Design Techniques for
\pproximation Algorithms

TN THE preceding chapter we observed that many relevant optimization

problems are Np-hard, and that it is unlikely that we will ever be able
to find efficient (i.e., polynomial-time) algorithms for their solution. In
such cases it is worth looking for algorithms that always return a feasible
solution whose measure is not too far from the optimum.

According to the general formal framework set up in Chap. 1, given an
input instance x of an optimization problem, we say that a feasible solu-
tion y € SOL(x) is an approximate solution of the given problem and that
any algorithm that always returns a feasible solution is an approximation
algorithm.

Observe that, in most cases, it is not difficult to design a polynomial-time
approximation algorithm that returns a (possibly) trivial feasible solution
(e.g., in the case of MINIMUM GRAPH COLORING it is sufficient to as-
sign each node a different color). However, we are mainly interested in
approximate solutions that satisfy a specific quality criterion. The quality
of an approximate solution can be defined in terms of the “distance” of its
measure from the optimum, which we would like to be as small as possi-
ble. A precise characterization of how to define such distance is deferred to
Chap. 3; in this chapter we will use as quality measure the performance ra-
tio, that is, the ratio between the value of the approximate solution returned
by the algorithm and the optimum.

In the following we present fundamental techniques for the design of
approximation algorithms. In the case of problems in PO, these techniques
are commonly used to design polynomial-time algorithms that always re-
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turn optimal solutions: in this chapter, instead, we will use them to design
efficient algorithms for the approximate solution of NP-hard optimization
problems.

Each section of the chapter considers a specific algorithmic strategy that
has been fruitfully used in the design of approximation algorithms. As
we will see, each strategy can be applied to a variety of problems. For
some problems, it is possible to show that the measure of the approximate
solution is, in all cases, close enough to the optimum. For other problems,
we will see that, for some instances, the measure of the obtained solution
is arbitrarily far from the optimum (in such cases, a positive result will be
proved for some special classes of the input instances).

We will also see that each technique allows us in many cases to define
an algorithmic scheme that can be applied to obtain several algorithms for
the same problem with possibly different approximation properties.

Finally, at the end of the chapter, we will briefly describe several possible
approaches to the analysis of algorithms yielding approximate solutions
that will be thoroughly presented in the remainder of the book.

2.1 The greedy method

FEVHE FIRST algorithmic strategy that we consider can be applied to max-

imization problems such that an instance of the problem specifies a set
of items and the goal is to determine a subset of these items that satisfies
the problem constraints and maximizes the measure function. In order to
apply the method it is necessary that the set of feasible solutions satisfies
some monotonicity property: namely, if a set of items S is a feasible solu-
tion then any subset S’ of S is also a feasible solution (this implies that the
empty set is a feasible solution).

The greedy method initially sorts the items according to some criterion
and then incrementally extends the solution starting from the empty set.
Namely, it considers items one at a time, always maintaining a feasible
solution: when a new item is considered, it is added to the current solution
if the resulting solution is feasible; otherwise, the item is eliminated from
any further consideration.

The running time required by the greedy algorithm is O(nlogn) for sort-
ing the n items plus the cost for n feasibility tests. Clearly this latter cost
depends on the considered problem.

Moreover, the quality of the approximate solution obtained depends on
the initial ordering in which objects are considered; clearly, for each in-
stance of the problem there is always an optimal ordering (i.e., an ordering
that allows the greedy algorithm to find an optimal solution) but we do not
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Problem?.l: Maximum Knapsack

INSTANCE: Finite set X of items, for each x; € X, value p; € Z7T and size
a; € Z*, positive integer b.

SOLUTION: A setofitems ¥ C X suchthat¥, cya; <b.
MEASURE: Total value of the chosen items, i.€., .. cy Pi-

expect to be able to find such an ordering in polynomial time for all in-
stances of a computationally hard problem. However, as we will see in this
section, in some cases we can find simple orderings that allow the greedy
method to find good approximate solutions.

The greedy technique also applies to minimization problems. For in-
stance, the well-known Kruskal’s algorithm for the minimum spanning
tree problem is based on sorting edges according to their weights and then
greedily selecting edges until a spanning tree is obtained. In Sect. 2.1.3 we
will see how the greedy approach can be used to design an approximation
algorithm for MINIMUM TRAVELING SALESPERSON.

2.1.1 Greedy algorithm for the knapsack problem

MAXIMUM KNAPSACK (see Problem 2.1) models the problem of finding
the optimal set of items to be put in a knapsack of limited capacity: to
each item we associate a profit p; (that represents the advantage of taking
it) and an occupancy a;. In general, we cannot take all items because the
total occupancy of the chosen items cannot exceed the knapsack capacity
b (in the sequel, without loss of generality, we assume that a; < b, for
i=1,2,...,n).

Program 2.1 is a greedy algorithm for the MAXIMUM KNAPSACK
problem that considers items in non- increasing order with respect to the
profit/occupancy ratio (i.e., p; /a;). Since, after the items have been sorted,
the complexity of the algorithm is linear in their number, the total running
time is O(nlogn). As far as the performance ratio is concerned, let us
denote by mg,(x) the value of the solution found by the algorithm when
applied to instance x. The following example shows that mg (x) can be
arbitrarily far from the optimal value.

Let us consider the following instance x of MAXIMUM KNAPSACK defined over
nitems: pi=a;=1fori=1,...,n—1,pp= b—1,and a, = b = kn where k is an
arbitrarily large number. In this case, m* (x) = b — 1 while the greedy algorithm
finds a solution whose value is mg, (x) = n— 1: hence, m*(x)/mg(x) > k.

Section 2.1

THE GREEDY
METHOD

< Example 2.1
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Chapter 2

Program 2.1: Greedy Knapsack
DESIGN

TECHNIQUES FOR | input Set X of n items, for each x; € X, values p;, a;, positive integer b;
APPROXIMATION output Subset ¥ C X such that ExiEY a; < b;

ALGORITHMS | begin , , _ ,
Sort X in non-increasing order with respect to the ratio p;/a;;

(* Let (x1,x2,...,%,) be the sorted sequence *)
Y = 0
fori:=1tondo
if b > a; then
begin
Y:=YU{x}
b:=b—aq;
end
return Y
end.

An analogous result can be easily shown if the items are sorted in non-
decreasing order with respect to their profit or in non-increasing order with respect
to their occupancy.

A closer look at the previous example shows that the poor behavior of
Program 2.1 is due to the fact that the algorithm does not include the ele-
ment with highest profit in the solution while the optimal solution contains
only this element. This suggests a simple modification of the greedy pro-
cedure that has a better performance, as shown in the following theorem.

Theorem 2.1 » Given an instance x of the MAXIMUM KNAPSACK problem, let my(x) =
max ( Piax, MGr(x)), where pyay is the maximum profit of an item in x. Then
mpy (x) satisfies the following inequality:

m*(x)/mg(x) < 2.

PROOF  Let j be the index of the first item not inserted in the knapsack by the
greedy algorithm with input x. The profit achieved by the algorithm at that
point is

j-1
pj= Y, pi < mg(x)

i=1

and the overall occupancy is

Jj—1
dj:-‘ Z(l,’ S b.
i=1

42
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We first show that any optimal solution of the given instance must satisfy
the following inequality:

m*(x) < pj+p;-

Since items are ordered in non-increasing order with respect to the ra-
tio p;/a;, it follows that the exchange of any subset of the chosen items
X1,%2, . --,Xj—1 with any subset of the unchosen items xj, ..., x;,, that does
not increase the sum of the occupancies a;, does not increase the overall
profit. Therefore, the optimal value is bounded by p; plus the maximum
profit obtainable by filling the remaining available space of the knapsack
(that is, b— d,) with items whose profit/weight ratio is at most p;/a;. Since
aj+aj > b, we obtain

m*(x) <p;j+(b—aj)pj/a; < pj+pj.
To complete the proof we consider two possible cases. If p; < p; then
m*(x) < 2p; < 2mgr(x) < 2my(x).
On the other hand, if p; > p; then pya > pj; In this case we have that
m*(x) < i+ Dj < By + Prax < 2Pmax < 2mp (%),
Thus, in both cases the theorem follows.

As a consequence of the above theorem a simple modification of Pro-
gram 2.1 allows us to obtain a provably better algorithm. The modification
consists of adding one more step, in which the solution is chosen to be ei-
ther the greedy solution or the item with largest profit. In Sect. 2.5 we will
see that much better approximation algorithms can be obtained by applying
a different approach.

2.1.2 Greedy algorithm for the independent set problem

In this section we consider the behavior of the greedy approach applied
to MAXIMUM INDEPENDENT SET (see Problem 2.2). If we use a greedy
algorithm for this problem, then it is reasonable to assume that vertices
with smaller degree should be preferred to vertices of higher degree. In
fact, whenever we add a vertex to the current solution, we also have to
eliminate all its neighbors from any further consideration. Hence, first
choosing vertices with smaller degrees might allow us to obtain a largest
independent set: Program 2.2 is based on this criterion.

Section 2.1

THE GREEDY
METHOD

QED

43
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Example 2.2 &

P'rkoblem 2.2: ~'Maxi‘mum‘|ndependentkSét
INSTANCE: Graph G = (V,E).

SOLUTION: An independent set on G, i.e., a subset V' C V such that, for
any (u,v) € E eitheru g V' orvg V',

MEASURE: Cardinality of the independent set, i.e., |V'|.

Program 2.2: Greedy Independent Set

input Graph G = (V, E);
output Independent set V' in G;
begin
V=0,
U:.=V;
while U is not empty do
begin
x := vertex of minimum degree in the graph induced by U,
Vii=V'U{x}
Eliminate x and all its neighbors from U
end;
return V'
end.

It is possible to see that there exists a sequence of graphs with increas-
ing number of vertices for which this algorithm achieves solutions whose
measures are arbitrarily far from the optimal values.

Let us consider the graph of Fig. 2.1 where Kj is a clique of four nodes and Iy is
an independent set of four nodes. In this case, the rightmost node is the first to be
chosen by Program 2.2 and the resulting solution contains this node and exactly
one node of Ky. The optimal solution, instead, contains the four nodes of /4. This
example can be easily generalized by substituting /s and K4 with [, and K, for
any k> 2.

As a consequence of the above example, in the case of MAXIMUM IN-
DEPENDENT SET the behavior of the greedy approach is much worse than
in the case of MAXIMUM KNAPSACK. This limitation is not due to the
used method: in fact, it can be proved that, unless P = NP, no polynomial-
time algorithm exists that finds a good approximate solution for all graphs.
As we will see in Chap. 6, this is due to the intrinsic difficulty of the prob-
lem.

We now show that the performance of the greedy approach can be
bounded by a function of the “density” of the graph.
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Section 2.1

THE GREEDY
METHOD

Figure 2.1
A bad example for
Program 2.2

Given a graph G with n vertices and m edges, let & = m/n be the density < Theorem 2.2
of G. The value mg,(G) of the solution found by Program 2.2 is at least
n/(26+1).

