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INTRODUCTORY CONCEPTS 

 
 

 A preliminary example: a non linear algebraic equation containing a  

  small parameter. 
 
 

 How to introduce in the equation a perturbation parameter? 
 
 

 Regular and singular perturbation problems: the compatibility condition. 
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A PRELIMINARY EXAMPLE 

 
  nonlinear algebraic equation 
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 Series expansion 
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 Perturbation equations 
0
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A sequence of uncoupled linear equations in drawn. By solving them in chain, one 

gets: 

0 1 21, 1, 3, ...x x x     

 Solution  
21 3 ...x       

Note: only the solution ‘close’ to x=1 is found. 
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INTRODUCING IN THE EQUATION A PERTURBATION 
PARAMETER 

 

 Example: the discrete non linear elastic problem 
3Kx + x = p x RN  

with K the stiffness matrix,   the four-dimensional non linear coefficient matrix 

and p the load vector.  (Here , ,
: j h kj h k i

x x x3x e  and ie  are unit vectors). 
 

 Two cases occur: 

   
     1 2 1 2

ˆ ˆO ε = ε , = O 1
=

ˆ ˆˆ ˆO 1 = ε , = O 1 ; = ε = O 1x x x p p, p

 




  


 



 7

 Small nonlinear coefficients case: 
 

3ˆKx + x = p   

where x and p are of order-1. 
 
 
 Order-1 nonlinear coefficients case: 
 

ˆˆ ˆ 3Kx + x =p  

where x and p must be small, of order 1 2 . 

 

Note: the two equations are formally equal. 
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 Perturbation solution   O 1 case  

 Series expansion: 
0 1ˆ ˆ ˆ ...x x x    

 Perturbation equations: 

 

0
0 0

31 3
1 00 1

ˆ ˆˆ ˆ:

ˆˆ ˆ ˆ:

-1

-1 -1

Kx = p x K p

Kx x x K K p





 

       

 Coming back to 1 2 ˆ= ε ,x x and reabsorbing ε: 

    
 

3-1 1 2 3 2

3-1 -1

ˆ ˆ

-

-1 -1

-1

x K p K K p

K p K K p

  






 

Formally equivalent method: ‘drop the hat and put 1  ’
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SINGULAR PERTURBATION PROBLEMS 

 
 General perturbation equation 

Ax = b  

Does it always admit solution? 

 Discussion  

 
0 ( regular perturbation)

det  is undetermined
= 0 (singular perturbation )

 does not exist

-1x = A b
A = x

x

 



 


 

Regular perturbation problems are quite trivial. Attention is focused ahead  

on singular problems.
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 Compatibility (or solvability) condition 

 Direct and adjoint problems: 
, TAx = b A y = c  

 Bilinear identity: 
T T T T Ty Ax = x A y     y b = x c  

 If c=0: 
T Ty b = 0 y A y = 0  

i.e. b is orthogonal to all the solutions of the homogeneous adjoint problem. 

 Viceversa, if the previous property holds, then: 

 Ty (b - Ax) = 0 y Ax = b  

 

In order the direct problem to admit solution, the known term b must be 

orthogonal to all the solutions of the homogeneous adjoint problem. 
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ALGEBRAIC EIGENVALUE PROBLEMS  

 

 Non linear eigenvalue problems 

 Example: buckling of a nonlinear structure. 
 

 Linear eigenvalue problem 

 Example: modification of linear structures. 
 

The two classes of problems are formally similar from the Perturbation  

Method point of view. 
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 Right  and left eigenvalues 

 

 
 

k k

H
k k





A - I u = 0

A - I v = 0  

 

 Bi-orthogonality conditions: 

0 ifH
j k j kv u =  

 

 Normalization: 

1H
k kv u =  
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NON LINEAR ALGEBRAIC EIGENVALUE PROBLEMS 

 

 General problem 

  3εA - I x + x = 0  

 Series expansions: 
0 1

0 1

ε ...
λ λ ελ ...
x = x + x +
    

 Perturbation equations: 
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 Example: a buckling problem 

 Equilibrium equations, expanded in series: 

