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Scope: 

 To remind basic notions of Dynamical Systems and Stability Theory; 
 To introduce fundaments of Bifurcation Theory; 

 
Outline: 

1. General definitions 

2. Fundaments of Stability Theory 

3. Fundaments of Bifurcation Theory 

4. Multiple bifurcations from a known path 
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1. GENERAL DEFINITIONS 

We give general definitions for a N-dimensional autonomous systems. 
 

 Equations of motion: 
 

( ) ( ( )), Nt t x F x x   
 

where x are state-variables, {x} the state-space, and F the vector field. 
 

 Orbits: 
 

Let  ( )S tx be the solution to equations which satisfies prescribed initial 
conditions:  
 

0
( ) ( ( ))
(0)

S S

S

t t
 

x F x
x x


 
 

The set of all the values assumed by ( )S tx  for 0t  is called an orbit of the 
dynamical system. Geometrically, an orbit is a curve in the phase-space, 
originating from x0. The set of all orbits is the phase-portrait or phase-flow. 
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 Classifications of orbits: 
 

Orbits are classified according to their time-behavior. 
 

 Equilibrium (or fixed-) point: it is an orbit ( ) :S Et x x  independent of 
time (represented by a point in the phase-space); 

 Periodic orbit: it is an orbit ( ) : ( )S Pt tx x  such that ( ) ( )P Pt T t x x , 
with T the period (it is a closed curve, called cycle); 

 Quasi-periodic orbit: it is an orbit ( ) : ( )S Qt tx x such that, given an 
arbitrary small 0  , there exists a time τ for which 

( ) ( )Q Qt t   x x holds for any t; (it is a curve that densely fills a 
‘tubular’ space); 

 Non-periodic orbit: orbit ( )S tx  with no special properties. 
 

The first three are recurrent states; the last one a non-recurrent state. 
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2. FUNDAMENTS OF STABILITY THEORY 
 
 Stability of orbits 

 

Basic idea: An orbit is stable if all orbits, originating close to it, remain 
confined in a small neighborhood; otherwise, it unstable. This notion 
specializes as follows. 
 

 Stability of an equilibrium point (Liapunov):  
xE is stable if, for every neighborhood U of xE, there exists a 
neighborhood V U  of xE, such that an orbit x(t) starting in 
V remains in U  for all 0t  . If , in addition, ( ) Et x x as t  , then 
xE  is asymptotically stable. 

 
 Stability of a general orbit (orbital stability):  

( )S tx  is orbitally stable if all orbits, originating from nearby initial 
points, remain ‘close’ to it, irrespectively of their time-parametrization. 
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 Quantitative analysis: the variational equation 
 

 Orbit ( )S tx  to be analyzed:  

( ) ( ( ))S St tx F x  
 Perturbed motion:  

( ) ( ) ( )St t t x x x  
 

 Equations for the perturbed motion, Taylor- expanded:  
 

2
( ) ( ) ( ( ) ( ))

( ( )) ( ( )) ( ) O( ( ) )
S S

S S

t t t t
t t t t

 
 

  
  x

x x F x x
F x F x x x

 
 

i.e.: 
2( ) ( ) ( ) O( ( ) ), ( ) : ( ( ))S S St t t t t t     xx J x x J F x  
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 By linearizing in δx(t): 
 

( ) ( ) ( )St t t x J x  
 

This is called the variational equation (based on ( )S tx ); it is generally 
non-autonomous, since ( )S tx depends on t. Special cases: 
 
o ( )Sx t is an equilibrium point xE: 

 

( ) ( ), : ( )E E Et t   xx J x J F x  
 

in which JE has constant coefficients. 
 

o ( )Sx t is a periodic orbit xP(t) of period T: 
 

( ) ( ) ( ), ( ) : ( ( ))P P Pt t t t t   xx J x J F x  
 

in which JP(t)= JP(t+T) has periodic  coefficients (Floquet Theory). 
 

We will confine ourselves to equilibrium points. 
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 Stability of an equilibrium point 
 

We study the stability of an equilibrium point xE. 
 

 Linearized stability: 
 

We first study linearized stability of xE, by ignoring the reminder 2O( ( ) )t x  
in the equation for perturbed motion. 

