined on
some interval I = [α; β]. We desire to find a solution y(x). Many such problems
have no closed form solution and must be approximated numerically. Thus we let
{x0 = α;x1;;xn+1 = β} be a partition of I and we define

∆xi = xi − xi−1. (1.1.1)

Note that
yi+1 − yi
∆xi+1

≈ u(yi), (1.1.2)

so that,
yi+1 ≈ yi + u(yi)∆xi+1.

An important concern in FDM is accuracy. To find the order of accuracy, let xi be
given in grid of points where xi+1 − xi = ∆x for all i, we will use the Taylor series
of u(x) for points in neighborhood of xi around xi. As an example, say we wish to
approximate u′(xi) using a forward difference, meaning we will use the points xi and
xi+1, then the Taylor series of u(xi+1) around xi is

u(xi+1) = u(xi + ∆x) = u(xi) + u′(xi)∆x+ u′′(xi)
(∆x)2

2
+O((∆x)3). (1.1.3)

1.1. FINITE DIFFERENCE METHOD (FDM) 3

So, if we subtract over u(xi) and solve for u′(xi) to get

u′(xi) =
u(xi+1)− u(xi)

∆x
+ u(xi) + u′′(xi)

∆x

2
+O((∆x)2), (1.1.4)

so we get our forward difference approximation of the first derivative at xi

u′(xi) =
u(xi+1)− u(xi)

∆x
+O(∆x). (1.1.5)

We note that this is a first order approximation to the first derivative. We say a
finite difference approximating an n− th derivative is of order m if we can write it as
a function of its neighbors,

un(xi) =
n+1∑
i=0

aiu(xi) +O(∆xm). (1.1.6)

Likewise, we could do a backward difference (using xi and xi−1)

u(xi−1) = u(xi −∆x) = u(xi)− u′(xi)∆x+ u′′(xi)
(∆x)2

2
+O((∆x)3), (1.1.7)

and we get our backward difference approximation of the first derivative at xi

u′(xi) =
u(xi)− u(xi−1)

∆x
+O(∆x).

We can do this in general for any set of grid points in a neighborhood of xi,
for example we have a second order centered difference (using an balanced amount of
points on either side of xi like for instance using xi+1, xi, and xi−1) approximation to
the first derivative we use the Taylor series

u(xi+1) = u(xi) + u′(xi)∆x+ u′′(xi)
(∆x)2

2
+ u′′′(xi)

(∆x)3

6
+O((∆x)4), (1.1.8)

u(xi−1) = u(xi)− u′(xi)∆x+ u′′(xi)
(∆x)2

2
− u′′′(xi)

(∆x)3

6
+O((∆x)4), (1.1.9)

subtract the equation 1.1.9 term from the the equation 1.1.8 to get

u(xi+1)− u(xi−1) = 2u′(xi)∆x+O((∆x)3),

so

u′(xi) =
u(xi+1)− u(xi−1)

2∆x
+O((∆x)2),

1.2. GENERAL SOLUTIONS 4

notice that the ∆x2 terms in the Taylor series cancel each other out giving us, after
dividing by ∆x, a second order centered difference approximation to the first deriva-
tive. Likewise, we can solve for a centered difference approximation to the second
derivative. Add the two above Taylor series and subtract 2u(xi) to get

u(xi+1)− 2u(xi) + u(xi−1) = u′′(xi)(∆x)2 +O((∆x)4) (1.1.10)

so we have

u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

(∆x)2
+O((∆x)2), (1.1.11)

FDM creates a particular discretized system using finite differences which ap-
proximate the differential equation we wish to solve. We hope that this discretized
system will accurately approximate the solution of the differential equation.

1.2 General solutions
Consider the following partial differential equations (PDEs)

∂u

∂t
+ a

∂u

∂x
= 0 for x ∈ R, t ≥ 0 (1.2.1)

and
∂u

∂t
= D

∂2u

∂x2
for x ∈ R, t ≥ 0 (1.2.2)

with given constants a ∈ R, d > 0, given initial value u(x, 0) = u0(x), ∀x ∈ R
and the periodicity condition

u(x+ L, t) = u(x, t), ∀t ≥ 0. (1.2.3)

The reason for considering periodicity conditions is mainly for the ease of presentation
of the main concepts. Boundary conditions cause additional theoretical and numerical
problems, as we shall see gradually in later sections. Note that with this periodicity
condition we only have to compute the solution for 0 ≤ x ≤ L.

Equation 1.2.1 is an one-dimensional transport equation. General solution of
the equation 1.2.1simply is u(x, t) = u(x − at, 0). Initial profiles are shifted (carried
along by the wind) with velocity a. The lines x− at constant in the (x, t)− plane are
the characteristics of this transport equation. Along these characteristics the solution
u(x, t) is constant.

The equation 1.2.2 is a diffusion problem. Insight in the behavior of solutions can be
obtained by Fourier decompositions. Consider

φk(x) = e2πikx for k ∈ Z, (1.2.4)

1.2. GENERAL SOLUTIONS 5

and,

(φ, ψ) =

∫ L

0

φ(x)ψ(x)dx. (1.2.5)

The functions φk will be called Fourier modes, and (φ, ψ) is an inner product for
the function space L2[0, L], consisting of all square integrable complex functions on
[0, L] with identification of functions that differ only on sets of measure zero. The set
φk, k ∈ Z is an orthonormal basis for this space. For any function ψ ∈ L2[0, L] we
have

ψ(x) =
∑

αkφk(x), with αk = (φk, ψ), (1.2.6)

and,

‖ψ‖2
L2

=

∫ L

0

|ψ(x)|2 dx =
∑
|αk|2. (1.2.7)

Now, consider for the equation 1.2.2 with initial profile u(x, 0) = φ(x). To find the
solution, we apply the Fourier transform to the equation 1.2.2, we have

ût(ζ, t) = Dûxx(ζ, t),

⇒ ût = D(iζ)2û = −Dζ2û.

Solving this ODE and using the initial condition above, we have,

ût(ζ, t) = φ̂(ζ)e−Dζ
2t.

therefore,

u(x, t) =
1

(2π)1/2

∫
R
eixζ û(ζ, t)dζ

=
1√
2π

∫ ∞
−∞

eixζ φ̂(ζ)e−Dζ
2tdζ

=
1√
2π

∫ ∞
−∞

eixζ
[

1√
2π

∫ ∞
−∞

e−ix0ζφ(x0)dx0

]
e−Dζ

2tdζ

=
1√
2π

∫ ∞
−∞

φ(x0)

[
1√
2π
e−i(x0−x)ζe−Dζ

2tdζ

]
dx0

=
1√
2π

∫ ∞
−∞

φ(x0)f̂(x0 − x)dx0

By applying inverse Fourier Transformation, we get

f̂(x0 − x) =
1√
2Dt

e−
(x−x0)

2

4Dt (1.2.8)

and consequently, the general solution of the diffusion equation 1.2.2 for, t > 0 and
x, x0 ∈ R is given by

u(x, t) =
1√

4πDt
e−

(x−x0)
2

4Dt (1.2.9)

1.3. DISCRETIZATIONS 6

At t = 0 this is a Dirac delta function δ0, so for computational purposes we must start
to view the solution at some time t = tε > 0. Replacing t by tε + t in 1.2.9 makes it
easy to operate with a (new) t that starts at t = 0 with an initial condition with a finite
width. At x = 0, (8) becomes

u(x, t) =
1√

4πDt
(1.2.10)

while we consider that initial total mass is 1 ≥ 0, Clearly, the concentration of particles
at any other point than zero increases, and the profile of the distribution takes the shape
of a bell with fatter and fatter tails as time increases. It is straightforward to notice that
at a fixed time t, the profile of u has fatter tails when the diffusion coefficient D is
larger. This corresponds to the intuition that a larger diffusion coefficient implies a
faster spreading process of the particles.

Remark. If u(x, t) is a concentration then
∫ L

0
u(x, t)dx is the mass in [0, L] at

time t. This is a conserved quantity:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

ut(x, t)dx =

∫ L

0

−au(x, t)dx = −a(u(L, t)− u(0, t)),

due to the periodicity for equation1.2.1, and also since,

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

ut(x, t)dx =

∫ L

0

Duxx(x, t)dx = D(ux(L, t)− ux(0, t)),

due to the periodicity and homogenous Neumann boundary of the diffusion equation
1.2.2.

1.3 Discretizations
The first step in the discretization procedure is to replace the domain [0, L] ×

[0, T] by a set of mesh points. Here we apply equally spaced mesh points
xi = i∆x, i = 0, . . . , Nx, and tn = n∆t, n = 0, . . . , Nt

Moreover, uni denotes the mesh function that approximates u(xi, tn) for i = 0, . . . , Nx

and n = 0, . . . , Nt. Requiring the equation to be fulfilled at a mesh point (xi, tn) leads
to the equation, where

(x0, t0) = (0, 0),

and
(xNx , tNt) = (L, T).

After the construction of a numerical domain we define approximations of partial
derivatives. The basic differences are First order space derivative:

1.3. DISCRETIZATIONS 7

• backward Euler difference
ux ≈

ui − ui−1

∆x
(1.3.1)

• forward Euler difference
ux ≈

ui+1 − ui
∆x

(1.3.2)

2nd order space derivative:

• centered difference
ux ≈

ui+1 − ui−1

∆x
(1.3.3)

uxx ≈
ui+1 − 2ui + ui−1

(∆x)2
(1.3.4)

and, time derivative is the first order forward Euler difference as:

ut ≈
un+1 − un

∆t
(1.3.5)

1.3.1 Space discreatization
In this section we shall consider some simple space discretizations on a uniform

grid xi = i∆x, i = 0, . . . , Nx, with mesh width ∆x = 1/Nx. Approximations
wi(t) ≈ u(xi, t), i = 0, . . . , Nx, are found by replacing the spatial derivatives by
difference quotients. This gives a finite difference discretization in space. Setting

w(t) = (w0(t), ..., wNx(t),

we then get a system of ordinary differential equations (ODEs)

w′(t) = F (t, w(t)) (1.3.6)

with a given initial value w(0). Often we shall deal with an F that is linear in w,

w′(t) = Aw(t) + g(t) (1.3.7)

Discretized equation for the Transport Problem

Consider the advection equation 1.2.1 with a > 0 and ∆x = h. The formula

1

h
(u(x− h)− u(x)) = −ux(x) +O(h), (1.3.8)

leads to the I-st order upwind discretization

w′i(t) =
a

h
(wi−1(t)− wi(t)), for i = 1, . . . , Nx (1.3.9)

1.3. DISCRETIZATIONS 8

with w0(t) = wNx(t) by periodicity. This is of the form 1.3.26 with g = 0 and

A = a
h



−1 1
1 −1

1 −1
.

1 −1
1 −1


.

The formula
1

2h
(u(x− h)− u(x+ h)) = −ux(x) +O2(h), (1.3.10)

gives the II − nd order central discretization

w′i(t) =
a

2h
(wi−1(t)− wi+1(t)), for i = 1, . . . , Nx (1.3.11)

with w0(t) = wNx(t) and wNx+1(t) = w1(t) by periodicity. This is of the form 1.3.26
with g = 0 and

A = a
2h



0 −1 1
1 0 −1

1 0 −1
.

1 0 −1
−1 1 0


.

For smooth profiles the II − nd order scheme is better, but the result of the II − nd
order scheme is also far from satisfactory: it gives oscillations, negative values and a
significant phase error.

Discretizations for the Diffusion Equation

Consider the diffusion equation 1.2.2 with D > 0. We have

1

h2
(u(x− h)− 2u(x) + u(x+ h)) = −uxx(x) +O(h2), (1.3.12)

gives the II − nd order central discretization, for the diffusion equation

w′i(t) =
D

h2
(wi−1(t)− 2wi(t) + wi+1(t)), for i = 1, . . . , Nx (1.3.13)

with w0(t) = wNx(t) and wNx+1(t) = w1(t) by periodicity. This is of the form 1.3.26
with g = 0 and

1.3. DISCRETIZATIONS 9

A = D
h2



−2 1 1
1 −2 1

1 −2 1
.

1 −2 1
1 1 −2


.

1.3.2 Time Discreatization
We assume that, the equation 1.2.1, with solution u(x, t), has been discretized in

space, resulting in the semi-discrete system (of ODEs)

w′(t) = F (t, w(t)), (1.3.14)

with w(t) = (wi(t))
Nx
i=1 ∈ RNx , Nx being proportional to the number of grid points in

space. Fully discrete approximations wni ≈ u(xi, tn) can now be obtained by applying
some suitable ODE method with step size k = ∆t for the time levels tn = nk. In
the following we use wn = (wni)Nxi=1 to denote the vector (grid function) containing the
discrete numerical solution. The approach of considering space and time discretiza-
tions separately is called the method of lines (MOL). This is not a ”method” in the
numerical sense, it is a way to construct and analyze certain numerical methods. For a
smooth solution it can be assumed that both the differential equation.

A typical MOL reasoning goes as follows: if we know that ‖w(t)− wh(t)‖ ≤
Chq for our space discretization and the ODE theory tells us that ‖w(tn)− wn‖ ≤
Ckp, then we have an error bound for the fully discrete approximations

‖wh(tn)− wn‖ ≤ Ckp + Chq.

In this section we shall consider these concepts. For the ODE method we con-
sider, as an example, the θ −method

wn+1 = wn + k(1− θ)F (tn, w
n) + kθF (tn+1, w

n+1) (1.3.15)

with, F (tn, w
n) = w′(tn) and as special cases the explicit (forward) Euler method

(θ = 0), the trapezoidal rule (θ = 1
2
) and the implicit (backward) Euler method

(θ = 1). As we shall see, the order is p = 2 if θ = 1
2

and p = 1 otherwise.

Explicit ODE methods always have a bounded stability domain. Application to
a transport equation will lead to a stability condition of the form

ak

h
≤ C (1.3.16)

1.3. DISCRETIZATIONS 10

a so-called CFL-restriction (after Courant-Friedrichs-Lewy), where C depends on the
particular method and space discretization. If the space discretization is central then
the eigenvalues will be on the imaginary axis, and the ODE method should be selected
such that a portion of the imaginary axis is contained in the stability region.

Application of an explicit ODE method to a diffusion equation will give rise to a
stability condition

Dk

h2
≤ C (1.3.17)

with again C determined by the method and space discretization.
Since solutions of the diffusion problems often give rise to rather smooth solutions,
this time step restriction makes explicit methods unattractive for such problems. With
implicit methods we can avoid such restrictions.

As a rule, with exceptions, explicit methods are more efficient for a transport equation
than implicit methods. For problems with significant diffusion the implicit methods
are in general to be preferred. In the appendices some ODE methods and stability re-
strictions are listed.

The MOL approach, where space and time discretizations are considered sepa-
rately, is conceptually simple and flexible. However, sometimes it is better to consider
space and time errors simultaneously: there may be cancellation of the various error
terms.

Explicit Scheme for Transport Equation

This is a one-step method in time, which is also called a two-level method in the
context of PDE’s since it involves the solution at two different time levels.

Consider I − st order upwind discretization for the transport equation (1.2.1),
with a > 0, given initial profile and periodicity condition at x = 0, L

wn+1
i = wni + β(wni−1 − wni) (1.3.18)

where, β = ak
h

and with ak
h
≤ 1 for stability. This scheme is also known as the

Courant-Isaacson-Rees scheme. Matrix form for 1.3.18 is

W n+1 = AW n

Denote by W n the vector of RN whose components are wn1 , . . . , w
n
Nx−1 and

A =



1− β 0 β
β 1− β 0

β 1− β 0
.

β 1− β 0
0 β 1− β


.

1.3. DISCRETIZATIONS 11

The terms at the end of the first line comes from the periodic boundary conditions. We
use that wn0 = wnNx and wn1 = wnNx−1.Except on the two diagonals all the terms vanish.
If we insert the exact PDE solution into this difference scheme we get

u(xi, tn+1) = u(xi, tn) +
ak

h
(u(xi−1, tn)) + kτni , ∀, i = 1, . . . , Nx

with a (residual) local truncation error

τni = [(ut +
1

2
τutt + . . .) + a(ux −

1

2
τuxx + . . .)](xi, tn)

= −1

2
ah(1− ak

h
)uxx(xi, tn) +O(h2),

(1.3.19)

If we let τ → 0 with h fixed, we just re-obtain the bound for the spatial error. We
see, however, that the error for the above scheme will actually decrease for τ → 0, and
it will be less than the error of the semi-discrete system with exact time integration.