  3

- sin 0, :
1 / 6 ... 0

Pl k   

  

 

                                

 Perturbation equations: 
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 First order solution: 
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LINEAR ALGEBRAIC EIGENVALUE PROBLEMS 
 

 General problem 

 0 1 1 :A + A - x = 0 A   imperfection/modification 

 Series expansions: 
0 1

0 1

ε ...
λ λ ελ ...
x = x + x +
    

 Perturbation equations: 

     
 

0 ( )
0 0 0 0 0

1
0 1 1 0 1 0 1 1

ε : - = , ,

ε : -

k
k

H
k k

a



   

    

A I x 0 x u

A I x x A x v A u



  

Imperfection play the same role than nonlinearities. 
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 Mechanical example: a lightly damped system 

 Eigenvalue problem: 
2

0 02 0 R, 1:q q q q        perturbation parameter 

 2 2
0 0exp( ) λ +2 λ+ x=0q x t     

 Series expansions: 
0 1 0 1x x x ..., λ λ λ ...        

 Perturbation equations: 

     
   

0 2 2
0 0 0 0 0 0

2 2
0 0 1 0 1 0 0 1 0

ξ : λ ω x =0 λ ,x ,

ξ : λ ω x 2λ λ ω x λ

i a



   

        

 Solution: 

0 0λ= i  
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INITIAL VALUE PROBLEMS  

 

 Straightforward expansions 
 

 The appearance of secular terms 
 

 The breakdown of the series 
 

 The Multiple Scale Method (MSM) 
 

 Removing secular terms 
 

 Describing the slow-flow 
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STRAIGHTFORWARD EXPANSIONS  
AND SECULAR TERMS  

 

 A sample system 

The self-excited one-d.o.f. is considered: 

 
   

2 3 3
0- 0

0 , 0 0

x x x bx cx

x a x

       


 

  

  

 Straightforward expansion 

 Series expansion: 

0 1 ...,x x x    
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 Perturbation equations: 

       

2 3 32
1 0 1 0 0 00 0 00 1

1

-0
: :

0 , 0 0 0 0, 0 0

x x x bx cxx x
x a x x x

 
 

     
 

     

  
   

 0-order solution:  
0

0 . .
2

i tax e c c   

 -order equation:  

 



0 0

0 0

2
32 3 2 2 3

1 0 1 0 0 0
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 -order solution  
 0 1 3

1 1 1 32
0 0

secular terms

1 1 1 . .
2 2 8

complementary non-secular
solution terms

i t i t i tx a e i f te f e c c   

 


   
    

 Discussion: 
 

 When t ≥ O(ε-1), then εx1 ≥ O(x0), i.e. the latter it is not a small  

   correction of x0. The series is not uniformly valid in the interval  0, . 
 

 The drawback is due to the unlimited domain. In limited spatial  

 problems, secular terms as s exp(iαs) do not entail any inconvenience. 
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THE MULTIPLE SCALE METHOD  
 

 The basic ideas 

 Small nonlinearities slowly modulate amplitude and phases. 
 The solution depends on several independent time scales.  
 Removing secular terms provides modulation laws. 

0.5 1 1.5 2
t
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1

 

                      
                     Slower time 
 
                     Slow time 
 
                     Fast time 
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 The self-excited oscillator 

 Equation of motion: 

 2 3 3
0 - 0x x x bx cx          

 Independent time scales: 
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 Series expansion:  
2

0 1 2 ...x x x x     

 Perturbation equations: 

 

0 2 2
0 0 0 0

31 2 2 3
0 1 0 1 0 1 0 0 0 0 0 0

: 0

: -2 - -

..........

d x x

d x x d d x d x b d x cx

 

  

 

    

 Solution 

 0-order solution:  

  0 0
0 1 2

1, ,... . .
2

i t ix A t t e c c A ae C      
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 -order equation: 

 
 

0 0

0 0

2 2 3 2
0 1 0 1 0 1 0 0

33 3

-2 -3

- . .

i t

i t

d x x i d A i A i b c A A e

i b c A e c c





    



     

