7. INITIAL VALUE PROBLEMS:
THE STRAIGHTFORWARD EXPANSION

We show that the straightforward expansion method, successfully applied
in static problems, does not work 1n 1nitial value problems.

m Example: The Raileigh-Duffing oscillator
¥(t)+ @ x(t)— wx(t) +bx’ (t) +cx’ () =0
x(0)=a,, x(0)=0

» Rescaling:
U — U x—&%x.

» Series expansion:

x(1;€) = x, (1) + €x, (1) + 7 x, () +- -+



» Perturbation equations:

0. X, () + @’ x,(t) =0
| x0(0)=a0, xo(o):()

) B0+ @0 (0) = 13 (0)- b, (1) — cxy (1)
% (0)=0, 5(0)=0

» Generating solution:
x, =(a,/2)e” +c.c.

» ¢ -order equation:

X, @) +ax (1) = f e + f3e3i“’t+ C.C.
x (0)=0, % (0)=0
where:

(. 3. 3 a (.
1 ::E(Z,Lla)—zlafbag —angj, 1 ::go(zafb—c)



» Solution to the ¢ -order equation:

| e 1 ' 1 '
. 3
x ()= —a e —j— fre@— - ;67" +c.c.
L2 _/ |\ 2a) 7\ 8a) )
compleme;trary solution seculglrr term non-seclﬁar term

The secular term diverges in time. The series 1s not uniformly valid,
since O(ex, / x,) 21 ,1i.e. x; is not a small correction of xy. Therefore, the

straightforward method has not practical utility in initial value problems.



8. THE MULTIPLE SCALE METHOD: BASIC ASPECTS

The MSM is probably the most powerful perturbation method able to
furnish uniformly valid expansions for oscillatory problems.

m Basic idea

The response of a weekly nonlinear system, can be considered as a periodic
signal slowly modulated on slower scales. Example 1in nature: the
temperature 1n a fixed site varies periodically on a daily-scale, but it is
modulated, in amplitude and phase, on a yearly-scale, and, in turn, on a
century-scale.
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m Introducing independent time-scales
e Rayleigh-Duffing oscillator :

¥(t)+ @’ x(t) — wx(t) +bx’ (t) +cx’ (1) =0
x(0)=a,, x(0)=0

» We assume that the variable x(t) depends on several independent time
scales, defined as:

» Rules for derivatives:
Since x(t) = x(z,(¢),t,(¢),t,(¢),---), the chain rule furnishes:

dx Jdx ,O0x

x(t)=—+E—+E —+---
dat, 9, ot,
Hence, formally:
D=d,+e'd+e d,+---=) £d,, Dz=i, dk::i
k=0 dz atk



Similarly, for second-order derivative:

D*=(d,+&'d,+€ d,+--)* =di+2¢ed,d,+£°(d]+2d,d,) + -

» Rescaling:
H— U x—&"%x

» Series expansion:

x(t;€) :xo(to,tl,t2,°--)+8x1(l‘0,l‘1,t2,-~°)+°-



» Perturbation equations:
g0 :{dé x, +@'x, =0
%, (0)=a,, dyx,(0)=0
.. d; x, +w’x, =-2d,d,x, + ¢ d,x, —b(d, x,)’ —cx;
X (0) =0, dyx,(0)=—d;x, (O)
(A2 x, +@*x, =—(2d,d,x, +d’*x, +2d,d,x,)
E” 4 +u(d, x, +d,x,)—3b(d,x,)° (d,x, +d,x,) —3cx, x,
x,(0)=0, dyx,(0)=-d,x (0)—d,x,(0)

where x, (0) is a shortening for x,(0,0,---).

a Note: the perturbation equations are partial differential equations,
although the original equations are ordinary differential equations.



m Introducing a time-dependent amplitude
» Generating solution:
X, =a(t,t,,---)cos(ar, +6(t,,t,, )

= A(t,,1,,...) e+ c.c.

where:

A(tl,t2,.“) ~ %a(tlatza...)eig(tl’tz’“')

a Note: X is periodic on the fast 7y- scale, and modulated on the slower

scales by a complex quantity A or, equivalently, by two real unknowns,
a and 6.

» By enforcing the initial conditions, it follows:

a(0)=a,, 6(0)=0



» g-order equations:

Since:
x, = A(t,,1,,...) e +cc.
d,d,x, =iwd Ae +c.c.,
X, =(Ae™+Ae ™) = A’ +3A°Ae ™ +c.c.
d,x,)’ = (iwAe™ —iwAe )’
=—iw’ A’ e +3iw’ A’ Ae' ™ +c.c.
then:
d;x, +@’x, = f e+ f,e" +c.c.
x,(0)=0, dyx (0)=-d,A(0)+c.c.
where:

fi=-2iwd, A+iouA-3(i’b+c)A’A, f,=(io’b-c)A’



» Eliminating secular terms:

The resonant forcing-term of frequency-w would lead to secular terms
I, exp(iwt,) to appear in the solution. To remove them, f, =0 must be

enforced, 1.e.:

This 1s a nonlinear differential equation governing the modulation on the
t,-scale; 1t 1s called the (first-order) Amplitude Modulation Equation
(AME).

