Bifurcation Theory

| ecture 1
a.y. 2013/14

ANALYTICAL TOOLS FOR
PERTURBATION ANALYSIS

Angelo Luongo



OUTLINE

e Introductory concepts

e Algebraic Eigenvalue Problems

e Initial Value Problems

e Advanced Topics



INTRODUCTORY CONCEPTS

¢ A preliminary example: a non linear algebraic equation containing a

small parameter.

e How to introduce in the equation a perturbation parameter?

e Regular and singular perturbation problems: the compatibility condition.



A PRELIMINARY EXAMPLE

e nonlinear algebraic equation y(x) , ey
x+ex’ =1, ex1, xeR /x
. 1
lglil(}x(é‘) =1
e Series expansion x(&) X(0)
x(&)=xy+ex, +&°x,+... x, =O(1)independent of &

e Collecting the same g-order terms

(xo —1)+¢9()c1 +x§)+82 (x2 -3x7x, )+...=0 Ve



e Perturbation equations
g x, =1

| _ 3
g . xl _-xO

g x, =-3xx,
A sequence of uncoupled linear equations in drawn. By solving them in chain, one
gets:
x,=1, x,=-1, x, =3, ..
e Solution

x=1—c+3&% +...

Note: only the solution ‘close’ to x=1 1s found.



INTRODUCING IN THE EQUATION APERTURBATION
PARAMETER

e Example: the discrete non linear elastic problem

Kx+Cx’*=p xeR"

with K the stiffness matrix, C the four-dimensional non linear coefficient matrix

and p the load vector. (Here CX° = Zj,h’k X%, %, and e, are unit vectors).

e T WO cases occur:

€] =




v'Small nonlinear coefficients case:
Kx+eCx’ =p

where X and p are of order-1.

v’ Order-1 nonlinear coefficients case:
KX+ eCk® =p

where X and p must be small, of order &">.

Note: the two equations are formally equal.



e Perturbation solution (|C[=0(1) case)

v'Series expansion:

v Perturbation equations:

v'Coming back to x = &"* &, and reabsorbing &:
X = K-l (81/2f) ) 1@( 3/2( 1f))3 )
=K'p-K'C(K"p)

Formally equivalent method: ‘drop the hat and put £ =1"



SINGULAR PERTURBATION PROBLEMS

e General perturbation equation
Ax =D

Does it always admit solution?

e Discussion

(20> x=A?b (regular perturbation)
det[A] =+ {x is undetermined
%

, (singular perturbation )
X does not exist

\

Regular perturbation problems are quite trivial. Attention 1s focused ahead

on singular problems.



e Compatibility (or solvability) condition
v'Direct and adjoint problems:
Ax=b, A'y=c
v'Bilinear identity:
yIAX=x'A'y -5 y'b=x'c
v'If ¢=0:
y'b=0 Vy|/A'y=0

i.e. b is orthogonal to all the solutions of the homogeneous adjoint problem.

v'Viceversa, if the previous property holds, then:
y'(b-AX)=0 Vy = Ax=b

In order the direct problem to admit solution, the known term b must be

orthogonal to all the solutions of the homogeneous adjoint problem.
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ALGEBRAIC EIGENVALUE PROBLEMS

e Non linear eigenvalue problems

v'Example: buckling of a nonlinear structure.

e Linear eigenvalue problem

v'Example: modification of linear structures.

The two classes of problems are formally similar from the Perturbation

Method point of view.
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e Right and left eigenvalues

e Bi-orthogonality conditions:

e Normalization:

viu, =0 if j#k

v, u, =1
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NON LINEAR ALGEBRAIC EIGENVALUE PROBLEMS

e General problem
(A-Al)x+eCx’ =0

v'Series expansions:
X=X, Ttex +..