   

 
 Removing secular terms: 

Zeroing the coefficient of 0 0i te   one obtains: 

 2 2
1 0

1 3 -
2 2

d A A b ic A A     

which governs the A-modulation of the t1-scale (Amplitude Modulation 

Equation). 
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 Real AME’s: 
Since: 

 1 1
1

1 1 (...)
2 2

i id A d ae a ia e
t

            
 

by separating the real and imaginary parts of AME, it follows: 

2 2
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 Steady first-order solution  

   0
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 26

x

x
a

�

b>0

softening hardening

a

�

c>0

�
0

c<0

a

subcritical supercritical

b<0

 

 

A one-parameter family of limit cycles is found. 
 
 

 
Note that, due to the fact the fast dynamics has been filtered: 
 
 periodic orbits for the original equations become equilibrium point for the AME 
 similarly: quasi-periodic orbits become periodic orbits 
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 Stability of steady solutions 

The MSM also permits to study stability. By letting: 

s sa a a a a     

and linearizing in δa, one gets the variational equation: 

2 2
0

1 9-
2 4 sa ba a       
 

 

By expressing as as a function of μ: 

- stable, if 0 (supercritical)
-

unstable, if 0 (subcritical)
st

s

a
a a a e

a
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 Higher-order solutions 

By going on to higher-orders, solvability conditions of the following type are found: 

 
 

1
1 1

2
2 2

:

:
...............

d A f A

d A f A







  

They can be recombined in a unique equation (reconstitution method): 

     2 2
1 2 1 2

d = +ε +...= f + f +...=:F
d
A d A d A A A A
t

    

governing the modulation on the true time-scale t. 
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 Internal resonances (I) 

When dealing with multi-d.o.f. systems, internal resonances can occur. 

 For example, let us consider the system: 
0              R 3 Nx - Ax + x = x   

where A admits the eigenvalues: 

 - , , , 3withlk j jl ki i i         A I u 0   

 One cannot take, (e.g. for special initial conditions) a monomodal  generating 
solution:  

  0
0 1= ,... e . .ki t

k kA t c c x u  

since the forcing frequency 3iωkt0 generated by x0
3 would be in resonance with 

the proper frequency 3j k  . 
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 Internal resonances (II) 

In these cases one has to take a multimodal generating solution: 

    00
0 1 1= ,... e ,... e . .jk i ti t

k k j jA t A t c c  x u u  

leading to: 

1

1

f ( , )

f ( , )
k k k j

j j k j

d A A A

d A A A
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ADVANCED TOPICS 

 

 High sensitive-systems 

Q: Do order-ε perturbations always produce variations of the same order-ε? There 

exist systems high-sensitive to perturbations?  

A: Defective systems (i.e. possessing an incomplete set of eigenvectors) are high-

sensitive to perturbations. 
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DEFECTIVE SYSTEMS  
 

 Example: matrix eigenvalue sensitivity  

 Multiple Eigenvalues 

Distinct Eigenvalues Hermitian Matrix Jordan-Block 
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0 2

A

A

 
  
 
 

 
 

 
0

1 0
0 1

1 εˆ =
ε 1

A

A

 
  
 
 
 
 

 
0

1 1
0 1

1 1ˆ =
ε 1

A

A

 
  
 
 
 
 

 

 

l

e

1

2 2

1+e

 

 

l

e

1 1+e

1-e

 

Rel

e

1

1+ e

1 e

Im

e

e

e

 



 33

 Perturbations of defective matrices (containing Jordan blocks) require  
   using series of fractional powers of the perturbation parameter: 

 0 1+ - A A u = 0  
1 2

0 1 2
1 2

0 1 2

λ=λ λ λ ...

= λ λ ...

m m

m m

 

 

   


  u u  

 The Multiple Scale Method, when applied to defective dynamical systems,  
    in addition requires using fractional ε - power time-scales: 

3ε x - Ax + x 0   

1 2
0 1 2

1 2 1 2
0 1 2 0 1 2

= ...
d, , ,.... ...
d

x x x xm m

m m m mt t t t t t d d d
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