Let x; be the vertex chosen at the i-th iteration of the while loop of Pro- ~ PROOF
gram 2.2 and let d; be the degree of x;. The algorithm then deletes x; and all
its d; neighbors from G. Hence, the number of eliminated edges is at least
d;(d;+ 1) /2 (since x; is the minimum degree vertex in the graph currently
induced by U).
Summing up over all iterations, we have that

mar(G) 3¢ 1.
s Mgm:m (2.1)

T

Since the algorithm stops when all vertices are eliminated, the following
equality holds:

mer (G

)
> (di+1)=n. (2.2)
i=1
45
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QED

Theorem 2.3 »

PROOF

By adding Eq. (2.2) and twice Eq. (2.1) we obtain that

mgr(G)
> (di+1)* <n(284+1).
i=1

The left-hand side of the above inequality is minimized when d;+ 1 =
n/mg,(G), for all i (this is an application of the Cauchy-Schwarz inequal-
ity; see Appendix A). It follows that

nGr(G)
n(28+1) > Z (di+1)?

mG,»(G) .
Hence, mg,(G) > n/(28+ 1) and the theorem is proved.

The following theorem provides a relationship between the measure of
the solution found by the greedy algorithm and the optimal measure.

Given a graph G with n vertices and m edges, let d = m/n. Program 2.2
finds an independent set of value mg,(G) such that

m*(G)/mg,(G) < (8+1).

The proof i1s similar to that of the preceding theorem: in this case, we
additionally count in Eq. (2.1) the number of vertices that belong to some
optimal solution.

Namely, fix a maximum independent set V* and let k; be the number of
vertices in V* that are among the d; + 1 vertices deleted in the i-th iteration
of the while loop of Program 2.2.

Clearly, we have that

me,(G)

Y ki=|V*|=m*(G). (2.3)
i=1

Since the greedy algorithm selects the vertex with minimum degree, the
sum of the degree of the deleted vertices is at least d;(d; +1). Since an
edge cannot have both its endpoints in V*, it follows that the number of
deleted edges is at least (d;(d;+ 1) +k;(k; — 1)) /2.

Hence we can improve Eq. (2.1) to obtain

mcf (di+ 1) + ki (k; — )<8n (2.4)
: 2 ) | |

Adding Egs. (2.2), (2.3) and twice (2.4), we obtain the following bound:
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mer(G METHOD

)
((di+1)2+K) < n(28+1) +m*(G).
i=1

By applying the Cauchy-Schwarz inequality, it is possible to show that
the left-hand side of the above inequality is minimized when d; +1 =
n/mg,(G) and k; = m*(G) /mgr(G), for i=1,2,.. .,mg,(G). Hence,

mgr(G) ) * 2
+m*(G)

254 1) +m*(G) > g+ 1?2 +12) >

n( ) +m*(G) > i;, ((di+1) )2 ——re)

that 1s,

(n/m*(G)) + (m"(G) /n)

mar(G) 2 m(G) o5 L T (e (G) /)

To complete the proof it is sufficient to observe that the fractional term on
the right-hand side of the above inequality is minimized when m* (G) =n.
By substituting this term, the theorem follows. QED

21.3 Greedy algorithm for the salesperson problem

We now show how the idea of a “greedy” selection can be applied to MIN-
IMUM TRAVELING SALESPERSON (see Problem 1.8). Recall that an in-
stance of this problem can be represented by a complete graph G = (V,E)
with positive weights on the edges. Feasible solutions of the problem are
subsets I of edges such that the graph (V, ) is a cycle.

The idea of the greedy algorithm is first to find a Hamiltonian path and
then to form a tour by adding the edge that connects the first and the last
vertex of the path.

The Hamiltonian path is found incrementally: at the beginning, the algo-
rithm arbitrarily chooses the first city of the path, say ¢;, , and then executes
a loop (n— 1) times. In the first iteration the algorithm selects the vertex
that follows c;, by choosing vertex ci, such that edge (c;,,c;,) has min- | |goto the nearest city
imum weight among all edges with an endpoint in ¢;;; edge (ciy,Cip) 18 not yet visited
then added to the path. In the r-th iteration of the loop, after a path through
vertices cj,,Ciy, - - -, Ci, Nas been obtained, the algorithm chooses vertex ¢;
that follows ¢;, in the path as the vertex such that (c;,,c;,,,) is the minimum
weight edge from ¢;, to a vertex that is not in the path; edge (ci,,Ci,,,) 18

added to the path. After (n— 1) iterations a Hamiltonian path ¢;,,Ciyy- -, Ci, S
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ALGORITHMS

Lemma 2.4 &

PROOF

is obtained and the last step of the algorithm completes the tour by adding
edge (c;,,ci,). Since the underlying graph is complete, the algorithm is
guaranteed to find a feasible solution.

The “greediness” of this algorithm lies in the fact that during the con-
struction of the Hamiltonian path the algorithm selects the edge that min-
imizes the cost of extending the current path with a new vertex. For this
reason, we call the algorithm Nearest Neighbor.

No precise estimation is known on the quality of the solutions re-
turned by Nearest Neighbor in the general case (see Exercise 2.3 for a
constant lower bound). However, if we restrict the set of problem in-
stances, then it is possible to obtain bounds on the quality of the solu-
tion found by the algorithm. We do so by considering instances of MIN-
IMUM TRAVELING SALESPERSON in which the distance matrix is sym-
metric (i.e., D(i, j) = D(j,i), for any pair of cities ¢; and c;) and the tri-
thequality is satisfied (i.e., for all triples of cities ¢;, ¢;, and cy,
/) < D(i,k)+D(k, j)). In the following, we will denote this problem
as’ MINIMUM METRIC TRAVELING SALESPERSON.

In order to provide a bound on the performance of Nearest Neighbor we
need the following technical lemma.

For any instance x of MINIMUM METRIC TRAVELING SALESPERSON
with n cities, assume that there exists a mapping | : {cy,...,c,} — Q such
that:

1. for any two distinct cities ¢; and cj, D(i, j) > min(I(c;),1(c;));

2. for any city ¢;, I(c;) < sm*(x).

Then such a function satisfies the following inequality:
Zl (¢i) § ([logn] + 1)m*(x).

Without loss of generality, we assume that cities are sorted in non-
increasing order with respect to their /-values. Let us first prove that, for
all k with 1 <k <n,

mln 2k n

02 ¥ 2.5)

i=k+1

Let I* be an optimal tour of length m* (x) and consider the subset of cities
Cr={ci|1 <i<min(2k,n)}. Let [, be a tour (of length my) that traverses
the cities in Cy in the same order as /*. For each pair ¢, and ¢, of adjacent
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Section 2.1

cities in I, either ¢, and ¢; were adjacent also in I* or, by the triangle

inequality, there exists a path in I* starting from ¢, and ending at ¢, of THE GREEDY
length at least D(r,s). As a consequence, m° (x) > my, for each k. METHOD
Since D(i, j) > min(l(c;),I(c;)) for all pairs of cities ¢; and ¢}, by sum-
ming over all edges (c;,¢;) that belong to I we obtain
my > >, min(l(c),l(c))) = Y oul(ci),
(Cg,Cj)G[k ci€Cy
where o; is the number of cities ¢; € C; adjacent to ¢; in I and such that
i > j (hence, [(c;) <I(c;)). Clearly, 0; <2 and Y .cicc, % equals the number
of cities in ;.. Since the number of cities in /i is at most 2k, we may derive
a lower bound on the quantity ¥..cc, ®l(c;) by assuming that o; = 0 for
the k cities cy,...,c, with largest values /(c;) and that o; = 2 for all the
other |Cy| — k cities. Hence, we obtain Eq. (2.5) since
min(2k,n)
m*(x) >mp > Y, oul(ci) > 2 DIICHE
ci€Cy i=k+1
Summing all Egs. (2.5) with k = 2/ for j=1,2,...,[logn] — 1, we obtain
that
[logn]—1 [logn]—1 min(2/%!,n)
Z m*(x) > 2 2 Z I{ci),
j=0 j=0 i=2/+1
which results in .
Mogn]m*(x) > 2 I{ci).
=2
Since, by hypothesis, m* (x) > 2I(c 1), the lemma is then proved. QED

For any instance x of MINIMUM METRIC TRAVELING SALESPERSON < Theorem 2.5

with n cities, let myy(x) be the length of the tour returned by Nearest
Neighbor with input x. Then myn (x) satisfies the following inequality:

myy (x)/m*(x) < % ([logn]+1). /Log base 2

Let Ci,,Chyy---1Ck, be a tour resulting from the application of Nearest ~ PROOF
Neighbor to x. The proof consists in showing that, if we associate to
each city ¢;, (r = 1,...,n) the value [(c;,) corresponding to the length
of edge (ck,,ck,,,) (f r < n) or of edge (ck,,cr,) (f r = n), then we
obtain a mapping [ that satisfies the hypothesis of Lemma 2.4. Since
n

" I(ck,) = myn(x), the theorem follows immediately by applying the

=

lemma.

49
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Program 2.3: Partitioning Sequential Scheme
DESIGN ‘

TECHNIQUES FOR | input Set ] of items;

APPROXIMATION | output Partition P of I;

ALGORITHMs | begin _ o
Sort I (according to some criterion);

(* Let (x1,x2 ..., Xx,) be the obtained sequence *)
P:={{x}};
fori:=2tondo

if x; can added to a set p in P then

add x; to p
else
P = PU{{xi}};
return P

end.

The first hypothesis of Lemma 2.4 can be proved as follows. Let ¢,
and cy, be any pair of cities: if r < s (that is, ¢, has been inserted in the
tour before ¢y, ), then I(cy,) < D(ky, k), since ci, was a possible choice as
city cy,,,. Analogously, if s < r, then I(cx,) < D(k,ks); hence D(k,,ks) >
min(/(ck,),!(ck,)) and the first hypothesis of Lemma 2.4 holds.

To show the second hypothesis, assume that [(cy, ) = D(ky, ks). Observe
that any optimal tour I* is composed of two disjoint paths connecting ¢y,
and cy,: by the triangle inequality, each such path must have length at least
D(k,,ks). The inequality m*(x) > 2D(k,,ks) = 2{(cy,) hence follows and

QED the proof of the theorem is completed.

Read now the beginning
of Section 2.1

2.2 Sequential algorithms for partitioning problems

TN THIS section we consider partitioning problems, that is, problems in
4 which feasible solutions are suitably defined partitions (not necessarily
bipartitions) of a set of items I = {x,x2 ..., x,} defined in the input in-
stance and that satisfy the constraints specified by the particular problem.

A sequential algorithm for a partitioning problem initially sorts the items
according to a given criterion and then builds the output partition P se-
quentially. The general scheme of such sequential procedure is given in
Program 2.3.

Notice that, in the above scheme, when the algorithm considers item x;
it is not allowed to modify the partition of items x;, for j < i. Therefore, if
two objects are assigned to the same set of the partition then they will be
in the same set of the final partition as well.
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Section 2.2

Problem 2.3: Minimum Scheduling on |dentical Machines

: : : SEQUENTIAL
INSTANCE: Set of jobs T, number p of machines, length [; for executing Q
. ALGORITHMS FOR
job Ij € T.

PARTITIONING

SOLUTION: A p-machine schedule for T, i.e., a function f : T = [1..p]. | PROBLEMS
MEASURE: The schedule’s makespan, 1.e.,

max Z l;.