Explicit Scheme for Diffusion Equation

The computationally simplest method arises from using a forward difference in
time and a central difference in space for diffusion Equation 1.2.2 is,

wn+1
i − wni

k
= D

wni+1 − 2wni + wni−1

h2
. (1.3.20)

We have turned the equation into algebraic equation, also often called discrete
equations. The key property of the equations is that they are algebraic, which makes
them easy to solve. As usual, we anticipate that uni is already computed such that un+1

i

is the only unknown in Solving with respect to this unknown is easy:

wn+1
i = uni + F

(
wni+1 − 2wni + wni−1

)
. (1.3.21)

where,

F = D
k

h2
. (1.3.22)

We now apply a backward difference in time in 1.2.2, but the same central dif-
ference in space:

wni − wn−1
i

k
= D

wni+1 − 2wni + wni−1

h2
. (1.3.23)

Now we assume un−1
i is computed, but all quantities at the new time level n

are unknown. This time, it is not possible to solve with respect to uni because this
value couples to its neighbors in space, uni−1 and uni+1, which are also unknown. Let us

1.3. DISCRETIZATIONS 12

examine this fact for the case when Nx = 3. Equation (6) written for i = 1, . . . , Nx −
1 = 1, 2 becomes

wn1 − wn−1
1

k
= D

wn2 − 2wn1 + wn0
h2

wn2 − wn−1
2

k
= D

wn3 − 2wn2 + wn1
h2

The boundary values wn0 and wn3 are known as zero. Collecting the unknown new
values wn1 and wn2 on the left-hand side gives

(1 + 2F)wn1 − Fwn2 = wn−1
1 ,

−Fwn1 + (1 + 2F)wn2 = wn−1
2 .

This is a coupled 2×2 system of algebraic equations for the unknowns wn1 and wn2 The
equivalent matrix form is(

1 + 2F −F
−F 1 + 2F

)(
wn1
wn2

)
=

(
wn−1

1

wn−1
2

)
In the general case, equation 1.3.21 gives rise to a coupled (Nx − 1) × (Nx − 1)
system of algebraic equations for all the unknown uni at the interior spatial points i =
1, . . . , Nx − 1. Collecting the unknowns on the left-hand side can be written

−Fwni−1 + (1 + 2F)wni − Fwni+1 = wn−1
i−1 (1.3.24)

for i = 1, . . . , Nx − 1. One can either view these equations as a system for where the
wni values at the internal mesh points, i = 1, . . . , Nx − 1, are unknown, or we may
append the boundary values wn0 and wnNx to the system. In the latter case, all wni for
i = 0, . . . , Nx are unknown and we must add the boundary equations to the Nx − 1
equations in 1.3.21. A coupled system of algebraic equations can be written on matrix
form and correspond to the matrix equation

AW n+1 = W n (1.3.25)

where W = (wn0 , . . . , w
n
Nx

), and the matrix A has the following structure:

A =



A0,0 A0,1 0 · · · · · · · · · · · · · · · 0

A1,0 A1,1 0
.

0 A2,1 A2,2 A2,3
.

... 0
...

...

... 0 Ai,i−1 Ai,i Ai,i+1
.

... 0

... ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx


(1.3.26)

1.3. DISCRETIZATIONS 13

The nonzero elements are given by

Ai,i−1 = −F
Ai,i = 1 + 2F

Ai,i+1 = −F
for the equations for internal points, i = 1, . . . , Nx − 1. Other points,

A0,0;A0,1;ANx,Nx−1;ANx,Nx ;

takes the value from the boundary condition.
The right-hand side W is written as

W =



w0

w1
...
wi
...

wNx


We observe that the matrixA contains quantities that do not change in time. Therefore,
A can be formed once and for all before we enter the recursive formulas for the time
evolution. The right-hand side b, however, must be updated at each time step.

Implicit Scheme for Transport Equation

Consider the advection equation (6),

ut + aux = 0.

Discretization using a backward difference in space and in time gives the scheme

(1 + β)wn+1
j − βwn+1

j−1 = wnj (1.3.27)

In this case the scheme 1.3.18 can be written in matrix form

BW n+1 = W n

Denote by W n the vector of RN whose components are wn1 , . . . , w
n
Nx−1 and

B =



1 + β 0 −β
−β 1 + β 0

−β 1 + β 0
.

−β 1 + β 0
0 −β 1 + β


The terms at the end of the first line comes from the periodic boundary conditions. We
use that wn0 = wnNx and wn1 = wnNx−1.Except on the two diagonals all the terms vanish.

1.3. DISCRETIZATIONS 14

Implicit Scheme for Diffusion Equation

Using a forward difference in time and a central difference in space for Diffusion
Equation (1.2.2), an Implicit scheme is,

wn+1
i − wni

k
= D

wn+1
i+1 − 2wn+1

i + wn+1
i−1

h2
.

As usual, we anticipate that uni is already computed such that un+1
i is the only

unknown in solving with respect to this unknown is easy:

wn+1
i = wni + F

(
wn+1
i+1 − 2wn+1

i + wn+1
i−1

)
.

or,
(1 + 2F)wn+1

i − F (wn+1
i+1 + wn+1

i−1) = wni .

where,

F = D
k

h2
.

for i = 1, . . . , Nx − 1. One can either view these equations as a system for where the
wn+1
i values at the internal mesh points, i = 1, . . . , Nx − 1, are unknown, or we may

append the boundary values wn0 and wnNx to the system. A coupled system of algebraic
equations can be written on matrix form and correspond to the matrix equation

BW n+1 = W n (1.3.28)

where W = (wn0 , . . . , w
n
Nx

), and the matrix B has the following structure:

B =



B0,0 B0,1 0 · · · · · · · · · · · · · · · 0

B1,0 B1,1 0
.

0 B2,1 B2,2 B2,3
.

... 0
...

...

... 0 Bi,i−1 Bi,i Bi,i+1
.

... 0

... BNx−1,Nx

0 · · · · · · · · · · · · · · · 0 BNx,Nx−1 BNx,Nx


(1.3.29)

The nonzero elements are given by

Bi,i−1 = −F
Bi,i = 1 + 2F

Bi,i+1 = −F

1.3. DISCRETIZATIONS 15

for the equations for internal points, i = 1, . . . , Nx − 1. Other points,

B0,0;B0,1;BNx,Nx−1;BNx,Nx ;

takes the value from the boundary condition.
The right-hand side W n is written as

W n =



w0

w1
...
wi
...

wNx


We observe that the matrixB contains quantities that do not change in time. Therefore,
B can be formed once and for all before we enter the recursive formulas for the time
evolution. The right-hand side W n, however, must be updated at each time step.

Since the diffusion equation is so called ”stiff”, and hence this is an implicit
method, which allows much larger time steps to be taken than an explicit method, is a
very efficient method for the diffusion equation.

Crank-Nicolson Scheme

Another one-step method, which is much more useful in practice as we will
see in chapter 2 is the Crank-Nicolson method which is an implicit-explicit method.
The idea in the Crank-Nicolson scheme is to apply centered differences in space and
forward differences in time, combined with an average in time and can be represent as:

wn+1
i − wni

h
= D

wni+1 − 2wni + wni−1 + wn+1
i+1 − 2wn+1

i + wn+1
i−1

2h2
, (1.3.30)

and solving as to find again wn+1
i as:

wn+1
i = wni +

Dk

2h2

(
wni+1 − 2wni + wni−1 + wn+1

i+1 − 2wn+1
i + wn+1

i−1

)
, (1.3.31)

or,

−λwn+1
i−1 + (1 + 2λ)wn+1

i − λwn+1
i+1 = λwni+1 − (1− 2λ)wni + λwni−1, (1.3.32)

where,

λ =
Dk

2h2
=

1

2
F (1.3.33)

1.3. DISCRETIZATIONS 16

where
F =

Dk

h2
.

Also here, as in the Backward Euler scheme, the new unknowns wn+1
i−1 , wn+1

i , and wn+1
i+1

are coupled in a linear system

AW n+1 = BW n (1.3.34)

and find numerical updated solution as:

W n+1 = (A−1)BW n (1.3.35)

where A has the same structure as in 1.3.26, but with slightly different entries:

Ai,i−1 = −1

2
F

Ai,i = 1 + F

Ai,i+1 = −1

2
F

and, has the same structure as in 1.3.29, but with slightly different entries:

Bi,i−1 =
1

2
F

Bi,i = −1 + F

Bi,i+1 =
1

2
F

for the equations for internal points, i = 1, . . . , Nx − 1.
for other points, A0,0;A0,1;ANx,Nx−1;ANx,Nx ; b0, bNx takes the value from the

boundary condition.
The right-hand side W n is written as

W n =



w0

w1
...
wi
...

wNx


1.3.3 Boundary Conditions

Periodicity conditions do not often occur in practice. It is more common to
impose Dirichlet conditions, where the values at the boundaries are prescribed,

u(0, t) = α0, u(L, t) = α1, (1.3.36)

1.3. DISCRETIZATIONS 17

or, more general, with time dependent boundary values α0(t) and α1(t). In the linear
transport equation 1.2.1, we need only condition at the inflow-outflow boundary, that
is, at x = 0 if a > 0 and at x = L if a < 0.

On the other hand, in the linear diffusion equation 1.2.2, if D > 0 then the
Dirichlet condition (1.3.36) at the outflow boundary will give rise to a boundary layer.
A boundary layer of this type will be absent if the homogeneous Neumann condition
ux = 0 is imposed at the outflow boundary. If a > 0 we then have

u(0, t) = α0, ux(L, t) = 0, (1.3.37)

With this condition rapid changes may still occur in the spatial derivatives of u, but
u itself will not show the nearly discontinuous behaviour that arises with Dirichlet
conditions. In practice, finding correct boundary conditions is a difficult task for the
modellers, and much physical insight is needed for systems of equations. Boundary
conditions also give rise to several numerical difficulties, some of which will be shortly
addressed in this section.

For instance, consider the advection equation

ut + ux = 0 (1.3.38)

for 0 ≤ x ≤ L, with given inflow condition u(0, t) = α0(t) and outflow condition
as, ux(L, t) = 0 with initial profile u(x, 0) = u0(x). For the numerical simulation, let
h = L/Nx and xj = jh for j = 0, . . . , Nx. Second order central discretization gives

w′j(t) =
1

2h
(wj−1(t)− wj+1(t)), ∀, j = 1, . . . , Nx (1.3.39)

with w0(t) = α0(t). Here wNx+1(t) represents the value at the virtual point xNx+1 =
L+h. This value can be found by extrapolation, for example in the form of θ− scheme
for 1.3.38,

wNx+1 = θwNx+1(t) + (1− θ)wNx(t). (1.3.40)

So that, if we consider θ = 1 boundary condition takes the form by constant extrapola-
tion and if, θ = 2 it takes the form by linear extrapolation. The last choice seems more
natural; in fact we can then apply the I − st order upwind discretization at the outflow
point.

Neumann boundary condition for the spatial accuracy

Let, the spatial truncation errors for each grid point be

σh(t) = (σh,1(t) . . . , σh,Nx(t)), (1.3.41)

for the transport equation 1.2.1 with a = 1 and we find σh,j(t) = O(h2) for j < Nx,
whereas at the outflow point in 1.3.40 is

1.3. DISCRETIZATIONS 18

σh,Nx =
d

dt
u(t, xNx)−

1

2h
(θu(t, xNx)− θu(t, xNx+1)),

= −1

2
(2− θ)ux −

1

4
θuxx + . . . |(xNx ,t).

So, for the space truncation error we have the bounds

‖σh‖∞ = O(hs), ‖σh‖2 = O(hs+
1
2), ‖σh‖1 = O(hs+1),

in the L∞, L2 and L1 norms, with s = 0 if θ = 1 and s = 1 if θ = 2.

Then, the error is,
‖wh(t)− w(t)‖ = O(hs+1)

for all three norms and in numerical simulation we have

A = 1
2h



0 −1
1 0 −1

1 0 −1
.

1 0 −1
θ −θ


, σh =



0
0
...
0
...
1


Chs +O(hs+1)

with C = −1
2
ux(L, t) if θ = 1, and C = −1

2
uxx(L, t) if θ = 2 and, hence, a matrix

form of 1.2.1 for a = 1 gives
Aζ = σh,

where, ‖ζ‖ = O(hs+1) in the L∞, L2 and L1 norms.

Now, consider the diffusion equation 1.2.2 for D = 1 is

ut = uxx, (1.3.42)

with, initial value u(x, 0) = u0(x), and, boundary conditions, ux(0, t) = 0, ux(L, t) =
0, truncation errors for each grid point are as same as 1.3.41.

II − nd order central discretization for the diffusion equation 1.3.42,

w′i(t) =
1

h2
(wi−1(t)− 2wi(t) + wi+1(t)), for i = 1, . . . , Nx (1.3.43)

The homogenous Neumann condition at x = 0 and x = L can be discretized as
1

2h
(w0(t)− w1(t)) = 0 and, 1

2h
(wNx+1(t)− wNx−1(t)) = 0 respectively.

Thus we set, with parameter, θ in the equation 1.3.42, we have,

wNx+1 = θwNx+1(t) + (1− θ)wNx(t) (1.3.44)

1.4. MONOTONICITY 19

Neumann condition are valid at x0 = 0 and xNx = L. This implies that ux(0, t) =
ux(L, t) = 0. Inserting the exact solution in the difference scheme, we find a II − nd
order truncation error, except at x0 and xNx where

σh,1 =
1

2
θuxx +O(h2),

σh,Nx =
1

2
θuxx +O(h2).

So, for the space truncation error we have the bounds

‖σh‖∞ = O(h2), ‖σh‖2 = O(h2), ‖σh‖1 = O(h2),

in the L∞, L2 and L1 norms and in numerical simulation we have,

A = 1
h2



p −p
1 −2 1

1 −2 1
.

1 −2 1
p −p


,

where, p any value that we could choose.

1.4 Monotonicity
Many spatial discretizations produce oscillations and negative values. In numer-

ical simulation it is seen that with MOL discreatization for finite difference model of
chemical reactions may lead to negative values and so instability can occur. In this sec-
tion we study monotonic scheme under the consideration of those features mentioned
above.

For the equation 1.2.1 and 1.2.2 we know, by physical interpretation,

u(x, 0) ≥ 0, ∀, x→ u(x, t) ≥ 0,∀x and t > 0,

space discretizations may destroy this property. We would like to have a criterion that
tells us when positivity is preserved. Consider a semi-discrete ODE system

w′(t) = F (t, w(t)). i = 1, . . . , Nx

This system will be called positive if

w(0) ≥ 0⇒ w(t) ≥ 0 for all t > 0.

Positivity may also imply a maximum principle,

miniwi(0) ≤ wi(t) ≤ maxiwi(0), for all t > 0.

1.4. MONOTONICITY 20

Positivity for transport equation discretizations

Consider the transport equation 1.2.1,

ut + aux = 0.

The general spatial discretization formula

w′i(t) =
1

h

r∑
k=−s

γkwi+k(t), i = 1, . . . , Nx,

with wi(t) = wi+m(t) to impose the periodicity condition. Here we use r grid
points to the left and s to the right of xi so that in total r+s+1 points are used. The set
xi−r, . . . , xi+s is called the stencil of the discretization around xi. With wider stencils
higher orders can be achieved. With wi+Nx ≡ wi. The spatial truncation error is

ut(x, t) =
1

h
u(x+ kh, t) = −aux −

1

h

∑
γk(u+ khux +

1

2
k2h2uxx + . . .)|(x,t),

= −1

h
γku− (a+

∑
k

kγk)ux . . . |(x,t).

