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THE CENTER MANIFOLD METHOD 

 Existence of an invariant manifold 

 Linear systems 
The state-space N X  of the linear system ( ) ( )t tx Jx  is direct sum of three 
invariant sub-spaces, i.e.   c s uX X X X , where: 

 
 cX is the center subspace, of dimension Nc, spanned by the (generalized) 

eigenvectors associated with non-hyperbolic eigenvalues of J; 
 sX is the stable subspace, of dimension Ns, spanned by the (generalized) 

eigenvectors associated with hyperbolic eigenvalues of J having negative real 
part; 

 uX is the unstable subspace, of dimension Nu, spanned by the (generalized) 
eigenvectors associated with non-hyperbolic eigenvalues of J having positive 
real part. 
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 Nonlinear systems 
 

We consider the nonlinear system (in local form): 
 

( ) ( ( ), )t tx F x μ  
 

admitting the critical equilibrium ( , )c x 0 μ 0 . We assume that : ( , ) xJ F 0 0  
posses  Nc >0 critical eigenvalues,  Ns >0 stable eigenvalues and Nu =0 unstable 
eigenvalues. 
 
The Center Manifold Theorem states that the asymptotic dynamics of the system 
around the equilibrium point x 0 , at the critical value of the parameters cμ μ , 
takes place on a  (critical) manifold c XM , which has the following properties: 

 
 cM  has dimension Nc; 
 cM  is tangent to the critical subspace cX at x 0 ; 
 cM  is attractive, i.e. all the orbits tend to it when t  . 
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The center manifold is therefore an Nc-dimensional surface in the  
N=Nc +Ns-dimensional state-space. 

 Example:  

 
 To analyze the asymptotic dynamics, it needs: 

(a) to find the center manifold cM ; 
(b) to obtain the reduced Nc –dimensional equations governing the motion on 

cM  (bifurcation equations). 
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 Dependence of the CM on parameters 
 

Since we are interested not only in the dynamics at cμ μ , but also at the dynamics 
at μ close to cμ , we can use the ‘trick’ to consider μ as additional ‘critical’ 
variables, by considering the extended dynamical system: 

 

 ( ) ( ( ), ( ))
( )
t t t
t



x F x μ
μ 0

  

 
Therefore, the critical subspace becomes :c

  cX X P with : { } μP  the parameter 
space. Hence: 

 

 c
M has dimension Nc+M; 

 c
M  is tangent to the critical subspace c

X ; 

 c
M is attractive, i.e. all the orbits tend to it when t  . 
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 Reduction process 

 Equations of motion, expanded: 

By expanding ( )( ) ( , )tt x F x μ  (and ignoring the dummy equations μ 0 ) for 

small ( )tx and μ  close to cμ , we have: 

2 2( ) ( ) ( ( ), ), O( ( ) , )t t t t  x Jx f x μ f x μ  

 Linear transformation of the variables: 

After letting ( ) : ( ( ), ( ))c st t tx x x , with ( )c ct x X  critical variables and 

( )s st x X  stable variables, a proper linear transformation uncouples the linear 

part of the equations (t omitted): 

( , , )
( , , )

cc c c c s

s s s c ss

             
      

J 0x x f x x μ
x x f x x μ0 J
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 Center manifold: active and passive coordinates 
 

Cartesian equations for the CM: 
 

( , )s cx h x μ  
Tangency requirements: 

 

( , ) , ( , ) , ( , )  x μh 0 0 0 h 0 0 0 h 0 0 0 . 
 

The equation expresses the stable variables xs as (unknown) functions of the 
critical variables xc; therefore xc are also said active coordinates, and xs  
passive coordinates. 
 
 Time derivative of xs: 

 

The passive character of  xs also holds for time-derivatives. By using the 
chain rule and the upper partition of the equations of motion: 
  

d ( , ) ( , )
d

( , )( ( , ( ), ))

s c c c

c c c c c c

t
 

 

x

x

x h x μ h x μ x

h x μ J x f x h x μ
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 Equation for the center manifold: 
 

The lower-partition of the equation of motion supplies the equation for 
determining cM : 

 

( , )( ( , ( ), )) ( ) ( , ( ), )c c c c c c s c s c c  xh x μ J x f x h x μ J h x f x h x μ  
 

This equation can be solved, e.g., by using power series expansions, (starting 
from degree-2 polynomial, due to the required tangency): 
 

2 3
2 3( , ) , : { , }c c   h x μ α z α z z x μ  

 
 Bifurcation equations: 

 

The upper-partition governs the dynamics on cM : 
 

( , ( ), )c c c c c c x J x f x h x μ  
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 Example 1: a static bifurcation 

 Nonlinear, 2-dimensional system: 

3

2

0
0 1

x x xy cx
y y bx

       
                


  

 Critical point, critical and stable coordinates: 

0, { }, { }c c sx y   x x  

 Equation for the Center Manifold: 

3 2( , ) ( , )[ ( , ) ] ( , )xy h x h x x xh x cx h x bx            

 Power series expansion: 

2 2 3
20 11 02 30( , ) { } { }y h x x x x              
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 Zeroing separately the different powers:  

2
20

11
2

02

: 0
: 0

: 0

x b
x


 

 

  
 

 


 

 By solving for α’s coefficients, at the lowest order, we have: 
 

32 O( ( , ) )y bx x    

 Bifurcation equation: 
 

3( )x x b c x    

If b+c<0, a supercritical (stable) pitchfork occurs; if b+c>0, a sub-critical 

(unstable) pitchfork occurs; if b+c=0, higher-order terms must be evaluated. 
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 Example 2: a dynamical bifurcation 

 3-dimensional nonlinear system: 

2 2

1 0
1 0
0 0 1

x x xz
y y yz
z z x kxy y




     
            

              