E[l-PlyeT:f(r))=i

To design a sequential algorithm for a particular problem, we need to
specify the criteria used for (a) finding the order in which items are pro-
cessed, and (b) including items in the partition. For each particular prob-
lem there are several possible criteria that can be used to sort the items. As
in the case of the greedy approach, there exists at least one ordering that
will allow us to obtain an optimal solution; however, we do not expect to
find such an ordering in polynomial time for Np-hard combinatorial prob-
lems and we look for orderings of the items that allow us to find good
approximate solutions.

2.2.1 Scheduling jobs on identical machines

In this section we apply the sequential algorithm scheme to the problem
of scheduling a set of jobs on p identical machines with the goal of mini-
mizing the time necessary to complete the execution of the jobs (see Prob-
lem 2.3). This problem is Np-hard even in the case of p = 2 (see Biblio-
graphical notes).

Assume that we are given the order in which jobs are processed. In order
to obtain a scheduling algorithm from the sequential scheme it is necessary
to determine a rule for assigning jobs to machines. The obvious rule is to
assign each job to the machine with smallest load. Namely, suppose that
the first j — 1 jobs have already been assigned and let A;(j — 1) be the finish
time necessary for the execution of the subset of jobs assigned to the i-th
machine (i.e., A;(j — 1) = X1 <k<j-1:f(s)=i Ik)- The j-th jobis then assigned
to the machine with minimum finish time (ties are arbitrarily broken). In
this way the algorithm, called List Scheduling, minimizes the increase in
the finish time required for the execution of a new job.

Given an instance x of MINIMUM SCHEDULING ON IDENTICAL MaA- < Theorem 2.6

CHINES with p machines, for any order of the jobs, the List Scheduling _—
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ALGORITHMS

PROOF

QED

Example 2.3 »

algorithm finds an approximate solution of measure mys(x) such that

mys(x)/m*(x) < (2— -;—)

Let W be the sum of the processing time of all jobs, 1.e., W = ZLT____II ly; the
value of the optimal solution clearly satisfies the bound m*(x) > W/p.

To bound the value of the approximate solution found by the algorithm
assume that the A-th machine is the one with the highest finish time (i.e.,
An(|T]) = mrs(x)) and let j be the index of the last job assigned to this
machine. Since job ¢; was assigned to the least loaded machine, then the
finish time of any other machine is at least A,(|T|) — {;. This implies that
W > p(An(|T|) — ;) +; and that the following bound on m;s(x) holds:

mis(x) = An(|T)) < -Wl;+i’f~§ll—

Since m*(x) > W/p and m*(x) > I; we have that

mys(x) < %/“1— —(—}-7:[;}—)—& <m*(x)+ g-;im* (x) = (2—— 1) m* (x)

and the theorem follows.

The following example shows that no better bound can be proved to hold
for any ordering of the jobs: indeed, it shows that, for any number p of
machines, there exists an instance of MINIMUM SCHEDULING ON IDEN-
TICAL MACHINES on p machines with p(p — 1) + 1 jobs and an ordering
of the jobs for which the bound of Theorem 2.6 is tight.

R

Given p, let us consider the instance of MINIMUM SCHEDULING ON IDENTICAL
MACHINES with p machines, p(p — 1) jobs of length 1 and one job of length
p. Clearly, the optimal measure is p. On the other side, if the job with largest
processing time is the last in the order, then List Scheduling will find a solution
with value 2p — 1 (see Fig. 2.2).

The bad behavior of the previous example is due to the fact that the
job with largest processing time is scheduled last. A simple ordering that
allows us to find a better solution is based on the LPT (Largest Processing
Time) rule that considers jobs in non-increasing order with respect to their
processing time (i.e., [ > [ > -+ > l]T]).
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Section 2.2

SEQUENTIAL
| onejob ALGORITHMS FOR
| oflengthp PARTITIONING
_ I — _ PROBLEMS
| — — — =
&) _ o AT T
5 S| - —{| | onejob ko) - - - -
o : of length p =
(I | Il Ry S e
S —— .
\V"—/ S~ —— Figure 2.2
p-1 machines p machines Example of (a) an optimal
scheduling and (b) a
scheduling computed by t}
(a) (b) sequential algorithm

Given an instance x of MINIMUM SCHEDULING ON IDENTICAL MA- < Theorem 2.7
CHINES with p machines, the LPT rule provides a schedule of measure

mypr (x) such that mppr (x)/m*(x) < (4/3—1/3p).

Let [,,;, be the length of the last job (which is among the shortest ones). PROOF
Two cases may arise. Either I, > m*(x)/3 or Iy, < m*(x)/3. In the first

case, it is simple to show that at most two jobs may have been assigned

to any machine and that the LPT rule provides the optimal solution (see

Exercise 2.5). In the second case (i.e., L, < m*(x)/3), by reasoning as in

the proof of the previous theorem, we obtain that

w -1
mrpr (X) < —+ E—“lmin
P pP

where W is the sum of the processing times of all jobs. Since m*(x) > W/p
and L, < m*(x)/3, we obtain

mrpr (x) < m*(x)+ p3—pl m*(x) = (% - 51;) m*(x). y

The theorem thus follows. QED

2.2.2 Sequential algorithms for bin packing

MINIMUM BIN PACKING (see Problem 2.4) looks for a packing of a set of

weighted items using the minimum number of bins of unit capacity. The
total weight of the items assigned to a bin cannot exceed its capacity. —_

53
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Chapter 2

Problem 2.4: Minimum Bin Packing

DESIGN o . |
TECHNIQUES FOR INSTANCE: Finite set I of rational numbers {aj, az,...,a,} with a; €
APPROXIMATION (0,1]fori=1,...,n.

ALGORITHMS SOLUTION: A partition {By, By, ..., Br} of I such that Yaep; @i < 1 for
j=1,... k.

MEASURE: The cardinality of the partition, i.e., k.

A simple sequential algorithm for MINIMUM BIN PACKING, called Next
_Fit, processes the items one at a time in the same order as they are given
in input. The first item a; is placed into bin B;. Let B; be the last used
bin, when the algorithm considers item a;: Next Fit assigns a; to B; if it has
enough room, otherwise a; is assigned to a new bin B ;.

Theorem 2.8 » Given an instance x of MINIMUM BIN PACKING, Next Fit returns a solu-
tion with value myp (x) such that myp(x)/m*(x) <2.

PROOF  The proof estimates the value of the optimal and approximate solutions as
functions of the sum of the item sizes, denoted by A (i.e., A = Y| a;).

Observe that the number of bins used by Next Fit is less than 2[A]: this
is due to the fact that, for each pair of consecutive bins, the sum of the
sizes of the items included in these two bins is greater than 1. On the
other hand, since the number of bins used in each feasible solution is at
least the total size of the items, we have that m*(x) > [A]. It follows that

QED  myp(x) < 2m*(x).

Example 2.4 » The bound stated in Theorem 2.8 is asymptotically tight. In fact, for each integer
n, there exists an instance of 4n items and an ordering of these items such that
m*(x) = n+ 1 and myr(x) = 2n. The instance and the order of the items are —
as follows: I = {1/2,1/2n,1/2,1/2n,...,1/2,1/2n} (each pair is repeated 2n
times). Figure 2.3 shows both the optimal and the approximate solution found by
Next Fit.

An obvious weakness of Next Fit is that it tries to assign an item only
to the last used bin. This suggests a new algorithm, called First Fit, that
processes items in the input order according to the following rule: item q;
is assigned to the first used bin that has enough available space to include
it; if no bin can contain a;, a new bin is opened.
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2n items of
size 1/2n

3 2n items of
% size 1/2n . . l .
én avs
2
~ e —
o 2n bins
() » o

The First Fir algorithm has a better performance than Next Fit: indeed,
it finds a solution that is at most 70% far away from the optimal solution.
Namely, it can be shown that First Fit finds a solution with value mpr (x)
such that mpr(x) < 1.7m"(x) +2 (see Bibliographical notes).

An even better algorithm for MINIMUM BIN PACKING is First Fit De-
creasing: this algorithm first sorts items in non-increasing order with re-

spect to their size and then processes items as First Fit (see Program 2.4).

Given an instance x of MINIMUM BIN PACKING, the First Fit Decreasing
algorithm finds a solution with measure mppp(x) such that

mprp(x) < 1.5m*(x) + 1.

Let us partition the ordered list of items {ai,az,...,a,}, according to their
value, into the following sets:

= {aila;> 2/3},
= {0[12/3261i>1/2},
{aii 1/2_>‘(li_> 1/3},
= {a;]1/3> a;}.

O O w o>
[l

Consider the solution obtained by First Fit Decreasing. If there is at least
one bin that contains only items belonging to D, then there is at most one
bin (the last opened one) with total occupancy less than 2/3, and the bound
follows.

Section 2.2

SEQUENTIAL
ALGORITHMS FOR
PARTITIONING
PROBLEMS

Figure 2.3
Example of (a) an optimal
packing and (b) a packing
found with Next Fit

< Theorem 2.9

PROOF
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ALGORITHMS

QED

Program 2.4: First Fit Decreasing

input Set I of n positive rationals less than or equal to 1;
output Partition of / in subsets of unitary weight;

begin
Sort elements of / in non-increasing order;
(* Let (ay, ag, .. ., a) be the obtained sequence *)

fori:=1tondo
if there is a bin that can contain a; then
Insert a; into the first such bin
else
Insert q; into a new bin ;
return the partition
end.

If there is no bin containing only items belonging to D, then First Fit De-
creasing finds the optimal solution. In fact, let x' be the instance obtained
by eliminating all items belonging to D. Since the value of the solution
found by First Fit Decreasing for x and x' is the same, it is sufficient to
prove the optimality of First Fit Decreasing for x'. To this aim, we first
observe that, in each feasible solution of %', items from A cannot share a
bin with any other item and that every bin contains at most two items (and
only one of these two items can belong to B). The thesis follows by ob-
serving that First Fit Decreasing processes items in non-increasing order
with respect to their weight. Therefore, it packs each item belonging to C
with the largest possible item in B that might fit with it and that does not
already share a bin with another item. This implies that the number of bins
in the optimal solution and in the solution found by First Fit Decreasing
are the same.

By means of a detailed case analysis, the bound given in the previous
theorem can be substituted by 11m*(x)/9 +4 (see Bibliographical notes).
It is easy to observe that this bound is considerably better than the previous
one for large values of m*(x) (that is, m*(x) > 10). The following example

shows that no better bound can be obtained,l.fo.r_s.liﬁmﬂﬂ.aﬁge instances.
— (for the 11/9 factor)

Examgle 2.5 B For any n > 0, let us us consider the following instance x,. The instance includes

Sn items: 7 items of size 1/2+&, n items of size 1/4+2¢, n items of size 1/4+¢
and 27 items of size 1/4 — 2¢. As can be seen in Fig. 2.4, meFp(Xn) = lél—n, while

m* (x) = 3n.

Note that if there is more than one bin that can contain an item with-
out violating the feasibility constraint, the First Fit Decreasing algorithm
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chooses the first opened bin and does not try to optimize the choice. This
might give rise to bins filled only partly and, therefore, to an increased
number of bins (the division of the available space into many small frag-
ments is called fragmentation).