(1.4.1)
The conditions for orders are∑

k

γk = 0,
∑
k

kγk = −a, . . . ,
∑
k

kqγk = 0,

where, q is the order of k in Taylor series for the equation 1.4.1 we see that the require-
ment for positivity is,

γk ≥ 0, (1.4.2)

for all, k 6= 0. This is satisfied by the I − st order upwind discretization, which is
very inaccurate and very diffusive. Unfortunately, it is also optimal under the positive
transport discretizations: For, q ≥ 2, we then have,

∑
k k

2γk = 0, and therefore, from
the inequality 1.4.2, we get

q ≤ 1.

Furthermore, if, q = 1 then the leading term in the truncation error is propor-
tional to

∑
k k

2γk, and since we have
∑

k kγk = −a, it follows the inequality by 1.4.2∑
k

k2γk ≥ a,

and the minimal error coefficient,
∑

k k
2γk = a is achieved by the I − st order upwind

discreatization.

1.4. MONOTONICITY 21

Positivity for Diffusion Discretizations

In the same way as for the tansport equation, we can consider linear discretiza-
tions for the diffusion equation

ut = Duxx,

with periodicity condition and given initial values. A general formula for the spatial
discretization is

w′i(t) =
1

h2

r∑
k=−s

γkwi+k(t), i = 1, . . . , Nx,

with wi+Nx ≡ wi. We assume that s = r and γ − k = γk, symmetry in space.
For the the symmetric discreatization the spatial truncation error is

ut(x, t) =
1

h2
γku(x+ kh, t)

= −Duxx −
1

h2

∑
k

γk(u+ khux +
1

2
k2h2uxx + . . .)|(x,t)

= − 1

h2

∑
k

γku+ (d− 1

2

∑
k

k2γk)uxx . . . |(x,t).

So, the conditions for order q (q is even, due to symmetry) are∑
k

γk = 0,
∑
k

k2γk = 2D,
∑
k

k4γk = 0 . . . ,
∑
k

kqγk = 0.

We can see, positivity preserve for the diffusion equation 1.2.2 for q ≤ 2r.

1.4.1 Monotone scheme
Consider an equation:

ut + f(u)x = 0,∀ −∞ ≤ x ≤ ∞, (1.4.3)

subject to the initial condition,

u(x, 0) = Φ(x), ,∀ −∞ ≤ x ≤ ∞.

A finite difference scheme

vn+1
i = H(vni−k, v

n
i−k+1, . . . , v

n
i+k), (1.4.4)

is said to be monotone ifH is a monotone increasing function of each of its arguments.
Let,

vn+1
i = Hf (v

n
i−k, v

n
i−k+1, . . . , v

n
i+k)

= vni − λ(hf (v
n
i−k+1, . . . , v

n
i+k)− hf (vni−k, . . . , vni+k−1)),

(1.4.5)

1.5. SYSTEM OF NONLINEAR EQUATION 22

be a finite difference approximation to 1.4.3 in conservation form, i,e.,

hf (w,w, . . . , w) = f(w),

which is monotone as
∂Hf

∂wi
(w−k, . . . , wk) ≥ 0,

for all −k ≤ i ≤ k.

1.5 System of Nonlinear Equation
The boundary value problem become nonlinear due to the nonlinearity of the

governing differential equations, or of the boundary conditions or both. Most physical
problems actually nonlinear. There is no difficulty in applying the FDM to discreatize
a nonlinear problem; but the difficulty is associated with the solution of the result-
ing system of algebraic equations. One important technique can be solve efficiently
the nonlinear algebraic equation, known as The Newton-Raphson method, or Newton
Method.

It is a powerful technique for solving equations numerically. As in the differen-
tial calculus, it is based on the idea of linear approximation. The Newton Method, is
a method for finding successively better approximations to the roots of a real-valued
function or to the zeros of a complex-valued function.

1.5.1 The Newton-Raphson Iteration
The idea of the method is as follows: let f(x) be a well behaved function, and

let r be a root of the equation f(x) = 0. We start with an estimate x0 of r. From x0,
we produce an improved-we hope-estimate x1. From x1, we produce a new estimate
x2. From x2, we produce a new estimate x3. We go on until we are close enough to
r. The above general style of proceeding is called iterative. Of the many iterative root-
finding procedures, the Newton-Raphson method, with its combination of simplicity
and power, is the most widely used.

Let x0 be a good estimate of r and let r = x0 +h. Since the true root is r, since h
is ’small,’ we can use the linear (tangent line) approximation to obtain that h = r−x0,
the number h measures how far the estimate x0 is from the exact line.
So that, we have,

0 = f(r) = f(x0 + h) = f(x0) + hf ′(x0). (1.5.1)

As a result unless f ′(x0) is close to 0 we have

h ≈ − f(x0)

f ′(x0)
.

1.5. SYSTEM OF NONLINEAR EQUATION 23

It follows that

r = x0 + h ≈ x0 −
f(x0)

f ′(x0)
.

Our new zero iteration x1 of r is therefore given by

x1 ≈ x0 −
f(x0)

f ′(x0)
.

The next estimate x2 is obtained from x1 in exactly the same way as x1 was obtained
from x0 The second iteration is,

x2 ≈ x1 −
f(x1)

f ′(x1)
,

and so on. Continue in this way. If xn is the current estimate of (n-1)’th iteration, then
the next estimate xn+1 is given by

xn+1 = xn −
f(xn)

f ′(xn)
. (1.5.2)

After each iteration we check to see if the convergence condition

|xn+1 − xn| < ε,

is satisfied, where the parameter ε called tolerance. It is better to choose small param-
eter ε in numerical simulation.

1.5.2 Geometric interpretation
Figure 1.1 represents the curve y = f(x) meets the x − axis at r. Let a be

the current estimate of r. The tangent line to y = f(x) at the point (x0; f(x0)) has
equation

y = f(x0) + (x− x0)f ′(x0). (1.5.3)

Let, x1 be the x− intercept of the tangent line. Then

x1 = x0 −
f(x0)

f ′(x0)
. (1.5.4)

The new estimate x1 is obtained by drawing the tangent line at x = x0, and then sliding
to the x − axis along this tangent line. Now draw the tangent line at (x1; f(x1)) and
ride the new tangent line to the x− axis to get a new estimate c. and continue like this
until converge to the root r.

1.5. SYSTEM OF NONLINEAR EQUATION 24

Figure 1.1: Newton-Rapshon procedure, where: x1 is just the ’next’ Newton-Raphson
estimate of r.

We can use the geometric interpretation to design functions and starting points
for which the Newton Method runs into trouble. For example, by putting a little bump
on the curve at x = x0 we can make x0 fly far away from r.When a Newton Method
calculation is going badly, a picture can help us diagnose the problem and fix it. It
would be wrong to think of the Newton Method simply in terms of tangent lines. The
Newton Method is used to find complex roots of polynomials, and roots of systems
of equations in several variables, where the geometry is far less clear, but linear ap-
proximation still are accurate. The initial estimate is called x0, is called a guess. The
Newton Method is prefers well if x0 is close to r, and can lead to large otherwise. The
guess, x0 should be chosen with care.

1.5.3 The Convergence of the Newton method
Suppose xr is a root of f(x) = 0 and xn is an estimate of xr s.t. |xr − xn| =

δ << 1. Then by Taylor series expansion we have

0 = f(xr) = f(xn + δ) = f(xn) + f ′(xn)(xr − xn) +
f ′′(ζ)

2
(xr − xn)2, (1.5.5)

for some ζ between xn and xr. From 1.5.2 we know that

xn+1 = xn −
f(xn)

f ′(xn)
,

i.e. using 1.5.2 in 1.5.5 we get say, en = (xr − xn), en+1 = xr − xn+1, where
en, en+1 denote the error in the solution at nth and (n+ 1)th iterations. Therefore

en+1 = − f ′′(ζ)

2f ′(xn)
≈ e2

n, (1.5.6)

⇒ en+1 ∝ e2
n.

1.5. SYSTEM OF NONLINEAR EQUATION 25

Thus, Newton-Raphson method is said to have quadratic convergence. That is,
the difference between the root and the approximation is squared (the number of accu-
rate digits roughly doubles) at each step. However, there are some difficulties with the
method.
For example, let f(x) = x2 − 1 if x = 1, f(1) = 0. Then the behavior of f(x) near
1 gives no conclusion to the fact that f(1) = 0. So that, successive approximation
Newton-Raphson method can’t arrive at the solution of f(x) = 0.

We assume that f(x) is smooth. We suppose that f ′′(x) exists and it is continuous
near root r. The tangent line approximation is an approximation. Let’s try to get a
handle on the error. Imagine a particle traveling in a straight line, and let f(x) be its
position at time x. Then f ′(x) is the velocity at time x. If the acceleration of the
particle were always 0, then the change in position from time x0 to time x0 + h would
be hf ′(x0). So the position at time x0 + h would be f(x0) + hf ′(x0) note that this is
the tangent line approximation, which is called the zero-acceleration approximation.
If the velocity varies in the time from x0 to x0 + h, then in general the tangent line
approximation will not correctly predict the displacement at time x0 + h. And bigger
acceleration gives a large error. It can be shown that if f is twice differentiable then the
error in the tangent line approximation is 1

2
h2f ′′(c) for some c between x0 and x0 + h.

In particular, if |f ′′(x)| is large between x0 and x0 + h, then the error in the tangent
line approximation is large. Thus we can expect large second derivatives to be bad for
the Newton Method. These informal considerations can be turned into positive side
about the behavior of the error in the Newton Method. For example, if

∣∣∣f ′′(x)
f ′(x)

∣∣∣ is not
too large from near r, and we start with an x0 close enough to r, the Newton Method
converges very fast to r. thus, the study of the convergence of the Newton Method is
an important area of Numerical Analysis.

Now, consider the following system of N -algebraic equations:

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...
...

...
...

fn(x1, x2, . . . , xn) = 0

(1.5.7)

We need to find x1, x2, . . . , xn such that this system of equations is satisfied. To de-
velop the iteration scheme, the equation are written in the vector form as

F (X) = 0

and it’s Taylor series expansion is considered

F (Xm+1) = F (Xm) +
∂F

∂X
(Xm+1 −Xm) + (1.5.8)

1.5. SYSTEM OF NONLINEAR EQUATION 26

We need F (Xm+1) = 0. The Taylor series is turncated and this condition is imposed
to obtain

F (Xm) +
∂F

∂X
(Xm+1 −Xm) = 0, (1.5.9)

which is solved for Xm+1 as

Xm+1 = X(m)− (
∂F

∂X
)−1F (Xm),

where ∂F
∂X

is the Jacobian matrix J defined as

J =


∂f1
∂x1

. ∂f1
∂xm

...
...

...
...

∂fn
∂x1

. ∂fn
∂xn

 .

CHAPTER 2

NUMERICAL SIMULATION OF
DIFFUSION EQUATION

We consider basic numerical techniques for solving the one-dimensional dif-
fusion equation. the aim is to study the behavior of solutions of this equation and
how this behavior depends on boundary conditions.we consider the implicit-explicit-
method and analyze the total mass.
At first we focus on Numann boundary condition, since, in case of homogenious Neu-
mann boundary condition, there is no in-flow and out-flow flux at the boundary, so that
Total mass will be conserved, i.e, total mass will be constant for all time. This case
will be same for periodic boundary condition, i.e, Total mass will be conserved too,
because as same as homogeneous Neumann boundary condition there is now flux flow
at the boundary for this case.
Next, we consider Dirichlet boundary condition u(0, t) = u(L, t) = 0 ∀, x ∈ [0, L]
for all time (t ∈ [0, T]), that is, mass at the boundaries will depend on incoming and
outgoing flux at the boundary and the total mass will decrease towards final time.

2.1 Total mass
Evaluation of conserved quantities such as mass is one of the fundamental phys-

ical principles used to build mathematical models in the natural sciences. Numerical
simulations are very useful methods to describe mass propagation phenomena for the
linear diffusion equation 1.2.2 and total mass, M implies

M =

∫ L

0

u(x, t)dx for all, t ∈ [0, T]. (2.1.1)

Time derivative of M gives

dM

dt
=

d

dt

∫ L

0

u =

∫ L

0

∂

∂t
udx =

∫ L

0

Duxxdx = Dux(L, t)−Dux(0, t) (2.1.2)

27

2.1. TOTAL MASS 28

Equation 2.1.2 implies that the total mass is conserved for the periodic boundary
condition as u(0, t) = u(L, t) and for the homogeneous Neumann boundary condition
as ux(0, t) = ux(L, t) = 0. In these two cases there are no flux through the boundary
condition, thus the total mass is constant for all time.
For numerical point of view for the explicit scheme the total mass is

Mn = M(tn) =
n∑
j=1

uj∆x, (2.1.3)

and, for the Trapizoidal rule, the total mass is

Mn = M(tn) =
n−1∑
j=2

uj∆x+
1

2
u1∆x+

1

2
u0∆x (2.1.4)

Numerical Simulation

In numerical simulation the computation of the mass depends on the mesh refine-
ment, more smaller of the space ∆x gives the accurate numerical result as compared
with the exact value.
We study the total mass for the equation 1.2.2 in the case of periodic, Dirichlet and
Neumann boundary condition with the initial value

u(x, 0) =

{
5 0.40 ≤ x ≤ 0.60
0 otherwise

According to our initial condition the total mass for the periodic boundary con-
dition or for the homogeneous Neumann boundary condition is

M =

∫ 0.6

0.4

5dx = 5 ∗ 0.2 = 1 (2.1.5)

Now our interest to find the time evolution of the total mass for the equation 1.2.2 in
the case of three different boundary conditions (periodic, Dirichlet and Neumann) with
the defining initial value.
Where, for all simulation we consider

• Diffusion coefficient: D = 1,

• Space length from 0 to 1., i.e. 0 ≤ x ≤ 1,

• space step size: ∆x = 1/100,

• Time step size: ∆t = (∆x)2/D

2.2. TIME INTEGRATION 29

Figure 2.1: Time evolution of the total mass of the equation 1.2.2 with D = 1 with
periodic (on the left), Dirichlet (in the middle) and homogeneous Nuemann (on the
right) boundary condition

Figure 2.1 represents the time evolution of the total mass. We simulate from initial
time t0 = 1 to the final time T = 5 for the Dirichlet boundary condition and observe
that the total mass is constant until initial time t0 = 1 and then started decreasing. At
the final time T = 5 we see that the total mass becomes almost zero which satisfy the
theory for the total mass in the case of Dirichlet boundary condition. For the periodic
we simulate from initial time t0 = 1 to the final time T = 500 and homogeneous
Neumann boundary condition from initial time t0 = 1 to the final time T = 1000, we
see that the total mass is conserved for all time due to no flux flow at the boundary.
We also notice that for all simulations time evolution of the total mass is not exactly 1 as
for the exact calculation that we have found in equation 2.1.5. The reason is numerical
error and that could be better if we refine our mesh and make its size smaller.

2.2 Time Integration
Stability is an important property of numerical schemes. Stability of numerical

schemes is connected with both special and temporal discreatization, In this case of
linear equations for the schemes can be written as a linear condition of values at nodes
and it is possible to find condition at ∆t, finding strict condition for time step is cum-
bersome.
In practice, thus it is particular interest for implicit schemes which are used with
large time steps has a benefit from the favorable stability. To do so, we can consider
θ − scheme, where we know, if θ = 1, it executes as implicit Euler scheme, and when
θ = 1/2 it executes as implicit Trapizoidal rule. However, in both implicit schemes it
needs to satisfy positivity property on time integration methods, because, theory tells
that, if θ ≤ 1/2 it is unconditionally stable, but, when 1/2 < θ ≤ 1 it gives oscillation
under the violation of positivity property which is ∆t

∆x2
≤ 1, but by the fully implicit

Euler scheme (θ = 1) we can simulate our model as much time as we can without
notable oscillation, in other words, implicit Euler method is unconditionally positive
for all time.
Positivity properties put restrictions on time integration methods. In this section we
are going to discuss the positivity for the θ − method and we study the importance to

2.2. TIME INTEGRATION 30

chose a scheme for the time consideration in practice.
Further, it should also be noted that, for the linear diffusion equation 1.2.2 numerical
diffusive terms are usually very stiff, that is, some numerical result take place on very
small time scales compared to the overall time scale, due to large diffusion constants.
This implies that such terms have to be solved implicitly, which makes them difficult
and time consuming.
Moreover, with large diffusive constants for the numerical schemes has drawback too.
A very simple example, consider, f(ζ) = −Dζ2 with reaction constantD >> 1. Then
solutions of ζ ′(t) = f(ζ(t)) are only stable if we start with ζ(0) ≥ 0. With ζ(0) < 0
there will be a blow-up of the solution.

