Applied PDEs

Homework 4, Solutions

Problem 1. Use Fourier transform method to give a solution formula to the following
Cauchy problem

U — Upe +2u =0, ¢ € Rt >0,
u(z,0) = ().

Solution: Apply Fourier transform in x,
iy + it + =0, 4(€,0) = 9(&).

TSN
Define w = e™*5 4, one finds
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we +iwg = 0, w(§,0) = ¢(§)e™"

which is a transport equation. Therefore,
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We now apply the inverse Fourier transform to obtain
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u(w,t) = e /_OO d(y) exp{—ty — } dy.

Problem 4(a). Solve the Cauchy problem of 1-d heat equation u; — a®uz, = 0, (v €
R, t > 0) with the following initial conditions: u(x,0) = sin(z).

Solution: We can assume a > 0, let 2 = £, one has

{ U — U, =0, z€R, t>0

u(z,0) = sin(az).

Therefore,
u(z,t) = E(z,1) x sin(az)
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= sin(ay)e” %  dy,
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and
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sin(ay)e” & dy

u(z,t) =
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Compute this integral as follows
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— ¢ sin(z).
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Problem 6. Use extension method to solve the following problem

Up — Uy = 0, >0, >0,
u(z,0) = ¢(z), >0
u,(0,t) =0, t > 0; ¢(0) = ¢'(0) =

Solution: In view of the boundary condition, we use even extension:

U — Uz =0, xR, >0,
u(z,0) = ¢(x), v € R,

where

- o(z), >0
¢(—z), x <0.



We thus have the solution

u(z,t) =

1 0 (y)? 1 o0 ()2
= P(—y)e” = dy+@ P(y)e” *  dy
0

One easily verifies

Problem 8. For constant ¢ > 0, use separation of variables method to solve

U — Uy =0, O<z <, t>0,

u(z,0) = ¢(x), 0 <z <]

u(0,t) =0, uy(l,t) + ou(l,t) =0, t > 0.
Solution: Assume u(z,t) = X (x)7T(t) which gives

T/ X//
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Therefore it gives two equations
T =-\T, X"+ )X =0.
We solve for eigenvalue problem for X with the boundary conditions
X(0)=0, X'(I)+oX(l) =0.

It is easy to check that X(x) = 0 if A < 0, therefore, we come up with A = k* > 0 with
k > 0, if we want non-trivial solution for X (x). In the latter case, one has

X(z) = Acos(kz) + Bsin(kz).
Since X (0) =0, A = 0. For non-zero B, we use the other boundary condition to find
k cos(kl) + o sin(kl) = 0.
Therefore, k is the solution of

k = —o tan(kl),
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which has infinitely many solutions k, (n =1,2,---), and A\, = k2. For each ), we find
T, (t) = ane .

Therefore, we expect the solution

u(z,t) = Zane " sin(k,z).
n=1

where a, is determined as the coefficients of the expansion for ¢(z) with respect to
{sin(k,x)}2,. One can show (with some estimates on k,), that

Zan kit sin(knx),

l
= %/0 o(z) sin(kpx) dz

gives the solution to the problem.

with

Problem 14. Let u(z,t) € C3(Qr) be the solution of

{ u — Au = f(x,t), (z,t) € Qr,
u(‘r7t)|FT = ¢($,t>.

Define

F = suplf|, B =sup|g|.
Qr r

Prove that
max |u| < FT + B.
Qp

Proof. We first define
wy(z,t) = —(Ft+ B) + u(z,t).

Clearly, wy(x,t) satisfies

wyy — Awy = f(x,t) — F <0,
wi|r = ¢(z,t) — (Ft+ B) <0.

We thus apply the weak maximum principle to obtain

max w; = max wy < 0,
QT 1—‘T



therefore

max u < FT + B.
Qr

Now, we define
wQ(l’)t) = _(Ft+B) - U(l’,t)7

which satisfies
wyy — Awe = —f(x,t) — F <0,
wslr = —¢(x,t) — (Ft+ B) <0.

We thus apply the weak maximum principle to obtain

max ws = max wy < 0,
QT I'r

therefore
max (—u) < FT + B.
Qr
We thus obtained
max |u| < FT + B.
Qr

Problem 15. Assume u solves u; — Au = 0, prove the following statements

e (a) If ¢ : R — R is a smooth convex function, then v = ¢(u) satisfies

v — Av < 0.

e (b) Prove v = |Du|* + u? also satisfies the above inequality.

Solution; For (a), one computes directly for v = ¢(u),

vy — Av = ¢ (u)u; — ¢ (u) Au — ¢ (u)|Vul?
= —¢"(u)|Vul* < 0.

For (b), we compute for v = |Dul|? + u2,
vy — Av
= 2Du - Duy + 2uguyy — 2| Duy|* — 2w Auy — 2| D*ul? — 2Du - D(Au)

= 2Du - D(u; — Au) + 2u; 0 (uy — Au) — 2| Duy|* — 2| D*ul?
= —2|Dw;|* — 2| D*ul* < 0.