Legenda

ke

¥
o

b

\V-/\V—-/

n bins n/2 bins n bins n/3 bins n/2 bins

(a) (a)

An apparently better algorithm for MINIMUM BIN PACKING is the Best
Fit Decreasing algorithm. Like First Fit Decreasing, Best Fit Decreas-
ing initially sorts the items in non-increasing order with their respect their
weight and then considers them sequentially. The difference between the
two algorithms is the rule used for choosing the bin in which the new item
a; is inserted: while trying to pack a;, Best Fit Decreasing chooses one bin
whose empty space is minimum. In this way, the algorithm tries to reduce
the fragmentation by maximizing the number of bins with large available
capacity.

It is possible to see that the quality of the solution found by Best Fit
Decreasing is never worse than the quality of the solution found by First
Fit Decreasing (see Exercise 2.9). Moreover, as shown in the following
example, it is possible to define instances for which Best Fit Decreasing
finds an optimal solution while First Fit Decreasing returns a non-optimal
solution.

Section 2.2

SEQUENTIAL
ALGORITHMS FOR
PARTITIONING
PROBLEMS

Figure 2.4

An example of (a) an
optimal packing that use
3n/2 bins and (b) a pack
produced by FFD that us

[CI=

11n/6 bins

For any n > 0, let us us consider the following instance x;. The instance includes < Example 2.6

6n items: 7 items of size 7/10, 2n items of size 2/5, n items of size 3 /20 and
n items of size 1/10. As can be easily seen, mprp (xn) = 2n, while mppp(xn) =
2n+ [n/10].
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Chapter 2

However, the 11/9-bound holds for Best Fit Decreasing as well and the

DESIGN sequence of instances given in Example 2.5 shows that the bound is tight
TECHNIQUES FOR (i.e., 11/9 is the smallest multiplicative factor).
APPROXIMATION As a final remark we observe that both First Fit Decreasing and Best
ALGORITHMS

Fit Decreasing are off-line algorithms while Next Fit and First Fit are on-
line algorithms. Indeed, these latter two algorithms assign item a; to a bin
without knowing the size of items a;, for any j > i. On the other side, in an
off-line algorithm the packing of the items starts when all sizes are known
(as in the case of First Fit Decreasing and Best Fit Decreasing in which
the first step to be performed is sorting the items).

2.2.3 Sequential algorithms for the graph coloring problem

In this section we consider the behavior of sequential algorithms for MIN-
IMUM GRAPH COLORING. In order to apply the sequential scheme to de-
sign a coloring algorithm it is necessary to specify an order of the vertices.
Assuming (v1,Vv2,...,v,) is the sequence obtained, it is straightforward to
obtain a sequential algorithm. Vertex v; is colored with color 1 and the re-
maining vertices are colored as follows: when vertex v; is considered and
colors 1,2, ...,k have been used the algorithm attempts to color v; using
one of the colors 1,2, ...,k (if there are several possibilities it chooses the
minimum color); otherwise (that is, v; has at least k adjacent vertices which
have been assigned different colors) a new color k41 is used to color v;.
The algorithm proceeds in this way until all vertices have been colored.

In the sequel we will see that the quality of the solution obtained using
this algorithm is not as good as in the case of MINIMUM SCHEDULING
ON IDENTICAL MACHINES and MINIMUM BIN PACKING. In fact, unless
P = NP, there is no ordering of the vertices that can be found in polynomial
time and that allows us to obtain a constant bound on the performance ratio
that holds for all graphs.

Nevertheless, we will consider two different criteria to order the vertices
of the graph: the decreasing degree order and the smallest last order. To
better motivate these criteria we first analyze the number of colors used by
a sequential algorithm as a function of the degree of the vertices. Namely,
given an ordering (vi,Vva,...,v,) of the vertex set of G, let G; be the graph
induced by vertices {vy,...,v;} (clearly, G, = G). Let k; be the number of
colors used by the sequential algorithm to color G; (hence, k, denotes the
number of colors used by the algorithm with input G), and let d;(v) be the
degree of v in G; (hence, d,(v) denotes the degree of vin G).

Theorem 2.10 B Let k, be the number of colors used by the sequential coloring algorithm

58
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when applied to an input graph G whose vertices are considered in the
order (vi,va,..-,Va). Then, the following inequality holds:

k, < 14+ max min(d,(v;),i—1).

1<i<n

If the algorithm does not introduce a new color to color vertex v;, then
k; = k;_1. Otherwise, k; = ki—1 + 1 and the degree of v; in G; must satisfy
the inequality

di(vi) > ki1

By induction on i, it thus follows that

k; <1+ max (d,'(v,-)). (2.6)

1<i<n
Since d;(v;) is clearly bounded both by d,(v;) and by i — 1 (that is, the

number of other nodes in G;), the theorem follows.

An immediate consequence of the above theorem is the following result.

For any ordering of the vertices, the sequential coloring algorithm uses at
most A+ 1 colors to color a graph G, where A denotes the highest degree
of the vertices of G.

Observe that a non-increasing ordering of the vertices with respect to “\JWhen degree is big, i-1

their degree minimizes the upper bound in Theorem 2.10. Hence, we use
this ordering to obtain the sequential algorithm called Decreasing Degree.
Unfortunately, the number of colors used by this algorithm can be much
larger than the number of colors used by the optimal solution. In fact,
the following example shows that there exist 2-colorable graphs with 2n
vertices and maximum degree n — 1 for which Decreasing Degree could
require n colors (as a side effect, the example also shows that the bound of
Corollary 2.11 is tight).

Let 7 be an integer and G(V,E) be a graph with V = {x1, -, X1, - - ., ¥n} and
E = {(x;,y)) | i # j} (see Fig. 2.5 where n = 4). Note that all vertices have the
same degree n— 1 and that G can be easily colored with 2 colors. However, if the
initial ordering of the vertices is

(XI,YI;XZayz, o ')xllayl'l)7

then Decreasing Degree uses n colors.

Section 2.2

SEQUENTIAL
ALGORITHMS FOR
PARTITIONING
PROBLEMS

PROOF

QED

<« Corollary 2.11

small, and viceversa.

< Example 2.7
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DESIGN
TECHNIQUES FOR
APPROXIMATION
ALGORITHMS

Figure 2.5

A graph for which
asing Degree behaves
poorly

Many other heuristic criteria for finding an initial ordering of the vertices
have been proposed for improving the bad behavior of Decreasing Degree.
In the following we consider the smallest last order defined as follows:
v,,, the last vertex to be considered, is the one with minimum degree in G
(breaking ties arbitrarily). The order of the remaining vertices is defined
hackward: after vertices viy1, ..., v, have been inserted in the ordered se-

This is the difference with
Decreasing Order

Theorem 2.12 »

PROOF

QED

Corollary 2.13

60

quence, v; is the vertex with minimum degree the(subgraph)induced by
V—{vit1, .- , vy } (breaking ties arbitrarily). Using this ordering we obtain

Smallest Last algorithm).

Recall that, for any ordering (vi,...,v,) of the vertices, Eq. (2.6) 1m-
plies the following bound on the number of colors used by the sequential
algorithm:

k, < 1+ max (di(vi))-

1<i<n

See proof of Thm. 2.10

The smallest last ordering of the vertices minimizes the above bound since
we have that, for each i with 1 < i < n, d;(v;) = min, g, di(v;). Unfortu-
nately, it is possible to show that Smallest Last fails to find good colorings
for all graphs (see Exercise 2.14). However, its performance is satisfactory
when applied to planar graphs.

The Smallest Last algorithm colors a planar graph with at most six colors.

It is sufficient to prove that max; <;<n(di(vi)) < 5. Indeed, this is due to the
fact that, for any planar graph G, Euler’s theorem implies that the vertex
of smallest degree has at most 5 neighbors and that deleting a vertex from
a planar graph yields a planar graph.

From the above theorem, the next result follows.

There exists a polynomial-time coloring algorithm A that, when applied
to a planar graph G, finds a solution with measure ma(G) such that

ma(G)/m*(G) <2.
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Prog‘ramk 2.5: Local Search 'Schéme

input Instance x;
output Locally optimal solution y;
begin
y := initial feasible solution;
while there exists a neighbor solution z of y better than y do
y =2z
return y
end.

Since there exists a polynomial-time algorithm for optimally coloring a
2-colorable graph (see Exercise 1.15), it follows that the joint use of this
algorithm and of Smallest Last allows us to obtain an algorithm A such
that:

e if m*(G) < 2, then mz(G) (G);

oot m*
e if m*(G) > 3, then mg(G) < 6.

The corollary thus follows.

2.3 Local search

OCAL SEARCH algorithms start from an initial solution (found using
L some other algorithm) and iteratively improve the current solution by
moving to a better “neighbor” solution (see Program 2.5).

Roughly speaking, if y is a feasible solution, then z is a neighbor solution
if it does not differ substantially from y. Given a feasible solution y, the lo-
cal search algorithm looks for a neighbor solution with an improved value
of the measure function. When no improvement is possible (i.e., when the
algorithm reaches a solution y such that all neighbor solutions are no bet-
ter than y) then the algorithm stops in a local optimum (with respect to the
chosen neighborhood).

To obtain a local search algorithm for a specific problem we thus need
an algorithm for finding the initial feasible solution (in many cases this can
be a trivial task) and a neighborhood structure of any feasible solution y
(notice that it is not necessary to find all neighbors of y but it is sufficient
to determine whether there exists one neighbor solution that has a better
measure).

Observe that if the neighborhood structure allows us to move from one
solution to a better neighbor solution in polynomial time and to find an

Section 2.3

LLOCAL SEARCH

PROOF

QED
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ALGORITHMS

i.e. move un vertex from
one set to the other

Problem 2.5: Maximum Cut
INSTANCE: Graph G = (V,E).

SOLUTION: Partition of V into disjoint sets V; and V».

MEASURE: The cardinality of the cut, i.e., the number of edges with one
endpoint in V; and one endpoint in V5.

optimal solution (i.e., a global optimum) after a polynomial number of so-
lutions have been considered, then the local search algorithm solves the
problem optimally in polynomial time. Clearly, in the case of Np-hard
problems, we do not expect to find a neighborhood structure that allows us
to find an optimal solution in polynomial time (unless P = NP). In these
cases, we look for a local search algorithm that finds an approximate so-
lution corresponding to a local optimum with respect to the neighborhood
structure.

2.3.1 Local search algorithms for the cut problem

In this section, we will describe a local search algorithm for MAXIMUM
CUT (see Problem 2.5) that achieves a solution that is guaranteed to be at
most a constant factor away from the optimal solution. To this aim, we
need to define both the procedure for obtaining an initial feasible solution
and the neighborhood structure. W
task is trivial, since the partition V; = 0 and V, = V is a feasible solution.
Furthermore, we define the following neighborhood structure A’ the

neighborhood of a solution (Vi, V) consists of all those partitions (Vy,
Vi), fork=1,...,|V/|, such that:

1. if vertex v; € Vi, then
Vik=Vi—{w} and  Vu=V2U{w};
2. if vertex v ¢ V), then

Vie=V1U {Vk} and Vor =Vo — {Vk}.