2.2.1 Positivity of Numerical Scheme
Linear Positivity

A linear, semi-discrete scheme for diffusion equation can be written as

w′(t) = Bw(t) (2.2.1)

where, w = u(x, t), and w′(t) = ∂
∂t
u(x, t). B ∈ Rn×n satisfies for the time discreati-

zation
bij ≥ 0 for i 6= j and bii ≥ −β, for all i, (2.2.2)

where, β > 0 is a fixed number.
Let us consider the forward and backward Euler methods. Equation 2.2.1, becomes for
the forward Euler method as,

wn+1
i = (I + ∆tB)wni , (2.2.3)

where we can see that I + ∆tB ≥ 0 provided 1 + ∆tbii ≥ 0. This holds if the time
step satisfies such that

∆tβ ≤ 1. (2.2.4)

The backward Euler method gives

wn+1
i = (I −∆tB)−1wni . (2.2.5)

Suppose that B has no eigenvalues in the positive real axis. Then I−∆tB is invertible
for all ∆t > 0 and thus the implicit relation in the backward Euler scheme has unique
solution. In fact, this solution is also positive.
In case of, θ −method since it’s a Explicit-Implicit scheme, that is

wn+1
i = wni + (1− θ)∆tBwni + θ∆tBwn+1

i , (2.2.6)

according to the previous result, positivity is guaranteed if the step size is restricted
such that

∆tβ ≤ 1/ (1− θ) . (2.2.7)

2.2. TIME INTEGRATION 31

Numerical Simulation

For, sufficiently small time step, it is difficult to understand the difference be-
tween Trapizoidal rule and backward Euler scheme because, then θ − method meets
the criteria for the positivity condition, i.e, β∆t < 1, but if we consider time step
∆t large, numerical result shows that, for the backward Euler scheme (θ = 1) in
θ − method has no oscillation where as for θ = 1/2, that is, for the Trapezoidal rule,
we have oscillated result.

Thus, for the time integration method, for a large time step in order to get best
approximated result in numerical computation, it is important to use Implicit Euler
method than Explicit-Implicit scheme to avoid negative values and oscillation.
As an illustration we consider a diffusion equation with homogeneous Dirichlet bound-
ary condition value problem

∂tu = ∂xxu x ∈ (0, 1), t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

(2.2.8)

on the interval [0,1] with a discontinuous initial condition:

u(x, 0) =

{
0 if, 0 ≤ x < 0.5
1 if, 0.5 ≤ x < 1

we use space a second order central difference discretization that gives positive ap-
proximations

∂xxu(x, t) =
1

∆x2


−2 1 0 . . . 0
1 −2 1 . . . 0
. .
0 0 . . . 1 −2

u(x, t)

Time evolution of the solution ∆t = ∆x = 1/50 for the backward Euler and the
Trapizoidal rule is presented in Figure 2.2

A sufficient condition for positivity of the Trapizoidal rule is ∆t
∆x2
≤ 1, which

is clearly not satisfied here. The behavior of the trapezoidal rule in this example is
actually determined by several properties.

Due to lack of positivity the scheme produces large over- and undershoots in the
initial phase. Secondly, due to the poor damping properties of the trapezoidal rule,
these over- and undershoots persist for a long time. Moreover, due to the fact that
R(z) = −1 for z = −∞, high-frequency spatial Fourier modes are amplified by a
factor close to −1, and this causes the oscillatory behavior in the figure 2.2.

In practice, problems with positivity are not very often encountered with linear
parabolic equations. The solutions for such problems are in general rather smooth and

2.3. LP − ERROR 32

Figure 2.2: Discontinuous diffusion solutions with backward Euler (left) and the trape-
zoidal rule (right). Time evolution for increasing t in upper-right direction.

then negative values will not show up due to sufficient accuracy. Also in the discontin-
uous example presented here that tells us to focus on negative values in computations,
negative values could have been avoided by starting the trapezoidal rule with small ∆t
and then gradually increasing the time step.

2.3 Lp − error
When we study finite difference scheme to solve a differential equation, it is

generally a good idea to test the order of accuracy of a scheme to ensure that it is
producing correct results with the expected accuracy. How can we do this?

A first step is often to try on a problem for which the exact solution is known,
in which case we can compute the error in the numerical solution exactly. Not only
can we then check that the error is small on some grid, we can also refine the grid and
check how the error is behaving asymptotically, to verify that the expected order of
accuracy and perhaps even error constant are seen.

To do so, we shall focus on two types of normed based error estimates for the
finite difference method, one is L2- norm and another one is L∞−norm. These two
types of estimates serve very different purposes. The main feature of these estimates
is that they tell us the order of convergence of a given finite difference method, that
is, they tell us that the finite difference error. The goal of these estimates is to give
us a reasonable measure of the efficiency of a given method by telling us how fast the
error decreases as we decrease the mesh size. In adaptive mesh refinement, a time
influence error estimators are used to indicate where the error is particularly high, and
more mesh intervals are then placed in those locations.

Before going to describe error estimation, in the next section we are going to
give some numerical simulation to show the importance to check errors in numerical
methods.

2.3. LP − ERROR 33

Numerical Simulation

It is important to test a computer program by refining grid even if the results
look quite good in one particular grid. A subtle error in programming can lead to a
program that gives reasonable results and able to track location to the exact solution
more accurately. To see this, consider the following example

∂tu = D∂xxu x ∈ [0, L], t ∈ [0, T]

u(x, 0) = f(x) x ∈ [0, L]

u(0, t) = u(L, t), t > 0

(2.3.1)

We study the qualitative behavior of the numerical solution and results are com-
pared with exact Gaussian solution (1.2.9). For the numerical simulation we choose
initial value u(x, 0) is a Gaussian solution at initial time t0 = 0.1. Figure 2.3 represents
the difference between explicit and implicit scheme at the final time T = 5. Without
taking care of CFL condition, we choose time step ∆t as equal to space step ∆x = 0.1,
from left to right we plot the result for explicit forward Euler scheme, implicit back-
ward Euler scheme and implicit-explicit Crank-Nicolson scheme and compared the
result with Gaussian solution G by the formula in 1.2.9. Although definite conclusions
cannot be drawn from the simple test, but from this plot it is clear that the implicit
discretizations give quite good results compared to their explicit counterparts in terms
of accuracy for the large time steps.

Figure 2.3: Numerical solution at final time, T = 5 the diffusion equation for For-
ward Eluer scheme (on the left), Backward Eluer scheme (in thev middle) and Crank-
Nicolson scheme (on the right) with periodic boundary condition, where diffusive con-
stant D = 1, space step ∆x = 0.1. Result are compared with Gaussian solution.

We now pay more attention to the movement of the numerical solution by con-
sidering CFL condition. We take CFL condition ∆t = 0.5 ∗∆x2 and plot the result in
Figure 2.4. We see at final time T = 5 we see all schemes are now giving good results
and can able to track exact Gaussian solution more accurately compare to the Figure
2.3.

To get better approximation we see explicit scheme needs small time steps such
as ∆t = 0.005 where as implicit scheme doesn’t need to take care of time step re-
striction to get good result for the equation 2.3.1 but smaller time step find larger final
time which is time consuming and laborious in numerical simulation. We conclude

2.3. LP − ERROR 34

Figure 2.4: Numerical solution at final time, T = 5 the diffusion equation for For-
ward Eluer scheme (on the left), Backward Eluer scheme (in the middle) and Crank-
Nicolson scheme (on the right) with periodic boundary condition, where diffusive con-
stant D = 1, space step ∆x = 0.1. Result are compared with Gaussian solution.

from both Figures 2.3 and 2.4 that the implicit scheme is a good choice to simulate the
equation 2.3.1 but concluding the result by the accuracy point of view, it is important
to check numerical error from each grid points.

Now we study numerical for the implicit backward Euler scheme. Figure 2.5
represents from the previous results as in Figure 2.4, if we fix time steps i.e ∆t =
0.0005 at the final time T = 5 we see, it gives much accurate result if we refine mesh
by decreasing its lengths. Here, we start simulation using mesh size ∆x = 0.5 and
finish our simulation after refining 8 mesh size and end-up with ∆x = 0.08333, we see
numerical solution gives much accurate result as mesh size becomes smaller, for each
simul;ation results are compared with exact Gaussian solution.

All simulation represents that, even after getting good appropriation result, some
times it is very critical to distinguish two solutions at a glance. To make accurate
comments from any simulation it is thus necessary to analyze the error of the scheme
to choose better scheme for simulation. Thus for the next section, we are going to
present, numerical error for the three different schemes where error will be calculated
by the Lp− norm as

‖v‖p =

(
∆x

n∑
i=1

|vi|

)1/p

; ∀1 ≤ p <∞ (2.3.2)

2.3.1 Error Analysis
In above section we have shown simulations to show the importance for the grid

refinement and necessity to check the error to conclude the result is accurate. In this
sections, we are interested to check the error in each grid points, to get better accuracy
first suppose, we know the true solution (Un) at time t = tn. Let En denote the error
in the calculation with time and space, that is in each grid point, as computed using the
exact solution. We suppose that En is a scalar, typically some norm of the error over
the grid points, i.e., En =

∥∥∥unumerical − Uexact
∥∥∥ where unumerical is the numerical

solution vector and Uexact is the true solution evaluated at each grid point by using

2.3. LP − ERROR 35

Figure 2.5: Numerical solution for the diffusion equation 2.3.1 with D = 1, ∆t =
0.0005, ∆x = 0.5 (top-left),. . ., ∆x = 0.08333(bottom-right), results are compared
with Gaussian solution.

time steps and space steps. So, At each grid point there will be some error which is
important to check and now we are going to check error on the basis of L1, L2 and L∞
norm and we will observe the qualitative behavior of error on each grid point with grid
refinement to have better result.

2.3. LP − ERROR 36

L1, L2 and L∞− error by refining time steps and mesh sizes

We study the L1, L2 and L∞−norm to measure the error for the equation 2.3.1
different values of ∆x, ∆t. For any vector v ∈ R, L1, L2 and L∞ norm performed by
the formula as 2.3.2

‖v‖1 = ∆x
n∑
i=1

|vi| ,

‖v‖2 =

(
∆x

n∑
i=1

|vi|

)1/2

,

and,
‖v‖∞ = max1≤i≤n |vi| .

Using, L1 − norm we study mass error at the final time in each grid point and
see how it response after each grid refining. Using, L2 − norm we are going to mea-
sure error to know at final time response and see how our simulation is differ from
exact solution at each final time. But, we also want the best fit to a specified numerical
response in an L∞ − norm sense rather than the L2 sense. This minimizes the maxi-
mum error of the approximation. If the L∞ − norm of the error is small, then we are
guaranteed that the approximation to our desired solution response will lie within the
illustrated bounds.

We are interested first, to check the influence of the time step in the error for L1,
L2 and L∞ sense. At each time step we have computed the errors starting at initial
time t0 = 0.01 up to the final time T = 5 for the computational simplicity we used
periodic boundary condition for the numerical simulation and result are compared with
Gaussian solution and accuracy table is presented in 2.1, 2.2 and 2.3 for the forward
Euler, backward Euler and Crank-Nicolson schemes respectively.

∆t Number of time steps (T-step) L1 − error L2 − error L∞ − error
4.0000e-02 1.2600e+02 6.4155e-03 1.0144e-02 5.2213e-04
2.0000e-02 2.5100e+02 3.4931e-03 5.5231e-03 3.0370e-04
1.3333e-02 3.7600e+02 2.5343e-03 4.0071e-03 2.3100e-04
1.0000e-02 5.0100e+02 2.0587e-03 3.2552e-03 1.9461e-04
8.0000e-03 6.2600e+02 1.7803e-03 2.8149e-03 1.7276e-04
6.6667e-03 7.5100e+02 1.5947e-03 2.5215e-03 1.5819e-04
5.7143e-03 8.7600e+02 1.4657e-03 2.3174e-03 1.4778e-04
5.0000e-03 1.0010e+03 1.3732e-03 2.1712e-03 1.3997e-04

Table 2.1: Estimated error for the diffusion equation 2.3.1 by refining time step ∆t,
numerical simulation has been done by using Forward Euler scheme from initial time
t0 = 0.1 to the final time T = 5, where, x ∈ [0, 40] and grid forms with step sizes
∆x = 0.4 and D = 1

2.3. LP − ERROR 37

∆t Number of time steps (T-step) L1 − error L2 − error L∞ − error
4.0000e-02 1.2600e+02 1.0248e-02 1.6204e-02 1.0390e-03
2.0000e-02 2.5100e+02 5.4882e-03 8.6776e-03 5.6109e-04
1.3333e-02 3.7600e+02 3.9168e-03 6.1930e-03 4.0226e-04
1.0000e-02 5.0100e+02 3.1356e-03 4.9579e-03 3.2293e-04
8.0000e-03 6.2600e+02 2.6699e-03 4.2214e-03 2.7535e-04
6.6667e-03 7.5100e+02 2.3608e-03 3.7328e-03 2.4365e-04
5.7143e-03 8.7600e+02 2.1422e-03 3.3872e-03 2.2101e-04
5.0000e-03 1.0010e+03 1.9783e-03 3.1280e-03 2.0403e-04

Table 2.2: Estimated error for the diffusion equation 2.3.1 by refining time step ∆t,
numerical simulation has been done by using Backwar Euler scheme from initial time
t0 = 0.1 to the final time T = 5, where, x ∈ [0, 40] and grid forms with step sizes
∆x = 0.4 and D = 1

∆t Number of time steps(T-step) L1 − error L2 − error L∞ − error
4.0000e-02 1.2600e+02 8.2212e-03 1.2999e-02 7.7820e-04
2.0000e-02 2.5100e+02 4.4450e-03 7.0282e-03 4.3194e-04
1.3333e-02 3.7600e+02 3.1865e-03 5.0383e-03 3.1643e-04
1.0000e-02 5.0100e+02 2.5632e-03 4.0528e-03 2.5865e-04
8.0000e-03 6.2600e+02 2.1960e-03 3.4722e-03 2.2398e-04
6.6667e-03 7.5100e+02 1.9594e-03 3.0980e-03 2.0087e-04
5.7143e-03 8.7600e+02 1.7927e-03 2.8346e-03 1.8436e-04
5.0000e-03 1.0010e+03 1.6696e-03 2.6399e-03 1.7197e-04

Table 2.3: Estimated error for the diffusion equation 2.3.1 by refining time step ∆t,
numerical simulation has been done by using Crank-Nicolson scheme from initial time
t0 = 0.1 to the final time T = 5, where, x ∈ [0, 40] and grid forms with step sizes
∆x = 0.4 and D = 1

Figure 2.6 represents the comparison of numerical solution for three different schemes
and show the result in terms of L1 , L2 and L∞-error for the equation 2.3.1, error are
executed by the by the norm of En that has been described at the first paragraph of this
section. We start simulation from time step ∆t = 4e− 02 and end-up simulation with
∆t = 5e− 03, we see more smaller time steps produce more accurate result and under
the CFL condition, at each final time T = 5 with different time steps explicit forward
Euler scheme can track much accurately the exact solution than implicit schemes.

Figures 2.7 represents the accuracy result from Tables 2.1, 2.2 and 2.3 for for-
ward Euler scheme, backward Euler scheme and Crank-Nicolson scheme. We see L∞-
error ensures that our simulation gives all solutions lies within the boundary which
satisfy the theory that we mentioned before.