 
 

 Variational equation: 
 

( ) ( )Et t x J x  
 

 Eigenvalue problem: 
 

( )E  J I u 0  
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 Discussion:  
 

o if all the eigenvalues λ have negative real parts, then ( ) 0t x as 
t  ; therefore xE is asymptotically stable; 

o if at least one eigenvalue λ has positive real part, then ( )t x as 
t  ; therefore xE is unstable; 

o if all the eigenvalues λ have non-positive real parts, and at least one 
of them has zero real part, xE  is a critical equilibrium point.  

 

 Hyperbolic and non-hyperbolic equilibrium points: 
 

o the equilibria at which all the eigenvalues λ of JE  have non-zero real 
parts are hyperbolic points; 

o the equilibria at which at least one of the eigenvalues λ has zero real 
part are non-hyperbolic points (also named critical). 
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 Nonlinear stability of hyperbolic points: 

Since the remainder term 2O( ( ) )t x in the nonlinear equation 
2( ) ( ) ( ) O( ( ) )St t t t   x J x x  

can be made as small as we wish, by selecting a sufficiently small 
neighborhood of xE, results for linear system apply also to nonlinear system. 
Therefore: 

 

A hyperbolic point is asymptotically stable if all the eigenvalues of the 
Jacobian matrix JE have negative real parts; is unstable if at least one 
eigenvalue has positive real part. 

 
 Nonlinear stability of non-hyperbolic points: 

Nonlinear terms decide the true character of the equilibrium, stable or 
unstable. Therefore, linear stability analysis fails to give an answer, and a 
nonlinear analysis is necessary. 
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 Example: 
 

A one-dimensional system admitting a non-hyperbolic equilibrium 
point xE=0 is considered: 
 

( ), , (0) (0) 0xx F x x F F      
 

By letting x=xE+δx and expanding in series, the equation reads: 
 
 
 

The phase-portrait is illustrated in the figure. 
 

 

(0)x F  (0)xF 2 3 41 1(0) (0) O( )
2 6xx xxxx F x F x x     
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3. FUNDAMENTS OF BIFURCATION THEORY 
 

Bifurcation theory considers families of systems depending on parameters. 
Its aim is to divide the parameter space in regions in which the system has 
qualitatively similar behaviors. At the separating boundaries, sudden 
alteration of the dynamics takes place. They are called bifurcations.  
 
Example: 
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 Parameter-dependent systems 
 
 Autonomous dynamical system: 

 

( ) ( ( ), ), ,N Mt t  x F x μ x μ    
 

where μ are parameters. 
 

 Phase-portrait: 
Since orbits ( , )S S tx x μ  depend on parameters, when these latter are 
(quasi-statically) varied, the whole phase-portrait is modified. 
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 Structural Stability 
 

A phase-portrait is robust, or structurally stable, if small perturbations of 
the vector-field (as ( , )G x μ , with 1  ) do not qualitatively change it, but 
only entails smooth deformations.  
 

 Note: Stability and Structural Stability should not be confused. The 
former refers to a selected orbit, and depends on the phase-portraits 
surrounding it; the latter refer on the whole phase-portrait, or, at 
least, a region of interest (local bifurcation)  
 

 Example of robust dynamics: 
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 Bifurcation: general definition 
 
 

 A bifurcation is a qualitative change of dynamics. It occurs at a 

bifurcation value cμ μ of the parameters at which structural stability 

is lost. Therefore, the dynamics at c μ μ , with μ  arbitrary small, 

is topologically inequivalent from that at cμ .  

 
 Note: at a bifurcation, stability of equilibria changes, or the number 

of equilibria and/or periodic orbits change.  
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 Bifurcation of equilibrium points:  
 

o If 0
Ex is hyperbolic, the sign of the real part of the eigenvalues of 0

EJ  
does not change under sufficiently small perturbations μ , so that the 
dynamics remain substantially unaltered. The local phase-portrait  at a 
hyperbolic equilibrium point is structurally stable. 

 

o If 0
Ex  is non-hyperbolic, one or more eigenvalues of 0

EJ  have zero real 
parts. Therefore, arbitrary small perturbations μmay lead to 
eigenvalues of EJ  with (small) positive or negative real parts, thus 
strongly changing the dynamics. We conclude that the local phase-
portrait  at a non- hyperbolic equilibrium point is structurally 
unstable.  