The important property of the above neighborhood structure is that each
local optimum has a measure that is at least half of the optimum.

____ Theorem 2.14 » Given an instance x of MAXIMUM CUT, let (V1,Va) be a local optimum
62 |
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with respect to the neighborhood structure N and let mgy(x) be its mea-
sure. Then

m*(x) [mg(x) < 2.

Iet m be the number of edges of the graph. Since m" (x) <m, itis sufficient
to prove that mg(x) > m/2.

We denote by my and my the number of edges connecting vertices inside
V, and V5 respectively. We have that

m = my +my +ma(x). 2.7)
Given any vertex v;, we define
my; ={v|veViand (v,v;) € E}
and
my; = {v|v €V, and (v,v;) € E}.

If (V1,V,) is a local optimum then, for any vertex v, the solution provided
by (Vig, Vax) has a value at most mg (x). This implies that, for every node
v; € Vi,

|my; | — | m|<0

and, for every node v; € V,
| maj| = | my;|<0.
By summing over all vertices in V; and V5, we obtain

Z (\ myi l - ‘ nio; l) = 2m, —I?lN(x) <0
vieVi

and

Z (1 maj ] — l mi;j U = 2my mn1N(x) < 0.

vieVy
Hence my -+ mp — mN(x) < 0. From this inequality and from Eq. 2.7 it
follows that mg(x) > m/2 and the theorem is proved.

For a given optimization problem, there are many possible definitions
of neighborhood structure that may determine both the quality of the ap-
proximate solution and the running time of the algorithm. The main issues
involved in the definition of the neighberhood structure are:

e the quality of the solution obtained (that is, how close is the value of
the local optimum to the global optimal value);

Section 2.3
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Chapter 2

o the order in which the neighborhood is searched;

DESIGN
TECHNIQUES FOR o the complexity of verifying that the neighborhood does not contain
APPROXIMATION any better solution;
ALGORITHMS

o the number of solutions generated before a local optimum is found.

The above four issues are strongly related. In fact, if the neighborhood
structure is “large” then it is likely that the value of the solution obtained
is close to the optimal value. However, in this case we expect the task of
checking that a better neighbor does not exist to become more complex.

As an exireme case, we can assume that any solution is neighbor of any
other solution: in this case, the algorithm will find an optimal solution, but
if the problem is computationally hard, then either the complexity of look-
ing for a better neighbor is computationally hard or there is an exponential
number of solutions to be considered before the global optimum is found.

2.3.2 Local search algorithms for the salesperson problem

The interesting property of the neighborhood structure defined for MAXI-
MUM CUT is that all local optima have a measure that is at least half of the
optimum. Unfortunately, this nice property is not shared by many other
combinatorial optimization problems. However, local search approxima-
tion algorithms are applied successfully due to their good practical behav-
ior and their simple structure. For example, experimental work has shown
that, in the case of MINIMUM TRAVELING SALESPERSON, there exist lo-
cal search algorithms that find approximate good solutions in a reasonable
amount of time for very large instances (even though there are instances in
which the performance of the algorithm is quite bad).

Obtaining an initial feasible solution for an instance of MINIMUM
TRAVELING SALESPERSON is easy simee-any permutation of the 7 cities is
4 solution: therefore, the identity permutation of the n cities (€1,€2,--+,Cn)
is a feasible tour. Alternatively, we can consider the solution found by any
other algorithm (e.g, Nearest Neighbor).

A simple neighborhood structure for the symmetric case of MINIMUM
TRAVELING SALESPERSON is the 2-opt structure which is based on the
following observation: given a tour /, replacing two edges (x,y) and (v,2)
in I by the two edges (x,v) and (y,z) yields another tour I'. This swap op-
eration is called a 2-move. The 2-opt neighborhood structure of a solution
] consists of those solutions that can be obtained from / using a 2-move.
Observe that, according to this neighborhood structure, any solution has

04
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O(n?) neighbors: hence, searching in a neighborhood for a better solution

requires at most O(n*) operations. LINEAR

PROGRAMMING
x BASED
ALGORITHMS

Figure 2.6
Improving a tour by
z Yy z ) performing a 2-move

Let us consider the Euclidean version of MINIMUM TRAVELING SALESPERSON 4 Example 2.8
in which it is assumed that cities correspond to points in the plane and that the
distance between cities x and y is given by the Euclidean distance between the
corresponding points in the plane. Figure 2.6 represents a tour: since edges (x,)
and (v,z) cross each other, the triangle inequality implies that replacing (x,y) and
(v,z) by (x,v) and (y,z) yields a better solution.
Note that given a tour / the absence of crossing edges does not guarantee that
[ is a local optimum with respect to the 2-opt neighborhood structure (see, for
instance, Fig. 2.7).

Experimental work has shown that the quality of the solution obtained
by using the 2-opt neighborhood structure depends on the solution initially
chosen and that if the local search algorithm is executed several times using
different initial solutions, then the overall algorithm can be very effective.
For example, in the case of randomly distributed points in the plane, such
algorithm finds a solution with expected value within 5.5% of the optimal
value.

Figure 2.7
A tour with no crossing
edges and its improvemer

A more detailed presentation of local search algorithms for MINIMUM
TRAVELING SALESPERSON is given in Chap. 10.

2.4 Linear programming based algorithms

INEAR PROGRAMMING is one of the most successful areas of opera-
‘|_Jtions research and has been applied in many application contexts (we
refer to Appendix A for related definitions).
Observe that, since a linear program can be solved in polynomial time,
given a hard combinatorial optimization problem P, we do not expect to S
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find a linear programming formulation of P such that, for any instance

DESIGN  y of P, the number of constraints of the corresponding linear program is
TECHNIQUES FOR polynomial in the size of x: in fact, this would imply that P= Np.!
APPROXIMATION : . : - -
Nevertheless, linear programming can be used as a computational step in
ALGORITHMS

the design of approximation algorithms. Several approaches are possible
that are based on the fact that most combinatorial optimization problems
can be formulated as integer linear programming problems. This equiv-
alent formulation does not simplify the problem but allows us to design
algorithms that, in some cases, give good approximate solutions.

2.4.1 Rounding the solution of a linear program

The simplest approach to obtain approximation algorithms based on lin-
ear programming can be described as follows. Given an integer linear
program, by relaxing the integrality constraints we obtain a new linear
program, whose optimal solution can be found in polynomial time. This
solution, in some cases, can be used to obtain a feasible solution for the
original integer linear program, by ‘“rounding” the values of the variables
that do not satisfy the integrality constraints.

As an example, let us consider the weighted version of MINIMUM VER-
TEX COVER (which we will denote as MINIMUM WEIGHTED VERTEX
COVER) in which a non-negative weight c¢; is associated with each vertex
v; and we look for a vertex cover having minimum total weight. Given a
weighted graph G = (V,E), MINIMUM WEIGHTED VERTEX COVER can
be formulated as the following integer linear program ILPyc(G):

minimize Z CiXi
v;eV
subject to x+x;>1 V(v,vj) €E
X € {O, 1} Yv; e V.

Let LPy ¢ be the linear program obtained by relaxing the integrality con-
straints to simple non-negativeness constraints (i.e., x; > 0 foreach v; € V).
Let x*(G) be an optimal solution of LPyc. Program 2.6 obtains a feasi-
ble solution V' for the MINIMUM WEIGHTED VERTEX COVER problem
by rounding up all components of x*(G) with a sufficiently large value.
Namely, it includes in the vertex cover all vertices corresponding to com-
ponents whose value is at least 0.5.

Theorem 2.15 B Given a graph G with non-negative vertex weights, Program 2.6 finds a

INote that we might be able to find a linear programming formulation such that the
number of constraints is exponential in the number of variables.
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Program 2.6: Rounding Weighted Vertex Cover

input Graph G = (V, E) with non-negative vertex weights;
output Vertex cover V' of G;
begin
Let ILPy ¢ be the linear integer programming formulation of the problem;
Let LPy¢ be the problem obtained from /LPyc by relaxing
the integrality constraints;
Let x*(G) be the optimal solution for LPyc;
V= v | x7(G) > 0.5};
return V'
end.

feasible solution of MINIMUM WEIGHTED VERTEX COVER with value
mrp(G) such that mpp(G)/m*(G) < 2.

Let V' be the solution returned by the algorithm. The feasibility of V' can
be easily proved by contradiction. In fact, assume that V' does not cover
edge (v;,v;). This implies that both x;*(G) and x;*(G) are less than 0.5,
thus contradicting the fact that x*(G) is a feasible solution of the relaxed
linear program.

In order to prove that V' is a solution whose value is at most twice the
optimal value, we first observe that the value m*(G) of an optimal solution
satisfies the inequality:

m*(G) > mip(G)

where mj p(G) denotes the optimal measure of the relaxed linear program.
Since
Y <2 cxi*(G) =2mip(G) < 2m*(G),

viey’ vieV

the theorem then follows.

2.4.2 Primal-dual algorithms

The implementation of Program 2.6 requires the solution of a linear pro-
gram with a possibly large number of constraints (in fact, the number of
constraints is equal to the number of edges of the graph) and, therefore, itis
computationally expensive. A different approach (still based on linear pro-
gramming) allows us to obtain an approximate solution more efficiently.
The method is known as primal-dual and uses the dual of the linear pro-
gram obtained by relaxing the integrality constraints. Recall that, given
a minimization linear program LP, its dual DLP is a maximization linear
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Figure 2.8

The space of values of
e solutions of /LP and

DLP

program whose optimal value coincides with the optimal value of P (see
Appendix A). Therefore, if we consider a minimization integer linear pro-
gram ILP whose relaxation provides LP, any feasible solution of DLP has
a measure no greater than the optimal measure of /LP (which, in turn, is
no greater than the value of any feasible solution of /LP) and can, thus,
be used as a lower bound when estimating the quality of an approximate
solution of /LP (see Fig. 2.8).

A primal-dual algorithm exploits this property to find approximate so-
lutions of an integer linear program /LP: in particular, it simultaneously
maintains a (possibly unfeasible) integer solution x of ILP and a (not nec-
essarily optimal) feasible solution of DLP. At each step, x and y are ex-
amined and modified to derive a new pair of solutions x’ and y where x’
is “more feasible” than x and y’' has a better measure than y. The algo-
rithm ends when the integer solution becomes feasible: the quality of this
solution is evaluated by comparing it with the final dual solution. This ap-
proach allows us to obtain faster algorithms because it is not necessary to
optimally solve either ILP or DLP. Moreover, as we will see in the rest
of this section, there are cases in which the method allows us to obtain
solutions with a good performance ratio.

feasible solutions of DLP feasible solutions of ILP

£ - E3 Y
X 1p=X prp X jp

In particular, let us formulate a primal-dual algorithm for MINIMUM
WEIGHTED VERTEX COVER. First observe that, given a weighted graph
G = (V,E), the dual of the previously defined relaxation LPyc is the fol-
lowing linear program DLPyc:

- . ™
maximlze Z Yij

(vi,vj)€E

subject to Z yij<e YvieV
Ji(vi,vj)eE
yij > 0 V(vi,v;) € E.