Now we are interested to check the error by refining space steps. Previously in
Figure 2.5 we have shown an importance of refining mesh to get more better result. For

2.3. LP − ERROR 38

Figure 2.6: From upper-left to bottom-right, comparison of numerical error at time
T = 5 in L1, L2 and L∞-norm, obtained by explicit Forward Euler scheme, implicit
Backward Euler Scheme and implicit-explicit Crank-Nicolson schemes with the space
and time step, ∆x = 0.4 and ∆t = 4 × 10−2, . . ., ∆t = 5 × 10−3 for the equation
2.3.1, T-step represents the number of time steps.

this region, we start refine mesh size ∆x, from 0.5 and end up refining at ∆x = 0.05.
The accuracy results in Table2.4, Table2.5 and Table2.6 are given for the error between
numerical and Gaussian solution for the equation 2.3.1 with diffusive parameterD = 1
for the forward Euler scheme, backward Euler scheme and Crank-Nicolson scheme,

2.3. LP − ERROR 39

Figure 2.7: Comparison of numerical error at time T = 5 in L1, L2 and L∞-norm, ob-
tained by explicit Forward Euler scheme (upper-left), implicit Backward Euler Scheme
(upper-right) and implicit-explicit Crank-Nicolson schemes (bottom) with the space
and time step, ∆x = 0.4 and ∆t = 4 × 10−2, . . ., ∆t = 5 × 10−3 for the equation
2.3.1, T-step represents the number of time steps.

where we consider space, x ∈ [0, 40] and time, t ∈ [0, 5]. It shows that the implicit
backward Euler scheme is better than all others scheme. And comparison results are
plotted in Figure 2.8.

we deserve our error in each grid point is a scalar value for any time steps ∆t > 0,
to avoid the time steps order concern we take our time steps by CFL condition, i.e:
∆t = 0.5 × ∆x2 and simulate from initial time t0 = 0.1 to the final time T = 5.
Figure 2.8 represents for the maximum space step ∆x = 0.5 gives much bigger error
than the space steps ∆x = 0.01 in L1, L2 and L∞ norm by the formula of En. Figure
3.1 represents that, all schemes gives satisfy the boundedness property in L∞ sense,
but from Figure 2.8 we conclude that, fully implicit backward Euler scheme is a best
choice to simulate the equation 2.3.1.

2.3. LP − ERROR 40

∆x Number of Cells (N) L1 − error L2 − error L∞ − error
5.0000e-01 8.0000e+01 4.0329e-02 5.7034e-02 7.6371e-03
2.5000e-01 1.6000e+02 4.0452e-03 8.0905e-03 5.7729e-04
1.6667e-01 2.4000e+02 1.7874e-03 4.3783e-03 2.5483e-04
1.2500e-01 3.2000e+02 1.0035e-03 2.8384e-03 1.4301e-04
1.0000e-01 4.0000e+02 6.4188e-04 2.0298e-03 9.1424e-05
8.3333e-02 4.8000e+02 4.4555e-04 1.5434e-03 6.3452e-05
7.1429e-02 5.6000e+02 3.2722e-04 1.2243e-03 4.6601e-05
6.2500e-02 6.4000e+02 2.5049e-04 1.0019e-03 3.5671e-05

Table 2.4: Estimated error for the diffusion equation 2.3.1, numerical simulation has
been done by using Forward Euler scheme from initial time t0 = 0.1 to the final time
T = 5, step sizes ∆x = ∆t and D = 1

∆x Number of Cells (N) L1 − error L2 − error L∞ − error
5.0000e-01 8.0000e+01 7.8707e-03 1.1131e-02 6.5597e-04
2.5000e-01 1.6000e+02 1.9078e-03 3.8156e-03 1.5411e-04
1.6667e-01 2.4000e+02 8.4336e-04 2.0658e-03 6.8016e-05
1.2500e-01 3.2000e+02 4.7352e-04 1.3393e-03 3.8118e-05
1.0000e-01 4.0000e+02 3.0280e-04 9.5753e-04 2.4342e-05
8.3333e-02 4.8000e+02 2.1018e-04 7.2809e-04 1.6898e-05
7.1429e-02 5.6000e+02 1.5438e-04 5.7763e-04 1.2408e-05
6.2500e-02 6.4000e+02 1.1817e-04 4.7270e-04 9.4949e-06

Table 2.5: Estimated error for the diffusion equation 2.3.1, numerical simulation has
been done by using Backward Euler scheme from initial time t0 = 0.1 to the final time
T = 5, step sizes ∆x = ∆t and D = 1

∆x Number of Cells (N) L1 − error L2 − error L∞ − error
5.0000e-01 8.0000e+01 1.0425e-02 1.4743e-02 1.2371e-03
2.5000e-01 1.6000e+02 2.5318e-03 5.0636e-03 2.9380e-04
1.6667e-01 2.4000e+02 1.1194e-03 2.7421e-03 1.2936e-04
1.2500e-01 3.2000e+02 6.2850e-04 1.7777e-03 7.2528e-05
1.0000e-01 4.0000e+02 4.0187e-04 1.2708e-03 4.6348e-05
8.3333e-02 4.8000e+02 2.7894e-04 9.6626e-04 3.2160e-05
7.1429e-02 5.6000e+02 2.0487e-04 7.6655e-04 2.3616e-05
6.2500e-02 6.4000e+02 1.5682e-04 6.2728e-04 1.8075e-05

Table 2.6: Estimated error for the diffusion equation 2.3.1, numerical simulation has
been done by using Crank-Nicolson scheme from initial time t0 = 0.1 to the final time
T = 5, step sizes ∆x = ∆t and D = 1

2.3. LP − ERROR 41

Figure 2.8: From upper-left to bottom-right, comparison of numerical error at time
T = 5 in L1, L2 and L∞-norm, obtained by Forward Euler scheme, Backward Euler
Scheme and Crank-Nicolson scheme with the space and time step, ∆x = ∆t for the
equation 2.3.1, N-represents the number of cells.

2.3. LP − ERROR 42

Figure 2.9: From upper-left to bottom-right, comparison of numerical error at time
T = 5 in L1, L2 and L∞-norm, obtained by Forward Euler scheme (Upper=left),
Backward Euler Scheme (Upper-right) and Crank-Nicolson scheme (bottom) with the
space and time step, ∆x = ∆t for the equation 2.3.1, N-represents the number of cells.

CHAPTER 3

NUMERICAL SIMULATION OF
POROUS MEDIA EQUATION

The aim of this chapter is to study numerical approximation of the nonlinear
diffusion equation

ρt = ∆(ργ), γ > 1, (3.0.1)

and usually it is called the porous medium equation (PME), with due attention paid
to its closest relatives. The default settings are:ρ = ρ(x, t) is a non-negative scalar
function of space x ∈ Rd and time t ∈ R, the space dimension is d ≥ 1, and γ is a
constant larger than 1 and ∆ represents the Laplacian form. The equation can be posed
for all x ∈ Rd and 0 < t < ∞, and then initial conditions are needed to determine
the solutions; but it is quite often posed, especially in practical problems, in a bounded
sub-domain Ω ∈ Rd for 0 < t < T , and then determination of a unique solution asks
for boundary conditions as well as initial conditions.

This equation is one of the simplest examples of a nonlinear evolution equation
of parabolic type. It appears in the description of different natural phenomena, and its
theory and properties depart strongly from the heat equation, ut = ∆u, its most famous
relative. Hence the interest of its analytical and numerical study is an important task
for both for the pure mathematicians and the applied scientists.

3.1 Self-similar solution of PME
For the equation (3.0.1), a solution of self-similar form can be recovered in a

similar way as for the linear diffusion equation. We therefore look for a solution of the
form in one dimension,

ρ(x, t) = t−β ρ̂(xt−α), x ∈ R, t > 0 (3.1.1)

to the one-dimensional PME
ρt = P (ρ)xx, (3.1.2)

43

3.1. SELF-SIMILAR SOLUTION OF PME 44

where, P (ρ) = ργ, γ > 1.
First of all, the conservation of the total mass easily implies∫

R
ρ(x, t)dx = t−β

∫
R
ρ̂(xt−α)dx = t−β+α

∫
R
ρ̂(ζ)dζ

and therefore we have, β = α.
In the new variables ρ̂ and ζ = xt−α, we obtain,

αt−α−1(ζρ̂)ζ + t−α(γ+2)(ζρ̂γ)ζζ = 0,

which requires the choice

α =
1

γ + 1
,

in order to get rid of the time variable. The above can be written as

∂x(ρ̂∂x(
γ

γ − 1
ˆργ−1 +

ζ2

2(γ + 1)
)) = 0. (3.1.3)

In the domain where ρ̂ > 0, we can impose

ρ̂γ−1(ζ) = (C − γ − 1

2γ(γ + 1)
ζ2),

where, C is any arbitrary constant. Clearly, the above gives problems in case, ρ̂ be-
comes negative. Since, ρ̂ = 0 on an interval solves the equation for ρ̂, we can introduce
the following solution

ρ̂(ζ) = [C − γ − 1

2γ(γ + 1)
ζ2]

1
γ−1

+ ,

which in the original variables reads

ρ(x, t) = B(x, t) = t
−1
γ+1 [C − γ − 1

2γ(γ + 1)

x2

t2/γ+1
]

1
γ−1

+ , (3.1.4)

where, ρ+ = max(ρ, 0) and equation (3.1.4) is called Barenblatt solution. Such a
solution has compact support on the interval

−t
−1
γ+1

√
2γC(γ + 1)

γ − 1
≤ x ≤ t

−1
γ+1

√
2γC(γ + 1)

γ − 1
,

which grows as t grows. Moreover, it can be easily proven that B(.; 0) is a multiple
of the Dirac delta distribution, exactly as it is the case for the Gaussian solution of the
linear diffusion equation. Analyzing the differences with the linear diffusion case, we
clearly see that the Barenblatt solution is not smooth, opposite to the Gaussian solu-
tion (G) to the linear diffusion equation, which is C∞. More precisely, the Barenblatt

3.2. NUMERICAL SCHEMES 45

solution has possible lack of smoothness at the boundary of its support, where it even-
tually features discontinuities in a space derivative of a certain order depending on the
adiabatic exponent γ. At any other points, B is C∞. A key difference between G and
B is that the support of G becomes unbounded immediately after t = 0 (in finite speed
of propagation) whereas the support of B is compact for all times, it travels with finite
speed.
Figure: 3.1 represents the equation (3.1.2) for the different exponent γ = 1, 2, 4, 6, 8.
For γ = 1, equation (3.1.2) represents just an one-dimensional diffusion equation, so,
for this we take initial value as a Gaussian solution at time, t = 0.05 and time, t = 10
shows the result for final time for the Gaussian solution, but for the rest of exponents
(γ), we take initial value as a Barenblatt solution at time, t = 0.05 and time, t = 10
shows the result for final time for the Barenblatt solution. For all γ, we take boundary
condition as a homogenous Neumann boundary condition ∂ρ

∂x
= 0

3.2 Numerical Schemes
In this section we are going to present numerical schemes based on finite dif-

ference method. In particular, we consider two different kind of the implicit method
(pure implicit scheme and Crank-Nicolson implicit-explicit scheme) on an uniform
grid with the mesh size ∆x = h and time step ∆t = k. In one dimension on an in-
terval [0, L] × [0, T] we define nodes xi, i = 1; . . . ; s such that x1 = 0 and xs = L.
We denote by ρni an approximation of a function ρ(x, t) at node xi at time tn, where,
t ∈ [0, T] and for any function f(ρ) we denote f(ρni) = fni for simplicity. This nota-
tion is going to be used throughout the chapter. Since we know, in θ− scheme, where,
θ = 1, scheme is called backward Euler scheme which is fully implicit scheme and
θ = 1/2, scheme is called Crank-Nicolson scheme which is implicit-explicit scheme.
We want to compare numerical error between theae two schemes and for this reason,
first we are going to present θ− scheme for PME.

3.2.1 θ− scheme
Consider the PME equation (3.1.2)

ρt = P (ρ)xx, P (ρ) = ργ, x ∈ [0, L], γ > 1

(x, 0) = ρ0(x), x ∈ [0, L]

∂ρ(x, t)

∂x
= 0, (x, t) ∈ [0, L]× [0, T]

(3.2.1)

We have to notice that in this case the presence of nonlinear diffusion compli-
cated the scheme. The system of linear equations in the previous case is replaced by
nonlinear one. It has to be solved at each time iteration, which increases computational
cost. We are going to use Newton method. It requires calculation of a Jacobian for a

3.2. NUMERICAL SCHEMES 46

Figure 3.1: Comparison between Gaussian solution(when γ = 1) and Barenblatt so-
lution (when γ = 2, 4, 6, 8) in time with ∆x = ∆t = 0.1 and C = 1. When the
parameter γ increases, the Barenblatt solution tends to vary more slowly than Gaus-
sian Solution inside its support, and it tends to be steeper near the interface of the
support.

s − 2-dimensional vector not only at each time iteration but also at each iteration in-
side Newton method until reaching the desired accuracy. To construct the scheme for
(3.2.1) we need at first space discretization of the diffusion terms. We are going to use
conservative, second order, centered discretizations. The approximation for diffusion

3.2. NUMERICAL SCHEMES 47

is given at node xi by Using a forward difference in time and a central difference in
space for the equation (3.2.1),

P (ρ)xx|xi ≈
1

h2
(P (ρi−1)− 2P (ρi) + P (ρi+1)). (3.2.2)

Introducing vectors W ∈ Rs such that

Wi(ρ) =
1

h2
(P (ρi−1)− 2P (ρi) + P (ρi+1))

θ − scheme takes the form,

ρn+1
i = ρni + θkW n+1 + (1− θ)kW n . (3.2.3)

The above results in a nonlinear system of simultaneous equations, As mentioned be-
fore the presence of non linear stiff terms requires at each time step the solution of a
system of nonlinear equations. Let us define for every vector w ∈ Rs−2 a function

F (w) := w − θkW n+1 − f(ρn), (3.2.4)

where,
f(ρn) := ρn + (1− θ)kW n. (3.2.5)

which corresponds to finding ρn+1 at internal nodes, we use Newton’s method
initialized with w = ρn and with tolerance ∆x. In the case of Neumann boundary
conditions, ∂ρ(x,t)

∂x
= 0, we assume, JF is (s − 2) × (s − 2) matrix, which can be

decomposed in the following way

JF =


J1,1 · · · · · · · · · · · · · · · J1,s−2

...
...

... J int ...

...
...

Js−2,1 · · · · · · · · · · · · · · · Js−2,s−2

, (3.2.6)

where, J int ∈ M(s−4)×(s−2) and by J1, Js−2 we denote (s − 2)-dimensional vectors
being the first and last row of the matrix JF . The elements of the internal part J int

equal

J int
i,i−1 = −θλxP ′(ρi−1)

J int
i,i = 1 + 2θλxP

′(ρi)

J int
i,i+1 = −θλxP ′(ρi+1)

The vectors J1, Js−2 contain the information about the homogeneous Neumann bound-
ary conditions.

3.3. SIMULATION 48

3.3 Simulation
In the numerical point of view, solving non-linear PDE is based on iterative pro-

cess. There are several methods can apply to solve non-linear PDE, such as, bisection
method, line search technique, gradient search technique, Newton-Raphshon technique
etc. For our simulation we choose Newton-Raphshon method. In Newton method ini-
tial guessing is an important task to have faster convergence that we have described in
the first chapter. We study this case numerically for simple linear and non-linear case.
First we consider a linear function

f(x) = 10x− 1

The root of this function is 1/10. Figure 3.2 represents the importance of initial guess
for the Newton-Rapshon method. For this function, we see, if we choose initial guess
except −4 < x0 < 4 with respect to tolerance ε = 1e − 15, it takes one iteration. On
the other hand if we choose initial guess in between−4 to 4 i.e, −4 < x0 < 4, say,
x0 = −3, then it will take 0 iteration.

Figure 3.2: Graph of the function, f(x) = 10x− 1 (on the left), numerical solution (at
middle) and expected iteration for the convergence with respect to the initial guess (on
the right) for the Newton-Rapshon method

Now we consider a non-linear function

f(x) = x2 − 2sin(x)

The roots of this function are x ≈ 0 and x ≈ 1.40441. table 3.1 represents the 6
numerical results and the number of iteration for the convergence to the root for the
function, f(x) = x2 − 2sin(x).