A=A, +E\ +...
v Perturbation equations:
ao:(A-KOI)XOZO — (ko,xo):(xg"),auk), u=1
VH 3
e (Al )X =A%, —Cx; - A, = kaSgauuk) = a*vi Cu?
k 7k

=1
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e Example: a buckling problem l
P

v'Equilibrium equations, expanded in series:
G-usin$=0, wu:=Pllk

(1- )%+ ud /6+...=0

AR,
v Perturbation equations: L
979, 9=9 +&8 +..., p=p, U ... m[
80:(1—y0)90=0 —>(ﬂ0,90) =(La)
S 1
813(1'/“0)'91 :ﬂﬂgo_ﬂo?o — H :gaz
v First order solution: U a
”9 _ (2
(£7a) 9 NT
< _1+8a2 —)ﬂ:1+?
\,u 6 1 d >
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LINEAR ALGEBRAIC EIGENVALUE PROBLEMS

e General problem

(A, +&A, -1)x=0 gA\, :imperfection/modification

v’ Series expansions:
X=X, +ex, +...
A=A, +E\ +...

v Perturbation equations:
e%:( Akl )X, =0 —>(Xgs %) =(A",au, )

alz(A-?\OI)x1 =X, -AX, — A =-V; AU,

Imperfection play the same role than nonlinearities.
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e Mechanical example: a lightly damped system

v'Eigenvalue problem:
G+2lm,G+w q=0 g €R, &< 1:perturbation parameter

g=xexp(At) = (M+2Eo Mty )x=0

v'Series expansions:
X=X,+&X, +..., A=A, +SEN +...

v Perturbation equations:
ﬁoz(k§+wg)x0=0 %(KO,XO):(iin,a)
& :(X(%Jr(of))xl :—2X0(X1+m0)xo — A =-0,

v’ Solution;
A=tio, - S,
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INITIAL VALUE PROBLEMS

e Straightforward expansions

v’ The appearance of secular terms

v'The breakdown of the series

e The Multiple Scale Method (MSM)

v'"Removing secular terms

v'Describing the slow-flow
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STRAIGHTFORWARD EXPANSIONS
AND SECULAR TERMS

e A sample system

The self-excited one-d.o.f. 1s considered:
)'é—a)§x+5(—,u5c+b5c3 +cx3) =0
{ x(O) =a, x(O) =0
e Straightforward expansion

v'Series expansion:

X=X,+&x +...,
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v Perturbation equations:

0
E .

x(O):

0 .
v g -order solution:

v g-order equation:

. 2 _

. 2 .

1.

a, x(O) =0
a
X, =—e

al . 3.5, 5, 3
— o, -—iw.ba” -—ca
2(”0 47 4

iwnt RN
f,e™ + fe™ +cec.
—_
resonant

TN

.o 2 . . -3 3

% (0)=0, £(0)=0

"+ec.

2
: a’ ;. :
z)e"""t + g(zwgb - c)e3“"0t +c.c
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v’ g-order solution

1 il wyt+9 . 1 ' 1 ;
X, = —ale(o ) —i— f e — 2f3€3lwt+c.c.
complementary secular terms non-secular
solution terms

v'Discussion:

= When > O(¢™), then ex; > O(xp), i.e. the latter it is not a small

correction of xy. The series 1s not uniformly valid in the interval [O, OO] :

* The drawback 1s due to the unlimited domain. In /imited spatial

problems, secular terms as s exp(ios) do not entail any inconvenience.
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THE MULTIPLE SCALE METHOD

e The basic ideas

v'Small nonlinearities slowly modulate amplitude and phases.
v'The solution depends on several independent time scales.
v'"Removing secular terms provides modulation laws.

Jl T, (] | | rans Slower time
O.SJH | | || || w TN
R o e
TR |
_O.SM | i | | / Fast time
AR R
“1 sL | \VJ - UL M | | J | | “ | U MA\L




e The self-excited oscillator
v'Equation of motion:
5c'+a)02x+5(-,uic+bfc3 +cx3) =0
v Independent time scales:
X = x(g;to,t1 ,t2,...)

t, =t , t, =&t t, =&, ..

d _9 +gi+52i+...=zg"dk : d, :=i
di o o e T A o,
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v’ Series expansion:

B 2
v Perturbation equations:
0. 12 2
U +aix =-2d.d x +ud.x. -b(d.x.) -cx
& 1Ay X) TWyX =-2a,d, X, T HdyX, - 0Xo0 ] ~CXy

e Solution
v &-order solution:

Xy = A(t1 ,tz,...)eiwoto +c.c. A =§aei9 eC
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v g-order equation:
dox, +w;x, = [-21’0)0al1 A+iwyuA-3 (ia)gb - c) Azﬂ] g0l

+ (ia)3b - c) AP 4 oc.

v'"Removing secular terms:
Zeroing the coefficient of €’ one obtains:

_1 3 2 . 2
d A —EluA—I—E(-a)ObHc)A y

which governs the A-modulation of the #-scale (Amplitude Modulation

Equation).
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v'Real AME’s:
Since:

d A=d, (%aem):%( "+iad') " (.)=—

by separating the real and imaginary parts of AME, it follows:

a’ :la(,u—%a)gbazj

e Steady first-order solution

3 3
a=a, =const—>,u=za)§ba2, Szgcazt = vt

1 I\ o
X, :Ease( ) 4 o= a. cos[(a)o +V)t:|
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b<0

b>0

- ,
N

subcritical <—

> supercritical

A one-parameter family of limit cycles is found.

c<0

c>0

>

Note that, due to the fact the fast dynamics has been filtered:

softening <—

W W

0

> hardening

e periodic orbits for the original equations become equilibrium point for the AME

e similarly: quasi-periodic orbits become periodic orbits
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e Stability of steady solutions
The MSM also permits to study stability. By letting:

a=a,+oa oa<ka,

and linearizing in o0a, one gets the variational equation.

, 1 9
oa =5(,u-za)§bafj5a

By expressing a, as a function of u:

Sd 5 5 e | stable, if 1 > 0 (supercritical)
a =-uda — oa=e
a, unstable, 1f 1 <0 (subcritical)
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e Higher-order solutions
By going on to higher-orders, solvability conditions of the following type are found:
g:dA=f, (4)
g d,A=f, (4)

They can be recombined 1n a unique equation (reconstitution method):

%%‘dl A+e* d, A+..=f, (A)+&’f, (A)+..=F(A)

governing the modulation on the true time-scale .
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¢ Internal resonances (1)

When dealing with multi-d.o.f. systems, internal resonances can occur.

v'For example, let us consider the system:
X-Ax+eCx’ =0 x e RN

where A admits the eigenvalues:
(A-AMu=0 —>i=io, o, o +iv,, with o =30,

v'One cannot take, (e.g. for special initial conditions) a monomodal generating
solution:

X,=A, (tl ,...)uke"a”“O +c.c.
since the forcing frequency 3icwsf, generated by x,° would be in resonance with

the proper frequency o, =3, .
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e Internal resonances (11)

In these cases one has to take a multimodal generating solution:

X,=4, (tl : ) u, e + 4, (tl : ) ujeiw"to +c.c.

leading to:

dlAk = fk (Ak’Aj)
dlAj = fj(Ak,Aj)
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ADVANCED TOPICS

e High sensitive-systems
Q: Do order-¢ perturbations always produce variations of the same order-¢? There
exist systems high-sensitive to perturbations?
A: Defective systems (1.e. possessing an incomplete set of eigenvectors) are high-

sensitive to perturbations.
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DEFECTIVE SYSTEMS

e Example: matrix eigenvalue sensitivity

Multiple Eigenvalues
Distinct Eigenvalues Hermitian Matrix Jordan-Block
(1 0 (1 0 (1 1]
A, = A, A,
0 2 0 1 0 1
~  [l1+g 0 . [1 ¢ (11
A = A A
0 2 e 1 e 1]
Aa Re>\A Im
%5: 1 1+e —11 >
/ e &
1-Je e
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v Perturbations of defective matrices (containing Jordan blocks) require
using series of fractional powers of the perturbation parameter:

(Ay+eA-A)u=0

{x—xo +&""N, + &7, ...

u=u, +&""x, +&7"\, +...

v'The Multiple Scale Method, when applied to defective dynamical systems,
in addition requires using fractional ¢ - power time-scales:

X-AX+eCx’ =0

X=X, +&""X, +&7"X, +...

1/m 2/m

d
tyere > —=d, +&""d, +&7"d, +...

t=t, t =¢
0 1 dt

t, t,=¢
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