Note that the empty set is an unfeasible integer solution of MINIMUM
WEIGHTED VERTEX COVER (that is, of the initial integer linear program)
while the solution in which all y;; are zero is a feasible solution with value
0 of DLPyc. The primal-dual algorithm starts from this pair of solutions



Program 2.7: Primal-Dual Weighted Vertex Cover

input Graph G = (V, E) with non-negative vertex weights;
output Vertex cover V' of G;
begin
Let ILPyc be the integer linear programming formulation of the problem,;
Let DLPyc be the dual of the linear programming relaxation of /LPyc;
for each dual variable y;; of DLPyc do y;; := 0,
V=0,
while V' is not a vertex cover do
begin
Let (v;,v;) be an edge not covered by V';
Increase y;; until a constraint of DLPy ¢ becomes tight for either i or j;
if Zj:(v,-,vJ')EEyij = ¢; then
V' :=V'U{v;} (* the i-th dual constraint is tight *)
else
V' :=V'U{v;} (* the j-th dual constraint is tight *)
end;
return V'’
end.

and constructs a vertex cover (i.e., a feasible primal solution) by looking
for a better dual solution (see Program 2.7).

Given a graph G with non-negative weights, Program 2.7 finds a feasible
solution of MINIMUM WEIGHTED VERTEX COVER with value mpp(G)
such that mpp(G) /m*(G) < 2.

Let V' be the solution obtained by the algorithm. By construction V' is a
feasible solution. For the analysis of its quality, first observe that for every
v; € V' we have ¥, , yep yij = ci- Therefore,

mep(G)= Y =Y Y w<Y ¥ o w=2 2 ¥

vieV! V[GV’jZ(V,‘,Vj)EE ViEV‘/‘i(V,‘,V_,')GE (V,’,Vj)EE

Since ¥y, v e Yij < m*(G) (that is, the value of the feasible dual solution
obtained by the algorithm is always at most the value of the primal optimal
solution), the theorem hence follows.

2.5 Dynamic programming

DYNAMIC PROGRAMMING is an algorithmic technique that, in some
cases, allows us to reduce the size of the search space while looking
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for an optimal solution and that, for this reason, has been applied to many
combinatorial problems.

Roughly speaking, dynamic programming can be applied to any prob-
lem for which an optimal solution of the problem can be derived by com-
posing optimal solutions of a limited set of “subproblems”, regardless of
how these solutions have been obtained (this is generally called the prin-
ciple of optimality). Due to efficiency reasons, this top-down description
of the technique is usually translated into a bottom-up programming 1m-
plementation in which subproblems are defined with just a few indices and
“subsolutions” are optimally extended by means of iterations over these
indices.

In this section we will present the dynamic programming technique by
first giving an (exponential-time) exact algorithm for MAXIMUM KNAP-
sACK and by subsequently using this algorithm to design a family of
polynomial-time approximation algorithms.

In order to apply the dynamic programming technique to MAXIMUM
KNAPSACK, we need to specify the notion of subproblem so that the prin-
ciple of optimality is satisfied. Recall that an instance of the problem con-
sists of a positive integer knapsack capacity b and of a finite set X of n
items such that, for each x; € X, a profit p; € Z+ and a size a; € ZT are

specified.
For any k with 1 < k < n and for any p with 0 < p <XL,pi we then
consider the problem of finding a subset of {xp, ... ,X;+ which minimizes

the total size among all those subsets having total profit equal to p and
total size at most b: we denote with M*(k,p) an optimal solution of this
problem and with $*(k, p) the corresponding optimal size (we assume that,
whenever M* (k, p) is not defined, S* (k, p) = 1+ XiZ1 @i)-

Clearly, M*(1,0) = 0, M*(1,p1) = {x1}, and M*(1, p) is not defined for
any positive integer p # p;. Moreover, for any k with 2 < k < n and for
any p with 0 < p < 3, p;, the following relationship holds (this is the
formal statement of the principle of optimality in the case of MAXIMUM
KNAPSACK):

M*(k—1,p—p)U{n} ifpe<p,M*(k—1,p—pi)
is defined, S*(k—1,p) is at
least S*(k—1,p— pi) + ak,

M*(k, p) = and §*(k—1,p — px) +ar < b,

M*(k—1,p) otherwise.

That is, the best subset of {xi,...,x} that has total profit p is either the
best subset of {xi,... ,Xr—1} that has total profit p — pr plus item x; or the
best subset of {x1,...,x_1} that has total profit p. Since the best subset



Program 2.8: Dynamic Programming Maximum Knapsack

input Set X of n items, for each x; € X, values p;, a;, positive integer b;
output Subset Y C X such that 3 ey a; < b;

begin
forp := Oto Y/, p; do
begin
M*(1,p) := undefined;
S*(L,p) == 143755
end;

M*(1,0) := 0;S*(1,p) =
M*(1,p1) = {x1}; S*(1, p1
fork := 2tondo
forp := Oto Y, p;do
begin
if (p; < p) and (M*(k— 1, p — pi) # undefined)
and (S*(k—1,p— pi) + ar < S*(k—1,p))
and (S*(k—1,p — pr) +ai < b) then
begin
M (k,p) = M*(k—1,p—pi) U{n):
S0 p) = §'(k=1,p—pi) +ay
end
else
begin
M*(k,p) == M*(k—1,p);
S*(k,p) = S*(k—1,p)
end
end;
p* := maximum p such that M*(n, p) # undefined;
return M*(n, p*)
end.

0;
1) == 51

of {xi,...,x.} that has total profit p must either contain x; or not, one of
these two choices must be the right one.

From the above relationship, it is now possible to derive an algorithm
that, for any instance of MAXIMUM KNAPSACK, computes an optimal
solution: this algorithm is shown in Program 2.8.

Given an instance x of MAXIMUM KNAPSACK with n items, Program 2.8
finds an optimal solution of x in time O(nX}_, p;) where p; denotes the
profit of the i-th item.

The correctness of the algorithm is implied by the principle of optimality
in the case of MAXIMUM KNAPSACK. In order to bound the running time
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Program 2.9: KnapSéCk Approximation Scheme

input Set X of n items, for each x; € X, values p;, a;, positive integer b,
rational number r > 1;
output Subset ¥ C X such that ¥ ¢y a; < b;
begin
Pmay = Maximum among values p;;
{ = |log(55t base) |
X' := instance with profits | p; = pj/2'|;
Y := solution returned by Program 2.8 with input x;
return Y
end.

it is sufficient to observe that the execution of the body of both the first and
the third for loop of Program 2.8 requires a constant number of steps.

The running time of Program 2.8 is polynomial in the values of the prof-
its associated with the items of the instance of the problem. These values
are exponential in the length of the input if we use any reasonable encoding
scheme (in fact log p; bits are sufficient to encode the value p;) and for this
reason the algorithm is not a polynomial-time one. However, in order to
stress the fact that the running time is polynomial in the value of the profits,
we will say that the running time of the algorithm is pseudo-polynomial.

Besides being interesting by itself, Program 2.8 can be used to obtain a
polynomial-time algorithm that, given an instance x of MAXIMUM KNAP-
SACK and a bound on the desired performance ratio, returns a feasible
solution of x whose quality is within the specified bound. The algorithm
works in the following way: instead of directly solving the given instance
x, it solves an instance x' which is obtained by scaling down all profits
by a power of 2 (depending on the desired degree of approximation). In-
stance ¥’ is then solved by Program 2.8 and from its optimal solution the
approximate solution of the original instance x is finally derived. The al-
gorithm is shown in Program 2.9: since the algorithm’s behavior depends
on the required performance ratio, it is called an approximation scheme for
MAXIMUM KNAPSACK.

Given an instance x of MAXIMUM KNAPSACK with n items and a rational
number r > 1, Program 2.9 returns a solution in time O(rn® / (r — 1)) whose
measure mas(x,7) satisfies the inequality m*(x) /mas(x,r) < 1.

Let Y (x,7) be the approximate solution computed by Program 2.9 with
input x and  and let Y*(x) be an optimal solution of x, with measure m* (x).
It is easy to see that, since for any item inserted in Y (x,r) the largest error
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may be at most 2, we have that m*(x) —mas(x, r) < n2'. Moreover, if pax
is the largest profit of an item, we then have that npqx > m*(x) > Ppax.

Hence,
m*(x) —mas(x,r) _ n2'

m* (X) - pmax,
that 1s, p
m*(x) < —F —mas(x, 7).
( ) - pmax"nzt S( , )

If we take into account that ¢ = |log(*=1 22 | then we obtain m*(x) <
re-mas(x,7).

As far as the running time is concerned, we have that it corresponds to
the running time of Program 2.8 with input the scaled instance, that is,
O(nYr,p!) = O0(nZL, pi/2"). Since ppa, is the maximum profit of an
item and because of the definition of #, we have that the running time of
Program 2.9 is O(rn®/(r — 1)) and the theorem thus follows.

The preceding result shows that Program 2.9 is an approximation
scheme whose running time is polynomial both in the length of the in-
stance and in the required quality of the solution: in the next chapter, we
will see that this kind of algorithms are called fully polynomial-time ap-
proximation schemes.

Moreover, observe that in the preceding proof the behavior of the al-
gorithm heavily depends (both from the point of view of the performance
ratio and from that of the running time) on the upper and lower bounds to
the estimated value of the optimal value m*(x), defined by the relationship
RPmax > M*(X) > Pax- Actually, by using a tighter bound on m* (x), a bet-
ter algorithm can be derived with a different definition of t whose running
time is O(rn?/(r — 1)) (see Exercise 2.18).

The scaling technique that we have just seen is strongly related to an-
other technique referred to as fixed partitioning, which we now sketch
briefly. Suppose we are given an instance x of MAXIMUM KNAPSACK
and a rational number r > 1. We divide the range of possible values of the
measure function, which is bounded by np;ax, Into [Ap. /0] equal inter-
vals of size 8, where & is chosen according to the desired bound r on the
performance ratio. Then the dynamic programming algorithm is applied
by considering the problem of finding, for any & with 1 < k < n and for
any i with 1 < i < [npmax/0], a subset of {x1,...,x} which minimizes
the total size among all those subsets whose total profit belongs to interval
(8(i — 1), 8i] and whose total size is at most b.

It is then possible to modify Program 2.8 so that a solution of the prob-
lem relative to k and i can be computed by means of the solutions of a finite
set of problems relative to k — 1 and j < i (see Exercise 2.21). At the end,
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the solution achieved by this procedure has a performance ratio at most r
if 8 < ’{-i Pmax/n. Indeed, each time we consider a new item (that is, k is
increased), the absolute error of the current best solution may increase by
at most 8. Thus, the absolute error of the returned solution is at most nd.

Hence,
m*(x) — m(x,Y) < nd < r—1
m*(x) DPinax r

?

that 1s,

_m(x,Y) < r—1
mt(x) T 1

which implies that the performance ratio is at most r. Notice that, since
the number of intervals is O(n?r/(r — 1)), the above procedure is a fully
polynomial-time approximation scheme.

Clearly, the result is the same as we would have achieved by adopting a
scaling factor &: we are indeed dealing with two ways to look at the same
technique rather than with two different techniques.