 
 By summarizing:  
 

 Bifurcation of equilibrium occurs at non-hyperbolic points.  
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 Example: saddle-node bifurcation: 

Dynamical system: Equilibrium path 

2x x
y y
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MULTIPLE BIFURCATIONS FROM A KNOWN PATH 
 

 Bifurcations from a known path 

We consider an autonomous dynamical system depending on parameters: 

( ) ( ( ), ), ,N Mt t  x F x μ x μ    

We assume to know an equilibrium path (named fundamental path) 
( )E Ex x μ ; we want: 

(a) to find the  values μc of the parameters for which a bifurcation takes 
place (analysis of critical behavior); 

(b) to study the dynamics of the nonlinear system for values of μ close to 
μc (post-critical behavior). 

For task (a), a linearized analysis is required; for task (b), a nonlinear 
analysis is necessary. 
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 Local form of the equation of motion 
 

It can be assumed that the fundamental path is trivial, E  x 0 μ , since it 
just requires a change of coordinates: 
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 Static and dynamic bifurcations 

We consider a bifurcation point cμ μ , at which  the Jacobian matrix 
: ( ( ), )c

E c cx xF F x μ μ  admits Nc:=Nz+2 Ni non-hyperbolic  (critical or central) 

eigenvalues with zero real part, ( 1 20,0, ; , ,k i i      .), the remaining 
(non-critical) having negative real part (example in Fig:  Nz=2, Ni =2). 
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 Transversality condition 

We assume that the critical eigenvalues cross the imaginary axis with non-
zero velocity (i.e. ( / ) Re( )k  μ 0  ) . 

We distinguish: 

 static bifurcation (also said divergence bifurcation), if the critical 
eigenvalues are all zero, 1, 2,,0k zk N    ; 

 dynamic bifurcation (or Hopf bifurcation): if the critical eigenvalues are 
all purely imaginary, ,j ji    1,2, , ij N  ; 

 static-dynamic bifurcation: if the critical eigenvalues are either zero and 
purely imaginary, 1, 2,, , 1, 2,, ,0 j jk z i

i k N j N        . 

If Nz+Ni =1, the bifurcation is called simple; if Nz+Ni>1, the bifurcation is 

called multiple. 
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 Resonant dynamic bifurcations 

If the critical eigenvalues j ji   are rationally dependent, i.e. if there 
exist some sets of integer numbers rjk such that: 

1
0, , 1, 2, ,

cN

rj j rj
j

k k r R


      

then the (multiple) bifurcation is said resonant. If no such numbers exist, the 
bifurcation is said non-resonant. 

 

 Note: resonance conditions do not play any role in determining if a 
point is, or not, of bifurcation. However, as it will be shown ahead, the 
resonances strongly affect the nonlinear dynamics. 
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 Linear codimension of a bifurcation 

In the parameter-space, bifurcations take place on manifolds on which some 
relations (constraints) among the parameters is satisfied, namely: 
 
  if the bifurcation is non-resonant: 

 

Re( ) 0, 1, 2, ,k z ik N N     
 

 if the bifurcation is resonant: 
 

1

Re( ) 0, 1, 2, ,

Im( ) 0, 1, 2, ,
c

k z i
N

rj k
k

k N N

k r R






  



 





  
 

The number: 
 

: z iM N N R    
 

is the (linear) codimension of the bifurcation; it is the codimension of the 
manifold on which the multiple bifurcation occurs. 
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 Examples of low-codimension bifurcations: 
 
 

 
 

 
Divergence Hopf Double-zero Hopf-Diverg. Double-Hopf 
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 The bifurcation parameters 
 

 A bifurcation point μc would appear as a rare singularity, if specific 
systems were considered. A small perturbation δμ would cancel it.  
 In contrast, if a family of systems is considered, the bifurcating system 

naturally appears as a member of that family. 

 
 

 The lowest-dimensional family where to embed the bifurcation has 
dimension-M, and it is transversal to the critical manifold. 
 Any perturbation of the transversal manifold changes the bifurcation 

point, but cannot destroy the bifurcation. The M parameters of the family 
are the bifurcation parameters. 
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 The (nonlinear) bifurcation analysis 
 

To analyze the system dynamics around a bifurcation point μ=μc, there are 
essentially two methods: 
 

 The Center Manifold Method (CMM) and Normal Form Theory 
(NFT)  

 

 The Multiple Scale Method (MSM) (or equivalent perturbation 
methods). 

 

The CMM reduces the dimension of the system, leading to an equivalent 
system (bifurcation equations) which describes the asymptotic ( t  ) 
dynamics. 
 
The NFT reduces the complexity of the bifurcation equations, giving them 
the simplest nonlinear form. 
 
The MSM performs both the operations simultaneously. In addition it filters 
the fast dynamics from the bifurcation equations.  