  

 Equation for CM:  

2 2
1 2 3 4 5 O(3)z x y xy x y             

 z-equation (passive coordinate), transformed:  

2 2
2 1 3 5 4

2 2 2 2
1 2 3 4 5

2( ) ( )

( ) O(3)

xy x y x y

x y xy x y x kxy y
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 Zeroing separately the different powers in the z-equation:  

2
3 1 1

2
3 2 2

2 1 3 3

4 5 4

55 4

: 1 0 1 / 5
: 1 0 1 / 5
: 2( ) 0 / 5
: 0 0

0: 0

x k
y k
xy k k

x
y

  
  
   

   
  

     
              
    
    

 

 Bifurcation equations:  

2 2

2 2

[(1 / 5) / 5 (1 / 5) ]
[(1 / 5) / 5 (1 / 5) ]

x x y x k x k xy k y
y y x y k x k xy k y
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THE NORMAL FORM THEORY 
 

 Scope: 
To use a smooth nonlinear coordinate transformation, in order to put the 
bifurcation equation in the simplest form. 
 
 
 

 Algorithm: 
 

Equations of motion: ( ) x Jx f x  

Transformed Equations: ( ) y Jy g y  

Near-identity transformation: ( ) x y h y  

 
where x (possibly) includes the dummy variables µ. 
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o Transformed equation in the h(y) unknown: 

 
By differentiating the nearly-identity transformation: 
 

[ ( )]  yx I h y y   
 

the equation of motion is transformed into: 
 

[ ( )][ ( )] [ ( )] ( ( ))     yI h y Jy g y J y h y f y h y  
 
or: 

( ) ( ) ( ( )) [ ( )] ( )    y yh y Jy Jh y f y h y I h y g y  
 
which is a differential equation for  h(y) for any given g(y). A series solution is 
often necessary. 
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o By letting: 

 

32

2 3

2 3

( )( )( )
( ) ( ) ( )
( ) ( ) ( )

   
         

          

f yf yf y
g y g y g y
h y h y h y



 
 

with the homogeneous polynomial of k-degree: 
 

1 1 1
( ) ( ), ( ) ( ), ( ) ( )

k k kM M M

k km km k km km k km km
m m m
  

  

    f y p y g y p y h y p y  
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o Zeroing the independent monomials: 
 

 
 

where (if J is diagonal): 
 

1 1
diag[ ], : ( ),

N N

k i i j j i j
j j

m m k 
 

      L
 

o Resonance: 
 

Since 1 20,0, , , ,j i i      , 0i  for some i (i.e. Lk is singular); 

hence, k β 0  must be taken for compatibility, and resonant terms survive in 
the normal form!!! 

k k k k L γ α β
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 Example 1: System independent of parameters 
  

o System at a Hopf  bifurcation: 
 

3 2 2 3
31 32 33 34

3 2 2 3
31 32 33 34

0
, ,

0
x x x x xx xi x

x
i xx x x x xx x

   


    

        
                  


  

 

o Normal form: 
 

3 2 2 3
31 32 33 34y i y y y y yy y                

 

o Near-identity transformation: 
 

3 2 2 3
31 32 33 34x y y y y yy y               
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o Equation for the coefficients:  
 

31 31 31

32 32 32

33 33 33

34 34 34

2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 4

i

i
i

  
  

   
   

      
      
              
                   

   

 
o Solution: 

 
31 33 34 32 320,         

 
o Normal form: 

 
2

32y i y y y    
 
The term 2y y is resonant, since 1 2 12    , i.e. ( ) ( )2 i i i     
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o Amplitude equation: 
 
Changing the variables according to: 
 

( ) ( ) e , ( )i ty t A t A t   
 
the normal form is transformed into: 
 

2 (2 1)
32[ ( ) ( )]e ( ) e ( ) ( ) ei t i t i tA t i A t i A t A t A t         

 
or: 

2
32( ) ( ) ( )A t A t A t  

 
This is called Amplitude Modulation Equation (AME). Since 3O( )A A , the 

AME describes a slow modulation. Therefore, the change of variable  filters the 

fast dynamics. 
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 Example 2: Non-diagonalizable system 

o Double-zero bifurcation equations:  
 

2 2
21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

0 1
0 0

x x x xx x
x x x x x x

  

  

      
                


  

 

o Normal Form:  
 

2 2
21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

0 1
0 0

y y y yy y
y y y y y y

  

  

      
                


  

 

o Near-Identity transformation:  
 

2 2
21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

y y y yx y
x y y y y y
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o By zeroing the coefficients of the three monomials in the two transformed 
equations:  

 

21 21 21

22 22 22

23 23 23

24 24 24

25 25 25

26 26 26

0 0 0 1 0 0
2 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0

  
  
  
  
  
  

     
          
     

         
     
             

 

 
 Since 2Rank[ ] 4L :  
 

2 21 22 21 22( ) span{ , }, : (0,1,0,0,0,1) , (0,0,1,0,0,0)T T  L u u u uK  
 

2 21 22 21 22( ) span{ , }, (2,0,0,0,1,0) , (0,0,0,1,0,0)T T T  L v v v vK  
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o Compatibility condition:  
 

21 21 25 25 24 242( ) ( ) 0, 0            

It is possible to take 22 23 26 0      and 21 0   or 25 0  .  
 
o By taking 25 21 21 250, / 2       the NF reads (Takens normal form):  

 

2
21 25 11 1

22 2
24 1

1( )0 1
2

0 0
yy y

y y y

 



                    
 


  

 
o By taking 21 25 25 210, 2       the NF reads (Bogdanov normal form):  
 

1 1
2

2 2 24 1 25 21 1 2

00 1
0 0 ( 2 )

y y
y y y y y  

     
               


  

 
The Normal Form is not unique!! 