The scaling (or fixed partitioning) technique can be applied to construct
fully polynomial-time approximation schemes for many other optimization
problems (see Exercise 2.22).

2.6 Randomized algorithms

N RECENT years there has been increased interest in the area of ran-
Idomized algorithms, which have found widespread use in many areas
of computer science. The main reason for this interest is the fact that, for
many applications, a randomized algorithm is either simpler or faster (or
both) than a deterministic algorithm. In this section we will consider ran-
domized techniques for combinatorial optimization problems, and we will
see an example of how they can be used to design simple approximation
algorithms.

Roughly speaking, a randomized algorithm is an algorithm that during
some of its steps performs random choices. Note that the random steps
performed by the algorithm imply that by executing the algorithm several
times with the same input we are not guaranteed to find the same solution.
Actually, in the case of optimization problems we can find solutions whose
measure might differ significantly. More precisely, given an instance of a
combinatorial optimization problem, the value of the solution found by a
randomized approximation algorithm is a random variable: when estimat-
ing the expected value of this random variable, we thus have to consider
the behavior of the algorithm averaging over all possible executions.
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Program 2.10: Random Satisfiability

RANDOMIZED
input Set C of disjunctive clauses on a set of variables V; ALGORITHMS
output Truth assignment f : V — {TRUE, FALSE};
begin

For each v € V, independently set f(v) = TRUE with probability 1/2;
return f
end.

In this section, we present a very simple randomized algorithm for
MAXIMUM SATISFIABILITY (see Problem 1.16) which has a good average
performance. This algorithm is shown in Program 2.10.

Let mgs(x) be the random variable denoting the value of the solution
found by the algorithm with input x. The following result provides a bound
on its expected value, assuming that all clauses in C have at least k literals.

Given an instance x of MAXIMUM SATISFIABILITY in which all ¢ clauses < Theorem 2.19
have at least k literals, the expected measure mgs(x) of the solution found
by Program 2.10 satisfies the following inequality:

Elmgs(x)] > (1 - %,;) c.

The probability that any clause with k literals is not satisfied by the truth PROOF
assignment found by the algorithm is 2~k (which is the probability that

all literals in the clause have been assigned the value FALSE). Therefore

the probability that a clause with at least k literals is satisfied is at least

1 — 2%, Tt follows that the expected contribution of a clause to mgs(x) is

at least 1 —2~%. By summing over all clauses we obtain

Elms (x)] > (1 _ 5}) c

and the theorem follows. QED

Given an instance x of MAXIMUM SATISFIABILITY, the expected mea- < Corollary 2.20
sure mgs(x) of the solution found by Program 2.10 satisfies the following
inequality:

m*(x)/E[mgs(x)] < 2.

The corollary derives immediately from the previous theorem and from the PROOF
fact that the optimal solution has always measure at most c. QED R
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Note that the above corollary holds for all instances of the problem and
that the average is taken over different executions of the algorithm. How-
ever, it does not guarantee that the algorithm always finds a good approxi-
mate solution.

2.7 Approaches to the approximate solution of problems

N THE previous sections, given a computationally hard optimization
Iproblem, we have evaluated the performance of an approximation al-
gorithm, that is, an algorithm that provides a non-optimal solution. In
particular, given an instance of the problem, we have shown how far the
solution found by the algorithm was from the optimal solution. Clearly,
we have only been able to derive upper bounds on this distance since an
exact evaluation of the performance ratio would require running both the
approximation algorithm and an exact algorithm.

Several possible approaches to the analysis of approximation algorithms
will be thoroughly presented in the remainder of the book. In this section
we describe these approaches briefly.

2.7.1 Performance guarantee: chapters 3 and 4

In the performance guarantee approach, we require that, for all instances
of the problem, the performance ratio of the solution found by the algo-
rithm is bounded by a suitable function. In particular, we are mainly in-
terested in the cases in which this function is a constant. As an exam-
ple, Theorem 2.15 shows that, for any graph with positive weights on the
vettices, Program 2.6 finds a feasible solution of MINIMUM WEIGHTED

ERTEX COVER whose measure is bounded by twice the optimum (i.e.,
myp(G) < 2m*(G)).

According to the performance guarantee approach we are interested in

determining the algorithm with the minimum performance ratio. Note that
if algorithm 4, has a better performance ratio than algorithm Ay this does
not imply that, for all instances of the problem, the solution found by A
is always closer to the optimal solution than the solution found by 4. In
fact the performance guarantee approach uses the worst possible case to
measure the performance ratio of the algorithm.

We have also seen examples in which we cannot prove simnilar results: i1l
the case of MINIMUM GRAPH COLORING, all the approximate algorithms
we have presented have “bad” instances in which the number of colors

used cannot be bounded by a linear function of the minimum number of
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colors. In fact, for this problem it is possible to prove a strong negative
result: if there exists an approximation algorithm A that, for each instance
x of the problem with n vertices, finds a solution with measure m4(x) such THE APPROXIMATE

that mg(x) < n°m*(x), where c is any constant with 0 < ¢ < 1/7, then SOLUTION OF
P = NP. PROBLEMS

APPROACHES TO

Therefore we do not expect to design a polynomial-time algorithm for
MINIMUM GRAPH COLORING that always finds a good approximate solu-
tion with respect to the performance guarantee approach. Again, this does
not imply that approximation algorithms for the problem with good prac-
tical behavior cannot be designed. As we will see, similar considerations
apply to MAXIMUM INDEPENDENT SET as well.

For such hard problems, it is sometimes possible to analyze the behavior
of approximation algorithms by properly restricting attention to specific
classes of input instances. As an example, we have seen that we can bound
the performance ratio of approximation algorithms for MINIMUM GRAPH
COLORING when we restrict ourselves to planar graphs.

2.7.2 Randomized algorithms: chapter 5

A randomized algorithm is an algorithm that might perform random
choices among different possibilities (note that no probabilistic assump-
tion is made on the set of instances). Clearly, repeated executions of the
algorithm with the same input might give different solutions with different
values depending on the random choices. More precisely, for each given
instance of the problem, the value of the solution found by a randomized
algorithm is a random variable defined over the set of possible choices of
the algorithm. As in Theorem 2.19, we are interested in studying the ex-
pected value of this random variable by obtaining bounds on the expected
quality of the solution found by the algorithm. A randomized algorithm
with good expected behavior is not guaranteed to find a good solution for
all executions and for all problem instances: however, in most cases, ran-
domized algorithms are simple to implement and very efficient.

2.7.3 Probabilistic analysis: chapter 9

The performance guarantee approach analyzes the quality of an algorithm
on the basis of its worst possible behavior. This might not be realistic if
“bad” instances do not occur often and, for all remaining cases, the algo-
rithm is able to find a solution that is very close to the optimum. Often
we are interested in knowing the behavior of the algorithm for the set of -
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instances that might actually arise in practice. Since, in most cases, it 18
impossible to define such a class of instances, We might be interested in
analyzing the behavior of the algorithm with respect to the “average input”
of the problem.

Before performing the analysis, we have to choose a probability dis-
tribution on the set of the instances of the problem. In some cases, an

equiprobability assumption can be acceptable, and therefore e average
instance is simply determined by evaluating the statistical mean over all
instances of a fixed size. However, there are problems for which it is not
reasonable to assume equiprobability, and it might not be clear which input
distribution is realistic for practical applications.

A final remark concerning the probabilistic analysis of approximation
algorithms is that it requires the use of sophisticated mathematical tools.

In fact, at the present state of the art, only simple i fmple

input distributions have been analyzed: in most cases, an analysis of so-
phisticated algorithms with respect to practical applications has not been
made.

2.7.4 Heuristics: chapter 10

The previously described approaches have considerably enlarged our abil-
ity to cope with NP-hard optimization problems. However, the theoretical
analysis performed using these approaches is not completely satisfactory
for three main reasons.

The first reason is that there exist problems that are not efficiently solv-
able with any of the above approaches. The second reason is that, in
the solution of large instances of a problem, it is not sufficient to devise
approximation algorithms that are polynomial-time bounded because we
need algorithms with a low level of complexity: in these cases, even a
quadratic-time algorithm might be too expensive. Finally, there exist ap-
proximation algorithms for which we are not able to prove accurate bounds
using the previous approaches.

In the last chapter of the book, we will then consider heuristics, that is,
approximation algorithms that are characterized by a good practical be-
havior even though the value of the solution obtained is not provably good
(either from a worst case or from a probabilistic point of view). Heuristics
are examples of an approach that is different from all the others already
considered and that, at the same time, has shown its usefulness for impor-
tant problems.

The evaluation of a heuristic algorithm is based on executing the algo-
rithm on a large set of instances and averaging the behavior on this set:

HOW?
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Section 2.8

the set of instances can be either randomly generated or based on instances
arising in real problems. The 2-opt algorithm for MINIMUM TRAVELING EXERCISES
SALESPERSON is an example. We have seen examples in which this al- \

gorithm finds a solution that is far from the optimum and we are currently
unable to perform a precise probabilistic analysis of its behavior. More-
over, no current implementation of the algorithm guarantees that the run-
ning time of the algorithm is polynomial in the number of cities. However,
practical experiments with this algorithm are very satisfactory: the execu-
tion of the algorithm on an extremely large set of instances shows that the
observed running time is almost linear in the number of cities and that the
solution found is, on average, a few percent away from the optimum.

See page 64

2.7.5 Final remarks

Before concluding this chapter, we observe that there exist approaches to
the approximate solution of combinatorial problems that are not considered
in this book.

For example, we are not interested in “on-line” problems in which the
information concerning the input is not complete before the execution of
the algorithm. Indeed, in an on-line problem the input instance is disclosed
to the algorithm one piece at a time and the al gorithm must take decisions
concerning some input variables before knowing the next piece of infor-
mation.

Furthermore, since we assume that the input instance can be represented
in an exact way, we are not interested in a notion of approximation such as
that of real numbers with rational numbers. It is well known that round-off
errors may cause serious mistakes, and a theory of errors was created with
the aim of deriving reliable computations in this setting.

Finally, we will not consider stochastic optimization that deals with the
solution of problems for which the information concerning an instance is
given by random variables or by a stochastic process.

2.8 Exercises

— > Exercise 2.1 Prove that the bound of Theorem 2.1 is tight, namely, that,
for any € > 0, there exists an instance x of MAXIMUM KNAPSACK such
that m* (x) /mpg (x) > (2—¢€).

Exercise 2.2 (*) Prove that the bounds provided by Theorems 2.2 and 2.3

are tight. -
79



alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Cuadro de texto
See page 64

alabert
Línea


Chapter 2

DESIGN

TECHNIQUES FOR
APPROXIMATION

ALGORITHMS

Exercise 2.3 Prove that for any constant ¢ > 1 and for any n > 3, there
exists an instance x., of MINIMUM TRAVELING SALESPERSON with n
cities such that Nearest Neighbor achieves a solution of measure myy(x. )
such that myy{(xc n) /m* (xcn) > c.