Figure 3.3 represents the plot of the table 3.1, also we see, for this non-linear
function, number of iteration iterations are varies on the basis of initial guess for both
two roots. If x0 is any number in (1,5) or in (0, 0.1), Newton-Rapshon method quickly
takes us to the root.

After solving the PME using Newton method, we are interested now to check the
error in each grid points for the exponent γ > 1, to get better accuracy first suppose,
we know the true Barenblatt solution (Bn) at time t = tn. Let En denote the error
in the calculation with time and space, that is in each grid point, as computed using

3.3. SIMULATION 49

initial guess, x0 solution iteration
0.1 −1.1933e− 20 3
1 1.4044 5
4 1.4044 6
20 1.4044 8
−6 −1.3629e− 19 6
−20 −2.5665e− 19 8

Table 3.1: Numerical Results with Newton Rapshon method with respect to the toler-
ance, ε = 1e− 15

Figure 3.3: Graph of the function,f(x) = x2 − 2sin(x) (left), numerical solution
(middle) and expected iteration for the convergence with respect to the initial guess
(right) for the Newton-Rapshon method

the exact solution. We suppose that En is a scalar as same as chapter 2 that we did
for linear diffusion, typically some norm of the error over the grid points, i.e., En =∥∥∥ρnumerical − ρexact

∥∥∥ where ρnumerical is the numerical solution vector and ρexact

is the true solution evaluated at each grid point by using time steps and space steps.
So, At each grid point there will be some error which is important to check and now
we are going to check error on the basis of L1, L2 and L∞ norm and we will observe
the qualitative behavior of error for the exponent γ > 1 on each grid point with grid
refinement to have better result.

We first present some numerical results to show the effectiveness of the θ −
method. To do that, we begin our simulation for the Barenblatt solution of the PME
(3.2.4), where the initial condition is taken as the Barenblatt solution at t = 1, and the
boundary condition is ux(L, t) = 0, x ∈ [0, 25], for, t > 1. We divide the computation
domain into N = 251 uniform cells, and plot in Figure 3.4, the density profile for
different exponents, γ = 2, 3, 4, 5, 6 using space step ∆x = 0.1 for both schemes.
All are compared with the Barenblatt solution. We see that both implicit schemes are
able to capture the location of the front correctly without noticeable oscillations near
the interface, but need deep insight to check the accuracy for the smooth part of those
solutions and decide which one is better for the approximation.

For this region, we choose the parameter of PME γ = 2 and start refine mesh size

3.3. SIMULATION 50

Figure 3.4: Comparison of density profiles at time T = 50 obtained by Backward Euler
Scheme and Implicit-Explicit schemes with the space and time step, ∆x = ∆t = 0.1
for the diffusion functions P (ργ), where, γ = 2, 3, 4, 5, 6 from upper-left to bottom.
The results are compared with the Barenblatt solution (+) with C = 1.

∆x, from 0.25 and end up refining at ∆x ≈ 0.03. The accuracy table 3.2 and 3.3 are
given for the error between numerical and Barenblatt solution of PME (3.1.4) with ex-
ponent parameter γ = 2 for the Backward Euler scheme and Crank-Nicolson scheme,
where we consider space, x ∈ [0, 15] and time, t ∈ [0, 5]. It shows that the implicit-
explicit Crank scheme is better than Backward Eular scheme. And comparison results

3.3. SIMULATION 51

∆x Number of cells (N) L1 − error L2 − error L∞ − error
2.5000e-01 6.1000e+01 1.5416e-02 3.0831e-02 7.1334e-03
1.2500e-01 1.2100e+02 5.1063e-03 1.4443e-02 4.0416e-03
8.3333e-02 1.8100e+02 2.9964e-03 1.0380e-02 2.8521e-03
6.2500e-02 2.4100e+02 2.1197e-03 8.4787e-03 2.2205e-03
5.0000e-02 3.0100e+02 1.6323e-03 7.2997e-03 1.8279e-03
4.1667e-02 3.6100e+02 1.3230e-03 6.4814e-03 1.5598e-03
3.5714e-02 4.2100e+02 1.1119e-03 5.8838e-03 1.3444e-03
3.1250e-02 4.8100e+02 9.6106e-04 5.4366e-03 1.1631e-03

Table 3.2: Estimated error for the PME, numerical simulation has been done by using
Backward Euler scheme from initial time t0 = 0.2 to the final time T = 5, step sizes
∆t = ∆x, C = 1 for the Barenblatt solution.

∆x Number of cells (N) L1 − error L2 − error L∞ − error
2.5000e-01 6.1000e+01 1.2723e-02 2.5446e-02 6.6311e-03
1.2500e-01 1.2100e+02 1.7997e-03 5.0902e-03 3.6438e-03
8.3333e-02 1.8100e+02 9.4468e-04 3.2725e-03 2.5251e-03
6.2500e-02 2.4100e+02 6.6255e-04 2.6502e-03 1.9409e-03
5.0000e-02 3.0100e+02 4.5138e-04 2.0186e-03 1.5822e-03
4.1667e-02 3.6100e+02 2.8306e-04 1.3867e-03 1.3395e-03
3.5714e-02 4.2100e+02 1.6583e-04 8.7747e-04 1.1441e-03
3.1250e-02 4.8100e+02 1.3369e-04 7.5625e-04 9.7886e-04

Table 3.3: Estimated error for the PME, numerical simulation has been done by using
Crank-Nicolson scheme from initial time t0 = 0.2 to the final time T = 5, step sizes
∆t = ∆x, C = 1 for the Barenblatt solution.

are plotted in Figure ??
Ũsing,L2 − norm we are going to measure error to know at final time response

and see how our simulation is differ from exact solution at each final time. But, we
also want the best fit to a specified numerical response in an L∞ sense rather than the
L2 sense. This minimizes the maximum error of the approximation. If the L∞− norm
of the error is small, then we are guaranteed that the approximation to our desired
solution response will lie within the illustrated bounds.

As mention before, If the L∞−norm of the error is small, then we are guaranteed
that the approximation to our desired solution response will lie within the illustrated
bounds. Figure 3.7 represents the indivisual error for both schemes, where we can
see, both schemes satisfy this condition, but Figure ?? represents that Cran-Nicolson
scheme even more accurate than Backward Euler implicit scheme for PME.

We now pay more attention to the movement of the numerical interface, to check
whether the Crank-Nicolson schemes has the ability to capture the true interface ac-
curately. The position of the numerical interface is detected as follows: we scan the

3.3. SIMULATION 52

Figure 3.7: Comparison of density error at time T = 5 inL2 andL∞-norm, obtained by
Backward Euler Scheme (upper) and implicit-explicit Crank-Nicolson schemes (bot-
tom) with the space and time step, ∆x = ∆t for P (ρ2), N-represents the number of
cells.

numerical solution in the space x from 12.5 to 14, where x ∈ [0, 15], and find the
right endpoint of this cell as the numerical interface. We plot in Figure 3.8 the evolu-
tion of the numerical interface and result compare with the Barenblatt solution, for six
different parameters γ = 3, 4, 5, 6, 7and, 8, at the final time T = 10. Here the solid
line is the position of the numerical interface, and the plus (+) is the position of the
exact interface evaluated by Barenblatt equation (3.1.4), This figure verifies that the
Crank-Nicolson schemes is very accurate at capturing the moving interface.

3.3. SIMULATION 53

Figure 3.8: At final time T = 10, right movement of the numerical interface for γ =
3, 4, 5, 6, 7, and, 8 from initial time t0 = 0.2 (left) and spatial scanning look of the
left figure (right), numerical results are obtained by implicit-explicit Crank-Nicolson
schemes with the space and time step, ∆x = ∆t = 0.01. Results are compared with
Barenblatt solution (+)

APPENDIX A

MATLAB CODES

A.1 Mass execution

1 %∗∗∗
2 % S o l v i n g t o t a l mass f o r l i n e a r d i f f u s i o n e q u a t i o n i n
3 % t h e c a s e f o r P e r i o d i c , D i r i c h l e t and homogin ious
4 % Nuemann Boundary c o n d i t i o n .
5 %∗∗∗
6 c l c ;
7 c l e a r ;
8 L = 1 ; % Space Lenth ;
9 t b a r = 0 . 0 5 ; % I n i t i a l t ime ;

10 t f i n a l =10; %f i n a l t ime t o f i n d t h e Number o f t ime
s t e p s ;

11 N = 100 ; % Number o f s p a c e s t e p s
12 dx =L /N; % Space S tep
13 x = 0 : dx : L ;
14 D = 1 ; % d i f f u s i o n c o n s t a n t
15 d t = dx∗dx /D; % Time S tep
16 t h e t a =1; % P a r a m e t e r f o r t h e The ta scheme
17 B = d t / dx∗dx ;
18 x0 = L / 2 ; % Space i n t e r v a l
19 % Numer o f mesh
20 n = round (l e n g t h (x / dx)−1) ;
21 % S e t t i n g i n i t i a l m a t r i x f o r n u m e r i c a l s o l u t i o n
22 u = z e r o s (N+1 , round ((t f i n a l / d t))) ;
23 % S e t t i n g i n i t i a l m a t r i x f o r e x a c t s o l u t i o n
24 U = z e r o s (N+1 , round ((t f i n a l / d t))) ;
25 % S e t t i n g i n i t i a l c o n d i t i o n f o r t h e Numer ica l S o l u t i o n
26 f o r i =1 : n+1

54

A.1. MASS EXECUTION 55

27 i f ((0 .4 < x (i))&&(x (i) <0.6))
28 u (i , :) =5 ;
29 e l s e
30 u (i , :) =0 ;
31 end
32 end
33 %∗∗∗
34 % D i f f u s i o n m a t r i x ;
35 aa = − t h e t a ∗B ;
36 bb = 1+2.∗ t h e t a ∗B ;
37 bbw =1−2.∗ t h e t a ∗B ;
38 cc = − t h e t a ∗B ;
39 aaa = d i a g (aa ∗ ones (1 , n) , 1) ;
40 bbb= d i a g (bb∗ ones (1 , n +1) , 0) ;
41 bbr = d i a g (bbw∗ ones (1 , n +1) , 0) ;
42 ccc = d i a g (cc ∗ ones (1 , n) ,−1) ;
43 MMl= aaa +bbb+ ccc ;
44 MMr= −aaa +bbr−ccc ;
45 %∗∗∗
46 %−−−−−−−−−−−−Boundary C o n d i t i o n s (B . C)−−−−−−−−−−−−−−−−−−
47 %Nueman B . C ;
48 % MMl(1 , 1) =1;
49 % MMl(1 , 2) =MMl(1 , 1) ;
50 % MMl(n +1 ,1) =1;
51 % MMl(n +1 , n +1)=MMl(n +1 , n) ;
52 % MMr(1 , 1) =1;
53 % MMr(1 , 2) =MMr(1 , 1) ;
54 % MMr(n + 1 , :) =1 ;
55 % MMr(n +1 , n +1)=MMr(n +1 , n) ;
56 %∗∗∗
57 %P e r i o d i c B . C ;
58 % MMl(1 , 1) =MMl(n +1 , n +1) ;
59 % MMr(1 , 1) =MMr(n +1 , n +1) ;
60 %∗∗
61 %D i r i c h l e t B . C ;
62 % MMl(1 , 1) =0;
63 % MMl(n +1 , n +1) =0;
64 % MMr(1 , 1) =0;
65 % MMr(n +1 , n +1) =0;
66 %∗∗
67 % T r a c k i n g schemefrom t h e v a l u e o f t h e t a ;
68 s w i t c h t h e t a

A.1. MASS EXECUTION 56

69 c a s e 0 % When t h e t a =0;
70 scheme= ’ e x p l i c i t E u l e r ’ ;
71 c a s e 1 % When t h e t a =1;
72 scheme= ’ i m p l i c i t E u l e r ’ ;
73 c a s e 1 / 2 % When t h e t a = 1 / 2 ;
74 scheme= ’ Crank−N i c o l s o n ’ ;
75 end
76 %∗∗∗
77 f o r i i = 1 : round (t f i n a l / d t)% Time E v a l u a t i o n Loop ;
78 % Numer ica l a p p r o x i m a t i o n ;
79 i f t h e t a ==1/2
80 u (: , i i +1)=MMl\MMr∗u (: , i i) ; % Crank−N i c o l s o n Scheme

;
81 e l s e i f t h e t a ==1
82 u (: , i i +1)=MMl\u (: , i i) ; % Backward E u l e r Scheme ;
83 end
84 T = t b a r + i i ∗ d t ; % Time i n t e r v a l f o r e x a c t s o l u t i o n
85 % −−−−−−−−−−−−−Exac t s o l u t i o n−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 U (: , i i +1) = s q r t (t b a r / (T)) ∗ exp ((− (x−x0) . ˆ 2) / (4 ∗D∗T)) ;
87 %−−
88 % u (1 , 1) =u (1 , 2) ; u (n , n +1)=u (n +1 , n +1) ; % Nuemann B . C ;
89 % u (1 , i i) =u (n +1 , i i) ; % P e r i o d i c B . C ;
90 % u (1 , i i) =0 ; u (n +1 , i i) =0 ; % D i r i c h l e t B . C ;
91 end
92 s s = z e r o s (1 , round ((t f i n a l / d t))) ; %I n i t i a l i z e f o r t h e mass

m a t r i x ;
93 f o r j =1 : round (t f i n a l / d t)
94 s s (: , j) = sum (abs (u (: , j)) ∗dx) ;
95 end
96 % P l o t i n g T o t a l Mass ;
97 f i g u r e (1) ;
98 g r i d on
99 p l o t (ss , ’−− ’ , ’ LineWidth ’ , 1)

100 yl im ([0 2]) ;
101 x l a b e l (’ t ime ’) ;
102 y l a b e l (’ t o t a l mass ’) ;
103 c l c ;

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 57

A.2 Error execution for the linear DE equation
By time step refining

1 %∗∗∗
2 % E x e c u t i n g e r r o r i n d i f f e r e n t t ime s t e p s
3 % f o r t h e l i n e a r d i f f u s i o n e q u a t i o n
4 % i n t h e c a s e o f | | L 1 | | , | | L 2 | | and | | L {\ i n f t y } | |
5 % u s i n g p e r i o d i c boundary c o n d i t i o n . I n i t i a l c o n d i t i o n
6 % has been t a k e n as G a u s s i a n s o l u t i o n a t t h e i n i t i a l
7 % time $ t 0 =0 .05 $.
8 %∗∗∗
9 c l c ;

10 c l e a r ;
11 L = 4 0 ; % Maximum l e n t h
12 t b a r = 0 . 0 5 ; % I n i t i a l t ime
13 t f i n a l =10; % F i n a l t ime t o f i n d t h e Number o f

t ime s t e p s
14 n =100; % Number o f s p a c e s t e p s (f i x e d)
15 dx =L / n ; % Space s t e p
16 x = 0 : dx : L ; % Grid p o i n t s i n s p a c e
17 D =1; % d i f f u s i o n c o n s t a n
18 t h e t a =[0 1 1 / 2] ; % P a r a m e t e r f o r The ta scheme
19 CFL =1;
20 SX =CFL∗dx . ˆ 2 / (D) ; % I n i t i a l mesh
21 % R e f i n i n g t ime s t e p s
22 d t = [SX/ 2 SX/ 4 SX/ 6 SX/ 8 SX/ 1 0 SX/ 1 2 SX/ 1 4 SX / 1 6] ;
23 % Loop s t a r t f o r e x e c u t i n g s i m u l a t i o n f o r each t ime s t e p
24 f o r k =1:8
25 % Loop f o r t a k i n g t h r e e d i f f e r e n t p a r a m e t e r f o r t h e The ta

scheme
26 f o r kk =1:3
27 B =D∗ d t (k) . / (dx∗dx) ;
28 x0 = L / 2 ; % Space i n t e r v a l
29 %number o f t ime s t e p s f o r each r e f i n e n e d t ime s t e p
30 TT (k) = round ((t f i n a l / d t (k) +1)) ;
31 % S e t t i n g i n i t i a l m a t r i x f o r n u m e r i c a l s o l u t i o n
32 u = z e r o s (n +1 , round ((t f i n a l / d t (k) +1))) ;
33 % S e t t i n g i n i t i a l m a t r i x f o r e x a c t s o l u t i o n
34 U = z e r o s (n +1 , round ((t f i n a l / d t (k) +1))) ;
35 % Loop s t a r t f o r i n i t i a l c o n d i t i o n (I . C)
36 f o r i =1 : n+1

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 58

37 u (i , 1) = s q r t (1 / (4 ∗ p i ∗D∗ t b a r)) ∗ exp (− ((x (i)−x0) . ˆ 2) / (4 ∗D∗
t b a r)) ;

38 U(i , 1) = s q r t (1 / (4 ∗ p i ∗D∗ t b a r)) ∗ exp (− ((x (i)−x0) . ˆ 2) / (4 ∗D∗
t b a r)) ;

39 end % end of t h e loop f o r I . C
40

41 u (1 , :) =u (n + 1 , :) ; %S e t i n i t i a l B . C
42 %∗∗∗∗∗∗∗∗∗∗∗∗ s e t d i f f u s i o n m a t r i x ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
43 aa = − t h e t a (kk) ∗B ;
44 ax = B ;
45 bb = (1) +2 .∗ t h e t a (kk) ∗B ;
46 bx = (1)−2∗B ;
47 bbw = (1) −2.∗ t h e t a (kk) ∗B ;
48 cc = − t h e t a (kk) ∗B ;
49 cx = B ;
50 aaa = d i a g (aa ∗ ones (1 , n) , 1) ;
51 bbb= d i a g (bb∗ ones (1 , n +1) , 0) ;
52 bbr = d i a g (bbw∗ ones (1 , n +1) , 0) ;
53 ccc = d i a g (cc ∗ ones (1 , n) ,−1) ;
54 aax = d i a g (ax∗ ones (1 , n) , 1) ;
55 bbx= d i a g (bx∗ ones (1 , n +1) , 0) ;
56 ccx = d i a g (cx∗ ones (1 , n) ,−1) ;
57 MMl= aaa +bbb+ ccc ;
58 MMr= −aaa +bbr−ccc ;
59 MMx = aax+bbx+ccx ;
60 % s e t B . C i n d i f f u s i o n m a t r i x
61 MMl(1 , 1) =MMl(n , n +1) ;
62 MMr(1 , 1) =MMr(n , n +1) ;
63 MMx(1 , 1) =MMx(n , n +1) ;
64 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗ end of d i f f u s i o n m a t r i x ∗∗∗∗∗∗∗∗∗∗∗∗
65 % T r a c k i n g scheme from t h e p a r a m e t e r o f t h e t a
66 s w i t c h t h e t a (kk)
67 c a s e 0 % when t h e t a =0;
68 scheme= ’ e x p l i c i t E u l e r ’ ;
69 c a s e 1 % when t h e t a =1;
70 scheme= ’ i m p l i c i t E u l e r ’ ;
71 c a s e 1 / 2 % when t h e t a = 1 / 2 ;
72 scheme= ’ Crank−N i c o l s o n ’ ;
73 end % end of s w i t c h loop
74 %∗∗∗
75 %∗∗∗∗∗∗∗∗∗∗∗∗Numer ica l s o l u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
76 f o r i i = 1 : round (t f i n a l / d t (k)) % Time E v a l u a t i o n Loop

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 59

77 i f t h e t a (kk) ==1/2
78 u (: , i i +1)=MMl\ (MMr∗u (: , i i)) ;% e x e c u t e Crank−

N i c o l s o n schme
79 e l s e i f t h e t a (kk) ==1
80 u (: , i i +1)=MMl\ (u (: , i i)) ; % e x e c u t e backward

E u l e r schme
81 e l s e
82 u (: , i i +1)=MMx∗ (u (: , i i)) ; % e x e c u t e f o r w a r d

E u l e r schme
83 end
84 %−−
85 T (i i) = t b a r +(i i) ∗ d t (k) ; % Time i n t e r v a l f o r e x a c t

s o l u t i o n
86 % Exac t G a u s s i a n s o l u t i o n
87 U (: , i i +1) = s q r t (1 / (4 ∗ p i ∗D∗T (i i))) ∗ exp (− ((x−x0) . ˆ 2)

/ (4 ∗D∗T (i i))) ;
88 % S e t B . C f o r
89 u (1 , i i +1) =u (n +1 , i i +1) ;
90 U(1 , i i +1) =U(n +1 , i i +1) ;
91 end
92

93 %∗∗∗∗∗∗∗∗∗∗∗∗ E r r o r e x e c u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
94 e r r o r l 1 =0; %s e t i n i t i a l e r r o r f o r L 1 norm
95 e r r o r l 2 1 =0; %s e t i n i t i a l e r r o r f o r L 2 norm
96 d i f f e r e n c e = z e r o s (n , 1) ;
97 % Loop f o r e r r o r e x e c u t i o n
98 f o r j =1 : n−1
99 % s o l u t i o n d i f f e r e n c e i n each g r i d p o i n t be tween e x a c t

and n u e r i c a l s o l u t i o n
100 d i f f e r e n c e 1 = abs (U(j , round (t f i n a l / d t (k))) . . .
101 −u (j , round (t f i n a l / d t (k)))) ;
102 d i f f e r e n c e (j) = abs (U(j , round (t f i n a l / d t (k))) . . .
103 −u (j , round (t f i n a l / d t (k)))) ;
104 e r r o r l 1 = e r r o r l 1 +sum (d i f f e r e n c e 1 ∗dx) ;% E r r o r i n L 1 norm
105 e r r o r l 2 1 = e r r o r l 2 1 + . . .
106 s q r t (sum (d i f f e r e n c e 1 . ˆ 2 ∗ dx)) ; % E r r o r i n L 2 norm
107 e r r o r l 2 3 = max (d i f f e r e n c e) ; % E r r o r i n L i n f i n i t y norm
108 end %end of loop f o r e r r o r e x e c u t i o n
109

110 %∗∗∗∗∗∗∗∗∗∗ s a v i n g a l l e r r o r s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
111 i f kk==1 % E r r o r f o r f o r w a r d E u l e r scheme
112 pr1 (k , :) =[d t (k) TT (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 60

113 e l s e i f kk==2 % E r r o r f o r backward E u l e r scheme
114 pr2 (k , :) =[d t (k) TT (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
115 e l s e % E r r o r f o r Crank−N i c o l s o n scheme
116 pr3 (k , :) =[d t (k) TT (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
117 end
118 end % end of t h e loop f o r t r a c k i n g d i f f e r e n c e scheme
119 %∗∗
120 % P l o t t h e r e s u l t by u s i n g saved d a t a
121 % f o r example p l o t t h e r e s u l t f o r L 2 e r r o r wi th
122 % r e s p e c t t o each t ime s t e p s t e p , p l o t by t h e f o l l o w i n g

code
123 f i g u r e (1)
124 g r i d on ;
125 p l o t (p r2 (: , 1) , p r2 (: , 4) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
126 x l a b e l (’\D e l t a x ’)
127 y l a b e l (’ L 2−e r r o r ’)
128 l e g e n d (’ Backward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
129 % t o s e e i t s log−l o g s c a l e , p l o t by t h e f o l l o w i n g code
130 f i g u r e (2)
131 l o g l o g (pr2 (: , 1) , p r2 (: , 4) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
132 x l a b e l (’\D e l t a x ’)
133 y l a b e l (’ L 2−e r r o r ’)
134 l e g e n d (’ Backward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
135 end
136 c l c ;

By space step refining

1 %∗∗∗
2 % E x e c u t i n g e r r o r i n d i f f e r e n t s p a c e s t e p s
3 % f o r t h e l i n e a r d i f f u s i o n e q u a t i o n
4 % i n t h e c a s e o f | | L 1 | | , | | L 2 | | and | | L {\ i n f t y } | |
5 % u s i n g p e r i o d i c boundary c o n d i t i o n . I n i t i a l c o n d i t i o n
6 % has been t a k e n as G a u s s i a n s o l u t i o n a t t h e i n i t i a l
7 % time $ t 0 =0 .1 $.
8 %∗∗∗
9 c l c ;

10 c l e a r a l l ;
11 L = 4 0 ; % Maximum l e n t h
12 t b a r = 0 . 1 ; % I n i t i a l t ime
13 t f i n a l =5 ; % F i n a l t ime t o f i n d t h e
14 % number o f t ime s t e p s

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 61

15 D =1; % D i f f u s i o n c o n s t a n
16 t h e t a =[0 1 1 / 2] ; % P a r a m e t e r f o r t h e t h e t a scheme
17 SX =1; % I n i t i a l s p a c e s t e p
18 c f l = 0 . 5 ;
19 dx =[SX/ 2 SX/ 4 SX/ 6 SX/ 8 SX/ 1 0 SX/ 1 2 SX/ 1 4 SX/ 1 6 SX / 1 8 . . .
20 SX / 2 0] ; % Space r e f i n i n g
21 f o r k =1:8 % S i m u l a t i o n loop f o r r e f i n i n g g r i d s
22 f o r kk =1:3 % Loop f o r t h e The ta scheme
23 x =0: dx (k) : L ; % Space Lenth
24 d t (k) = c f l ∗dx (k) . . . % Time s t e p s
25 ∗dx (k) ;
26 B = D∗ d t (k) . . .
27 / (dx (k) . ˆ 2) ;
28 x0 = L / 2 ; % Space i n t e r v a l
29 % Numer o f mesh
30 n (k) = round (l e n g t h (x / dx (k))−1) ;
31 % S e t t i n g i n i t i a l m a t r i x f o r n u m e r i c a l s o l u t i o n
32 u = z e r o s (n (k) +1 , round ((t f i n a l / d t (k) +1))) ;
33 % S e t t i n g i n i t i a l m a t r i x f o r e x a c t s o l u t i o n
34 U = z e r o s (n (k) +1 , round ((t f i n a l / d t (k) +1))) ;
35 % ∗∗∗∗∗∗∗∗∗ S e t t i n g i n i t i a l c o n d i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗
36 f o r i =1 : n (k) +1
37 u (i , 1) = s q r t (1 / (4 ∗ p i ∗D∗ t b a r)) ∗ exp (− ((x (i)−x0) . ˆ 2) / (4 ∗D∗

t b a r)) ;
38 U(i , 1) = s q r t (1 / (4 ∗ p i ∗D∗ t b a r)) ∗ exp (− ((x (i)−x0) . ˆ 2) / (4 ∗D∗

t b a r)) ;
39 end
40 %∗∗
41

42 % ∗∗∗∗∗∗∗∗∗ S e t t i n g d i f f u s i o n m a t r i x ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
43 aa = − t h e t a (kk) ∗B ;
44 ax = B ;
45 bb = 1+2.∗ t h e t a (kk) ∗B ;
46 bx = 1−2∗B ;
47 bbw =1−2.∗ t h e t a (kk) ∗B ;
48 cc = − t h e t a (kk) ∗B ;
49 cx = B ;
50 aaa = d i a g (aa ∗ ones (1 , n (k)) , 1) ;
51 bbb= d i a g (bb∗ ones (1 , n (k) +1) , 0) ;
52 bbr = d i a g (bbw∗ ones (1 , n (k) +1) , 0) ;
53 ccc = d i a g (cc ∗ ones (1 , n (k)) ,−1) ;
54 aax = d i a g (ax∗ ones (1 , n (k)) , 1) ;

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 62

55 bbx= d i a g (bx∗ ones (1 , n (k) +1) , 0) ;
56 ccx = d i a g (cx∗ ones (1 , n (k)) ,−1) ;
57 MMl= aaa +bbb+ ccc ;
58 MMr= −aaa +bbr−ccc ;
59 MMx = aax+bbx+ccx ;
60 MMr(1 , 1) =MMr(n (k) , n (k) +1) ;
61 %∗∗∗
62 % T r a c k i n g schemefrom t h e v a l u e o f t h e t a
63 s w i t c h t h e t a (kk)
64 c a s e 0
65 scheme= ’ Forward E u l e r ’ ;
66 c a s e 1
67 scheme= ’ Backward E u l e r ’ ;
68 c a s e 1 / 2
69 scheme= ’ Crank−N i c o l s o n ’ ;
70 end
71

72 % ∗∗∗∗∗∗∗∗∗∗∗∗∗Numer ica l a p p r o x i m a t i o n ∗∗∗∗∗∗∗∗∗
73 f o r i i = 1 : round (t f i n a l / d t (k) +1) % Time Loop
74 i f t h e t a (kk) ==1/2 % Execu te Crank−N i c o l s o n scheme
75 u (: , i i +1)=MMl\ (MMr∗u (: , i i)) ;
76 e l s e i f t h e t a (kk) ==1 % Execu te backward E u l e r scheme
77 u (: , i i +1)=MMl\ (u (: , i i)) ;
78 e l s e
79 u (: , i i +1)=MMx∗ (u (: , i i)) ; % Execu te f o r w a r d E u l e r scheme
80 end
81 T = t b a r +(i i −1)∗ d t (k) ; % Time i n t e r v a l f o r e x a c t s o l u t i o n
82 % Exac t s o l u t i o n
83 U (: , i i +1) = s q r t (1 / (4 ∗ p i ∗D∗T)) ∗ exp (− ((x−x0) . ˆ 2) / (4 ∗D∗T)) ;
84 % S e t t i n g B . C f o r n u m e r i c a l s o l u t i o n
85 u (1 , i i +1) =u (n (k) +1 , i i +1) ;
86 end
87 %∗∗∗
88 % p l o t t h e r e s u l t f o r each r e f i n i n g s p a c e s t e p a t t h e

f i n a l t ime
89 f i g u r e (k)
90 p l o t (x ,U (: , round (t f i n a l / d t (k) +1)) , ’ r−’ , x , u (: , round (t f i n a l

/ d t (k) +1)) , ’ LineWidth ’ , 1) % R e s u l t c o m p a r i s i o n
wi th e x a c t s o l u t i o n

91 x l a b e l (’ x ’)
92 y l a b e l (’ S o l u t i o n ’)
93 l e g e n d (’ e x a c t s o l u t i o n ’ , ’ n u m e r i c a l s o l u t i o n ’)

A.2. ERROR EXECUTION FOR THE LINEAR DE EQUATION 63

94 t i t l e (s t r c a t (’\D e l t a x = ’ , num2s t r (dx (k))))
95

96 %−−−−−−−−−−−−−−−−−−−−−−−E r r o r e x e c u t i o n−−−−−−−−−−−−−−−−
97 e r r o r l 1 =0; % I n i t i a l L 1 e r r o r
98 e r r o r l 2 1 =0; % I n i t i a l L 2 e r r o r
99 d i f f e r e n c e 1 = z e r o s (n (k) , 1) ;

100 f o r j =1 : n (k)−1 % loop f o r e r r o r e x e c u t i o n
101 % D i s t a n c e between e x a c t and n u m e r i c a l s o l u i o n
102 d i f f e r e n c e 1 (j) = abs (U(j , round (t f i n a l / d t (k))) . . .
103 −u (j , round (t f i n a l / d t (k)))) ;
104 e r r o r l 1 = e r r o r l 1 +sum (abs (U(j , round (t f i n a l / d t (k))) . . .
105 −u (j , round (t f i n a l / d t (k)))) ∗dx (k)) ; % L 1 e r r o r
106 e r r o r l 2 3 =max (d i f f e r e n c e 1) ; % L {\ i n f t y } e r r o r
107 e r r o r l 2 1 = e r r o r l 2 1 + s q r t (sum (abs (U(j , . . .
108 round (t f i n a l / d t (k)))−u (j , . . .
109 round (t f i n a l / d t (k)))) . ˆ 2 ∗ dx (k))) ; % L 2 e r r o r
110