Exercise 2.4 (*) Prove that for any constant ¢ > 1, there are infinitely many
instances x. , of MINIMUM METRIC TRAVELING SALESPERSON with n
cities such that Nearest Neighbor achieves a solution of measure myy (xc )
such that myy (xc ) /m*(xc,) > c. (Hint: for any i > 0, derive an instance
for which Nearest Neighbor finds a tour whose length is at least (i+2)/6
times the optimal length.)

Exercise 2.5 Consider the MINIMUM SCHEDULING ON IDENTICAL MA-
CHINES problem. Show that the LPT rule provides an optimal solution in
the case in which p; > m*(x) /3.

Exercise 2.6 Prove that the bound of Theorem 2.7 is tight if p = 2.

Exercise 2.7 Consider the variation of the LPT rule that assigns the two
longest jobs to the first machine and, subsequently, applies the LPT rule to
the remaining jobs. Prove that if p = 2 then the performance ratio of the
solution provided by choosing the best solution between the one given by
this variation and the one returned by the original LPT rule is strictly better
than the performance ratio of the solution provided by the LPT rule.

Exercise 2.8 Prove that the bound of Theorem 2.9 is tight in the sense that
no better multiplicative factor can be obtained if the additive factor is 1.

Exercise 2.9 Show that, for any instance of MINIMUM BIN PACKING, the
number of bins used by the solution computed by Best Fit Decreasing is
at most equal to the number of bins in the solution computed by First Fit
Decreasing.

Exercise 2.10 Consider the following variant of MINIMUM BIN PACK-
ING: the input instance is defined by a set of n items {x1,x,...,x,} whose
sum is at most m. The goal is to maximize the number of items that are
packed in m bins of unitary capacity. A sequential algorithm for this prob-
lems that is similar to First Fit considers items in the given order and tries
to pack each item in the first available bin that can include it. If none of the
m bins can accomodate item x; then x; is not packed. Prove that the above
algorithm achieves a solution that packs at least n/2 items.

Exercise 2.11 (*) Let us consider the generalization of MINIMUM BIN
PACKING to higher dimensions, known as vector packing. In this problem
the size of each item x is not a single number but a d-dimensional vector
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Problem 2.6: Minimum Multicover ‘ S
INSTANCE: Set S = {s1,...,8,}, collection C of multisubsets Sy, ...,Sy
of S, where each item s; appears with multiplicity a;; in S;, weight func-
tion w : C + IN, multiplicity function b : § — IN.

EXERCISES

SOLUTION: A subcollection C' C C such that each item s; appears at
least b(s;) times in C'.

MEASURE: The overall weight of C'.

(x1,%2, - -, %4); the bin capacity is also a d-dimensional vector (1,1,...,1)
and the goal is to pack all items in the minimum number of bins given that
the content of any given bin must have a vector sum less than or equal to
the bin capacity. Show that the approximation algorithm that generalizes
First Fit to higher dimensions achieves a solution whose measure is not
greater than (d+ 1) times the optimal value.

Exercise 2.12 Prove that, for any graph G,

2vn <x(G) +x(G) <n+1

where () denotes the chromatic number of a graph, that is, the minimum
number of colors needed to color the graph, and G° denotes the comple-
ment graph of G. (Hint: for the second inequality, use Theorem 2.10.)

Exercise 2.13 (**) Show that A colors are sufficient to color a graph G
with maximum degree A if G is neither complete nor a cycle with an odd
number of vertices.

Exercise 2.14 Show that, for any sufficiently large n, there exists a 3-
colorable graph with n vertices such that Smallest Last makes use of Q(n)
colors.

Exercise 2.15 Let us consider the special case of MAXIMUM CUT in
which the required partition of the node set must have the same cardi-
nality. Define a polynomial-time local search algorithm for this problem
and evaluate its performance ratio.

Exercise 2.16 Consider Problem 2.6. Define an algorithm, based on
rounding the linear programming relaxation, that finds a solution whose
measure is at most p times the optimal measure, where p = max;(3;a; i)-
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Problem 2.7: Minimum Hitting Set
INSTANCE: Collection C of subsets of a finite set S.

SOLUTION: A hitting set for C, i.e., a subset 8’ C S such that S’ contains
at least one element from each subset in C.

MEASURE: Cardinality of the hitting set, i.e., ||

Problem 2.8: Maximum Integer d-dimensional KnaPsaCk

INSTANCE: Non-negative integer d X n matrix A, vector b € N4 , vector
c € N

SOLUTION: A vector x € IN" such that Ax < b.

n
MEASURE: The scalar product of ¢ and x, 1.e., Z CiX;.

i=1

Exercise 2.17 (*) Consider Problem 2.7. Design a primal-dual algorithm
that achieves a solution whose measure is at most k times the optimal mea-
sure, where k is the maximum cardinality of an element of C. (Hint: ob-
serve that MINIMUM HITTING SET is a generalization of MINIMUM VER-
TEX COVER.)

Exercise 2.18 Define a modified version of Program 2.9 in order to
provide a fully polynomial-time approximation scheme for MAXIMUM
KNAPSACK whose running time is O(rn?/(r — 1)). (Hint: make use of
the greedy solution found by Program 2.1 in order to define the value of 7.)

Exercise 2.19 Design a dynamic programming algorithm for finding the
optimal solution of Problem 2.8.

Exercise 2.20 Design a dynamic programming algorithm for finding the
optimal solution of Problem 2.9.

Exercise 2.21 Define a modified version of Program 2.8 which makes use
of the fixed partitioning technique.

Exercise 2.22 Construct a polynomial-time approximation scheme for
MINIMUM SCHEDULING ON IDENTICAL MACHINES in the case in which
we have a fixed number of machines (that is, p is not part of the instance),
by making use of the fixed partitioning technique.
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Problem 2.9: Maximum Integer k-choice Knapsack
BIBLIOGRAPHICAL

INSTANCE: Non-negative integer n X k matrices A and C, non-negative NOTES

integer b.

SOLUTION: A vector x € IN”, function f : {1,...,n} — {1,...,k} such

n
that Zal—7f(,~)xi S b.

i=1

n
MEASURE: ' C; (3 %i-

i=1

2.9 Bibliographical notes

ANY BOOKS deal with the design and the analysis of algorithms for
M combinatorial optimization problems: we refer to [Papadimitriou
and Steiglitz, 1982] for general reference on the first five sections. More-
over, we refer to the list of decision problems in [Garey and Johnson, 1979]
for all Np-hardness results we have cited in this chapter and in the follow-
ing ones.

It is well known that the greedy method finds an optimal solution when
the set of feasible solutions defines a matroid, that is an independent system
that satisfies the additional property that all maximal independent sets have
the same cardinality (see for example [Edmonds, 1971]). [Graham and
Hell, 1985] is a useful source of information on the history of the greedy
algorithm.

A generalization of matroids, called greedoids, is studied in [Korte, Lo-
vasz, and Schrader, 1991] where the authors prove that in a greedoid the
greedy algorithm finds an optimal solution when the objective function is
a bottleneck function.

The analysis of Program 2.2 can be found in [Halldérsson and Radhakr-
ishnan, 1994b] where also tight bounds are shown. The analysis of Near-
est Neighbor in the symmetric case of MINIMUM METRIC TRAVELING
SALESPERSON is due to [Rosenkrantz, Stearns, and Lewis, 1977], that
study the behavior of several other heuristics for the problem.

The early work of Graham on multiprocessor scheduling inaugurated
the study of performance guarantee approximation algorithms: [Graham,
1966, Graham, 1969] give bounds on the performance of the List Schedul-
ing algorithm and of other heuristics.

In [Matula, Marble, and Isaacson, 1972, Johnson, 1974c, Matula and
Beck, 1983] the behavior of sequential algorithms for MINIMUM GRAPH
COLORING is analysed. In particular the authors analyzed the algorithms N
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presented in Sect. 2.2 together with some other ones. Also, experimental
results for some heuristics are given. The statement of Exercise 2.13 is
due to [Brooks, 1941], and a constructive proof can be found in [Lovisz,
1975b].

The worst case performance of First Fit for MINIMUM BIN PACKING
is analyzed in [Johnson, 1972], while [Johnson, 1972, Baker, 1983] study
First Fit Decreasing. Many more algorithms have been proposed and ana-
lyzed from the worst case point of view: we refer to [Johnson, 1974b, John-
son et al., 1974, Johnson and Garey, 1985, Karmarkar and Karp, 1982].
[Garey and Johnson, 1981] gave a useful survey presenting many results
concerning approximation algorithms for MINIMUM BIN PACKING and
scheduling problems: the survey has since then been updated (see [Coff-
man, Garey, and Johnson, 1997]). The survey also presents complexity
results for MINIMUM VECTOR PACKING (see Exercise 2.11 for the defi-
nition of the problem). [Garey et al., 1976] analyzed appropriate variations
of First Fit and First Fit Decreasing and showed that an algorithm that gen-
eralizes First Fit achieves a solution that is at most (d +7/10)m*(x) + c,
where d is the number of dimensions and ¢ is an absolute constant (in
the one-dimensional case this reduces to the known 17/10 bound); in
the case of First Fit Decreasing the measure of the solution is at most
(d+1/3)m* +c.

An early description of local search can be found in [Dunham et al.,
1961]. However, the first proposal of a local search heuristic originates
from the idea of using edge exchange procedures for improving the length
of a TSP tour [Croes, 1958, Lin, 1965]. For a general introduction to
MINIMUM TRAVELING SALESPERSON we refer to [Lawler et al., 1985,
Junger, Reinelt, and Rinaldi, 1994]. Computational results on these and
other heuristics are reported in [Golden and Stewart, 1985, Johnson, 1990,
Reinelt, 1994b] (see also Chap. 10).

Linear programming has had a strong influence on the design of algo-
rithms for combinatorial optimization problems (in Appendix A an outline
of the main concepts and methods of linear programming are provided).
We refer to [Papadimitriou and Steiglitz, 1982] for general references and
for several examples of how to use linear programming to obtain exact
polynomial-time algorithms for combinatorial optimization problems. The
use of linear programming for the analysis of approximation algorithms
dates back to the 1970s (see [Lovasz, 1975a]). [Wolsey, 1980] shows that
previously known approximation algorithms can be analyzed using linear
programming. The use of linear programming in the design of approxi-
mation algorithms originates in [Bar-Yehuda and Even, 1981, Hochbaum,
1982a]: Program 2.6 was proposed in [Hochbaum, 1982a], while [Bar-
Yehuda and Even, 1981] proposed Program 2.7, which is the first ex-
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ample of a primal-dual algorithm for obtaining an approximate solution.
The above two papers analysed also approximation algorithms for the
MINIMUM HITTING SET problem (see Exercise 2.17), while MINIMUM
MULTICOVER was considered in [Hall and Hochbaum, 1986] (see Exer-
cise 2.16). Recently, primal-dual algorithms have been fruitfully applied
to the design of approximation algorithms for several other problems (see
the survey [Goemans and Williamson, 1997]).

The algorithmic method known as dynamic programming was originally
proposed by Bellmann: we refer to [Dreyfus and Law, 1977] for a survey
of the early applications of dynamic programming.

A reference book for the analysis and the design of randomized algo-
rithms is [Motwani and Raghavan, 1995]. Further examples of random-
ized algorithms for the design of approximation algorithms will be given
in Chap. 3.
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