111 %∗∗∗
112 %−−−−−−−−−−−−−Save a l l e r r o r s−−−−−−−−−−−−−−−−−−−−−−−−−
113 i f kk==1
114 pr1 (k , :) =[dx (k) n (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
115 e l s e i f kk==2
116 pr2 (k , :) =[dx (k) n (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
117 e l s e
118 pr3 (k , :) =[dx (k) n (k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
119 end
120 end
121 end
122 %∗∗
123 % P l o t t h e r e s u l t by u s i n g saved d a t a
124 % f o r example p l o t t h e r e s u l t f o r L 1 e r r o r wi th
125 % r e s p e c t t o s p a c e s t e p , p l o t by t h e f o l l o w i n g code
126 f i g u r e (1)
127 g r i d on ;
128 p l o t (p r1 (: , 1) , p r1 (: , 3) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
129 x l a b e l (’\D e l t a x ’)
130 y l a b e l (’ L 1−e r r o r ’)
131 l e g e n d (’ Forward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
132 % t o s e e i t s log−l o g s c a l e , p l o t by t h e f o l l o w i n g code
133 f i g u r e (2)
134 l o g l o g (pr1 (: , 1) , p r1 (: , 3) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
135 x l a b e l (’\D e l t a x ’)

A.3. ERROR EXECUTION FOR PME 64

136 y l a b e l (’ L 1−e r r o r ’)
137 l e g e n d (’ Forward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
138

139 end
140 c l c ;

A.3 Error execution for PME

1 %∗∗∗
2 % E x e c u t i n g e r r o r i n d i f f e r e n t s p a c e s t e p s
3 % f o r t h e PME i n t h e c a s e o f | | L 1 | | , | | L 2 | | and | | L {\

i n f t y } | |
4 % u s i n g homogeneous Nuemann boundary c o n d i t i o n . I n i t i a l

c o n d i t i o n
5 % has been t a k e n as B a r e n b l a t t s o l u t i o n a t t h e i n i t i a l
6 % time $ t 0 =0 .2 $.
7 %
8 %∗∗∗
9 c l c ;

10 c l e a r a l l ;
11 L = 1 5 . 0 ; % Lenth o f Space Domain
12 t i n i t i a l = 0 . 2 ; % I n i t i a l t ime
13 t f i n a l =5 ; % F i n a l t ime t o f i n d t ime

s t e p
14 % I n p u t t o choose a d i a b a t i c e x p o n e n t s
15 gamma = i n p u t (’ v a l u e o f \gamma : ’) ;
16 miu =L / 2 ; % Space i n t e r v a l
17 SX = 0 . 5 ; % I n i t i a l s p a c e s t e p
18 % R e f i n i n g s p a c e s t e p
19 dx =[SX/ 2 SX/ 4 SX/ 6 SX/ 8 SX/ 1 0 SX/ 1 2 SX/ 1 4 SX/ 1 6 SX/ 1 8 SX

/ 2 0] ;
20 t h e t a =[1 1 / 2] ; % P a r a m e t e r t o choose

scheme
21 % Loop s t a r t f o r e x e c u t i n g s i m u l a t i o n f o r each t ime s t e p
22 f o r k =1:8
23 % Loop f o r t a k i n g t h r e e d i f f e r e n t p a r a m e t e r f o r t h e The ta

scheme
24 f o r kk =1:2
25 x =0: dx (k) : L ; % Grid p o i n t s i n s p a c e
26 N(k) = round (l e n g t h (x / dx (k))) ; % Number o f mesh
27 d t (k) = (0 . 1) ∗dx (k) ; % Time s t e p

A.3. ERROR EXECUTION FOR PME 65

28 t S t e p s (k) = round (t f i n a l / d t (k)) ; % F i n a l t ime s t e p
29 % s e t up i n i t i a l m t r i x f o r t h e n u m e r i c a l s o l u t i o n
30 rho = z e r o s (N(k) , t S t e p s (k)) ;
31 % s e t up i n i t i a l m a t r i x f o r t h e e x a c t s o l u t i o n
32 r h o e x = z e r o s (N(k) , t S t e p s (k)) ;
33 %s e t up i n i t i a l c o n d i t i o n
34 f o r i =1 :N(k)
35 i f abs (x (i)−miu) <= t i n i t i a l . ˆ (1 / (gamma+1)) ∗ (s q r t (2∗

gamma ∗ 1 ∗ . . .
36 (gamma+1) / (gamma−1))) ;
37 rho (i , 1) =max (t i n i t i a l . ˆ (− 1 / (gamma+1)) ∗ (1− ((gamma−1) / (2 ∗

gamma ∗ . . .
38 (gamma+1))) ∗ (x (i)−miu) . ˆ 2 / t i n i t i a l . ˆ (2 / (gamma+1))) . . .
39 . ˆ (1 / (gamma−1)) , 0) ;
40 r h o e x (i , 1) = rho (i , 1) ;
41 end
42 end
43 % f i n i t e d i f f e r e n c e h e t a scheme
44 rx = d t (k) / (dx (k) ∗dx (k)) ;
45 p = t h e t a (kk) ∗ rx ;
46 d = z e r o s (N(k) , 1) ;
47 J = z e r o s (N(k) , 3) ;
48 w = z e r o s (N(k) , 1) ;
49 %∗∗∗∗∗∗∗∗ Exac t s o l u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50 f o r n =1: t S t e p s (k)−1 % Time loop
51 t = t i n i t i a l +(n) ∗ d t (k) ;
52 f o r i =1 :N(k) % S p a t i a l l oop
53 i f abs (x (i)−miu) <= t . ˆ (1 / (gamma+1)) ∗ (s q r t (2∗gamma ∗ 1 ∗ . . .
54 (gamma+1) / (gamma−1))) ;
55 r h o e x (i , n +1)=max (t . ˆ (− 1 / (gamma+1)) ∗ (1− ((gamma−1) . . .
56 / (2 ∗ gamma ∗ . . .
57 (gamma+1))) ∗ (x (i)−miu) . ˆ 2 / (t) . ˆ (2 / (gamma+1))) . . .
58 ˆ (1 / (gamma−1)) , 0) ;
59 end
60 end
61 %∗∗∗
62 % T r a c k i n g scheme
63 s w i t c h t h e t a (kk)
64 c a s e 0 % When t h e t a =0;
65 scheme= ’ Forward E u l e r scheme ’ ;
66 c a s e 1 % When t h e t a =1;
67 scheme= ’ Backward E u l e r scheme ’ ;

A.3. ERROR EXECUTION FOR PME 66

68 c a s e 1 / 2 % When t h e t a = 1 / 2 ;
69 scheme= ’ Crank−N i c o l s o n scheme ’ ;
70 end
71 % a t x = 0 t a k e a d v a n t a g e o f symmetry
72 d (1) = 2 . 0∗ rx ∗ (−rho (1 , n) ˆ gamma + rho (2 , n) ˆ gamma) ;
73 % S e t up i n i t i a l J a c o b i a n m a t r i x
74 J (1 , 1) = 1 . 0 ;
75 J (1 , 2) = 1 . 0 + 2∗gamma ∗ p ∗ rho (1 , n) ˆ (gamma−1) ;
76 J (1 , 3) = −gamma ∗ p ∗ rho (2 , n) ˆ (gamma−1) ;
77

78 f o r i =2 :N(k)−1 % s p a t i a l l oop
79 d (i) = rx ∗ (rho (i −1,n) ˆ gamma − 2 . 0∗ rho (i , n) ˆ gamma + . . .
80 rho (i +1 , n) ˆ gamma) ;
81

82 % S e t up J a c o b i a n m a t r i x
83 J (i , 1) = −p ∗gamma∗ rho (i −1,n) ˆ (gamma−1) ;
84 J (i , 2) = 1 . 0 + 2∗gamma ∗ p ∗ rho (i , n) ˆ (gamma−1) ;
85 J (i , 3) = −p ∗gamma∗ rho (i +1 , n) ˆ (gamma−1) ;
86 end
87 % a t x = L t a k e a d v a n t a g e o f symmetry
88 d (N(k)) = 2 . 0∗ rx ∗(− rho (N(k) , n) ˆ gamma + rho (N(k)−1,n) ˆ

gamma) ;
89 % S e t up end boundary c o n d i t i o n o f J a c o b i a n m a t r i x
90 J (N(k) , 1) = −gamma ∗ p ∗ rho (N(k)−1,n) ˆ (gamma−1) ;
91 J (N(k) , 2) = 1 . 0 + 2∗gamma ∗ p ∗ rho (N(k) , n) ˆ (gamma−1) ;
92 J (N(k) , 3) = 1 . 0 ;
93 % s o l v e u s i n g Newton−Rapshon
94 w = Newton so lve (J , d) ;
95 % u p d a t e f r e e s u r f a c e
96 rho (: , n +1) = rho (: , n) + w;
97 end
98 %−−−−−−−−−−−−−−−s o l u t i o n s t o r a g e−−−−−−−−−−−−−−−−−−−−−
99 i f kk==1

100 rho im = rho ;
101 e l s e
102 r h o c r = rho ;
103 end
104

105 %−−−−−−−−−−E r r o r e x e c u t i o n−−−−−−−−−−−−−−−−−−−−−−−−
106 e r r o r l 1 =0; % I n i t i a l L 1 e r r o r
107 e r r o r l 2 1 =0; % I n i t i a l L 2 e r r o r
108 d i f f e r e n c e 1 = z e r o s (N(k) , 1) ;

A.3. ERROR EXECUTION FOR PME 67

109 f o r j =1 :N(k) % S p a t i a l l oop f o r e r r o r
110 d i f f e r e n c e 1 (j) = abs (rho (j , t S t e p s (k)) . . .
111 −r h o e x (j , t S t e p s (k))) ;
112 d i f f e r e n c e = abs (rho (j , t S t e p s (k)) . . .
113 −r h o e x (j , t S t e p s (k))) ;
114 % L 1 e r r o r
115 e r r o r l 1 = e r r o r l 1 +sum (d i f f e r e n c e ∗dx (k)) ;
116 % L 2 e r r o r
117 e r r o r l 2 1 = e r r o r l 2 1 + s q r t (d i f f e r e n c e . ˆ 2 ∗ dx (k)) ;
118 % L i n f i n i t y e r r o r
119 e r r o r l 2 3 = max (d i f f e r e n c e 1) ;
120 end
121 %−−−−−−−−−−−−−Sav ing e r r o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 i f kk==1
123 pr1 (k , :) =[dx (k) N(k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
124 e l s e
125 pr3 (k , :) =[dx (k) N(k) e r r o r l 1 e r r o r l 2 1 e r r o r l 2 3] ;
126 end
127 end
128 %−−
129 % P l o t t h e r e s u l t by u s i n g saved d a t a
130 % f o r example p l o t t h e r e s u l t f o r L 1 e r r o r wi th
131 % r e s p e c t t o s p a c e s t e p , p l o t by t h e f o l l o w i n g code
132 f i g u r e (1)
133 g r i d on ;
134 p l o t (p r1 (: , 1) , p r1 (: , 3) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
135 x l a b e l (’\D e l t a x ’)
136 y l a b e l (’ L 1−e r r o r ’)
137 l e g e n d (’ Forward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
138 % t o s e e i t s log−l o g s c a l e , p l o t by t h e f o l l o w i n g code
139 f i g u r e (2)
140 l o g l o g (pr1 (: , 1) , p r1 (: , 3) , ’−∗ ’ , ’ Marke rS ize ’ , 1 0) ;
141 x l a b e l (’\D e l t a x ’)
142 y l a b e l (’ L 1−e r r o r ’)
143 l e g e n d (’ Forward E u l e r ’ , ’ L o c a t i o n ’ , ’ b e s t ’)
144 end
145 end
146 c l c ;

Bibliography

[1] M. Twarogowska. Numerical approximation and analysis of mathematical mod-
els arising in cells movement. PhD thesis, University of L’Aquila, 2010/11

[2] G. I. Barenblatt. Scaling, self-similarity and intermediate asymptotics.
Cambridge texts in applied mathematics, vol. 14. Cambridge University Press,
1996.

[3] M. E. Gurtin, R. C. MacCainy, and E. A. Socolovsky. A coordinate transfor-
mation for the porous media equation that renders the free-boundary stationary.
Mathematics Research Center, 1983.

[4] B. F. Knerr. The porous medium equation in one dimension. Transactions of The
American Mathmatical Society, 234(2):381-415, 1977.

[5] W. L. Kath and D. S. Cohen. Waiting-time behavior in a nonlinear diffusion equa-
tion. Stud. Appl. Math., 67(2):79-105, 1982.

[6] J. L. Vázquez. The Porous Medium Equation Mathematical Theory. CLAREN-
DON PRESS . OXFORD :45-65, 2007.

[7] R. J. LeVeque. Finite Difference Methods for Differential Equations. Lecture
notes for the course of A.Math 585-586, University of Washington, Version of
September, 2005.

[8] M. D. Francesco. Mathematical models in life sciences. Lecture in Mathematics,
University of L’Aquila, Chapter 8:88-99, 2010.

[9] W. Hundsdorfer and J. Verwer. Numerical solution of time-dependent advection-
diffusion-reaction equations, volume 33 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 2003.

68

BIBLIOGRAPHY 69

[10] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential
Equations. Springer Series in Computational Mathematics, 23:17-25 and 405-
435, 1994.

[11] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equa-
tions. Cambridge University Press, New York, 2nd edition:86-261, 2005.

[12] Q. Zhang and Z. Wu. Numerical Simulation for Porous Medium Equation by
Local Discontinuous Galerkin Finite Element Method. Springer J.Sci. Comput.
38: 127-148, 2009.

[13] F. Huang, R. Pan, and Z. Wang. Convergence to the Barenblatt solution for com-
pressible euler equations with damping. Archive for Rational Mechanics and
Analysis, 200: 665-689, 2011. 10.1007/s 00205-010-0355-1.

[14] O. A. Oleinik, A. S. Kalasinkov, and Yu-Lin C zou. The Cauchy problem and
boundary problems for equations of the type of non-stationary filtration. Izv.
Akad. Nauk SSSR. Ser. Mat., 22:667-704, 1958.

[15] L. C. Evans. Partial differential equations. American Mathematical Society, Prov-
idence, RI, 1998.

[16] R. Cavazzoni. Diffusive approximations for a class of nonlinear parabolic equa-
tions. NoDEA Nonlinear Differential Equations Appl., 12(3):275-293, 2005.

[17] R. Eymard, T. Gallouet, and R. Herbin. Finite volume methods. In Handbook of
numerical analysis, Vol. VII. Handb. Numer. Anal., VII, pages 713-1020. North-
Holland, Amsterdam, 2000.

[18] E. Maitre. Numerical analysis of nonlinear elliptic-parabolic equations. M2AN
Math. Model. Numer. Anal., 36(1):143-153, 2002.

[19] J. W. Thomas. Numerical partial differential equations, volume 33 of Texts in
Applied Mathematics. Springer-Verlag, New York, 1999.

[20] J. W. Thomas. Numerical partial differential equations: finite difference methods,
volume 22 of Texts in Applied Mathematics. Springer-Verlag, New York, 1995.

[21] J. C. Strikwerda. Finite difference schemes and partial differential equations.
Wadsworth Brooks/Cole Advanced Books Software, Pacific Grove, CA, 1989.

[22] M. Shashkov. Conservative finite-difference methods on general grids. Symbolic
and Numeric Computation Series. CRC

[23] H.-G. Roos, M. Stynes, and L. Tobiska. Numerical methods for singularly per-
turbed differential equations. Springer Series in Computational Mathematics.
Springer-Verlag, volume 24, Berlin, 1996.

BIBLIOGRAPHY 70

[24] K. W. Morton. Numerical solution of convection-diffusion problems. Applied
Mathematics and Mathematical Computation. Chapman Hall, volume 12 Lon-
don, 1996.

[25] J. L. Graveleau and P. Jamet. A finite difference approach to some degenerate
nonlinear parabolic equations. SIAM J. Appl. Math. 20, 199-223, 1971.

[26] E. D. Benedetto and D. Hoff. An interface tracking algorithm for the porous
medium equation. Transactions of The American Mathmatical Society, 284, 463-
500, 1984.