> Real form of AME:

Sinced, A=(1/2)(d, a+iad, ¥¥) €”, by separating real and imaginary
parts, the complex AME furnishes two real equations:
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to be sided by a(0) =qa,, 6(0)=0.
» Coming back to the original variables:

By truncating the analysis at this order (first-order perturbation
solution):

o The dependence on ?,,7,,--- must be ignored, i.e. a=a(t,), 0 =6(t,) .

o By multiplying the real AME’s by € % and using
£"’a— a, g — u, £d, — D, the perturbation parameter is

reabsorbed and return to the true time ¢ 1s performed.
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»Reduced dynamical system:

The two real AME can be solved in sequence; first, the amplitude a(z) is

drawn by integrating:
.1 3 5 9
a=—a| U—— @ ba
2 (” 4 j

which represents a one-dimensional reduced dynamical system, of type
a=F(a,u).

Successively, the phase 6(¢) is determined by integrating:

QO Note: the real amplitude-equation captures the essential dynamics of
the system; the phase equation describes a complementary aspect.
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m Steady-solutions

»The AME admit two steady solutions a(#) =const =:a, :

o Trivial solution:
a, =0 Yu,vo

which describes the trivial equilibrium path x=0 V p.

o Periodic solution:

U=kt K‘=:§CCZS2

which describes the limit cycle x(¢) = g, cos [(a)+ K‘) t] , where x 1s

the frequency correction, and Q = @+ x the nonlinear frequency.

Q Note: The MSM filters the fast dynamics, so that a periodic x-motion
appears as an equilibrium a-position

13



» Stability of steady-state solutions
» Introducing a perturbation:

To analyze stability of the steady solutions, we put:
a(t)=a, +da(t)

with da(t) a small perturbation superimposed to the steady amplitude.

» Variational equation:

By linearizing the equation in da(t), the variational equation follows:

da(t) = %(u —%a)zbaf) da(t)
whose solution 1s:

da(t) = 8a(0) exp[% (U —%wzbaf)t]
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e Stability of the trivial solution:
By substituting a, =0 in the solution of the variational equation, it follows:

oa(t) =0a(0) exp[% ut]

When t > o

» oa(t) = oa(0)if 4 <0, i.e. the equilibrium is (asymptotically) stable;
> 0a(t) = < if g >0, 1i.e. the equilibrium is unstable.

S A J/ /‘\ s A

a

Bifurcation diagrams and orbits for (a) supercritical and (b) subcritical Hopf bifurcations.
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e Stability of the periodic solution:

By substituting a, = \/ 441 /(3b@’) in the solution of the variational equation, it
follows:

Sa(t) = 8a(0)exp(—i1).

Hence, the limit-cycle is stable if the bifurcation is supercritical (a) and
unstable if the bifurcation is subcritical (b).

1<0 #=0 10

a)

b)
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9. THE MULTIPLE SCALE METHOD: ADVANCED
TOPICS

Usually, a first-order solution 1s sufficient to describe limit-cycles and their
stability. However, there exist problems in which a higher-order solution 1s
necessary to describe qualitatively new aspects. We illustrate how to get a
second-order solution for the Rayleigh-Duffing oscillator.

m Moving to higher-orders

» ¢-order perturbation equation:

d; x, +@’x, = f e+ f,e" +c.c.
x,(0)=0, dyx (0)=-d,A(0)+c.c.

where f, =0 to avoid secular terms. By solving it:
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i 1{ ¢ : i
X, :B(tl,tz,...)e“’t°+—(—2— a)bjA3 e’ +c.c.
S\ @

where B(7,,1,,...)is an arbitrary function of the slower scales, constrained
to satisfy the initial condition.

o To simplify the analysis, we ignore this arbitrary function, by letting

B=0. Indeed, B(1,,t,,...)e"™ +c.c. repeats the generating solution.

o Since the initial conditions cannot be enforced at any order, we will
enforce them, as a whole, on the final solution (although this 1s an
inconsistent method).

> ¢”-order perturbation equation:
d; x, + @’ x, =—(2d,d,x, +d;x, +2d,d,x,)

+u(d,x, +d,x,)—3b(d, x,)*(d,x, +d,x,) —3cx; x,
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By ignoring the non-resonant terms (NRT), the various contributions are:
d,d, x, =iwd, Ae'"+c.c.+ NRT, d;x,=d Ae“+c.c.+NRT,
d,d, x, = NRT,
d, x,=d, Ae™+c.c.+ NRT, d,x =+NRT,
d, x, =iwAe ™ +c.c.,

(d, x,)°d, x, =@’ (2AAd, A— A’ d, A)e"™+c.c.+ NRT,

d, x,)°d, x, =i@’ [—%(é — ia)bj A’A’1e™+c.c.+ NRT,

1 .
Xox, = [§ (% —~ ia)bj A’A’+]e+c.c.+ NRT
w

where d, Ais known from the first-order AME, and d; A =d,(d, A) is
evaluated by differentiation:
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dlA:lﬂA+§(—a)2b+i£jA22
2 2 @

2
& A=L 1P A-3upar —i AR +2 B0’ —Z —4ibcw) A’ A
4 0, 4 @

The & -order perturbation equation reads:

d; x, + w’x, =[2iwd, A+ 4 A—%ziﬂA A

(4—56— — 2[92(04 —3ibcw)A’A*1e"™ + c.c.+ NRT
24 @ 8

> Elimination of the secular terms:

d2A=—iiﬂ2A—3iuA2A+( z£6—+12b2w3—§bc)A3ZZ
8 4 @ 8w 16 2

which governs the evolution of A on the #,-scale.
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= The reconstitution method
To come back to the true time ¢, the #;- and #,-derivatives of A are
recombined as follows:

A=ed A+&d, A+---

= e[lﬂA +§(—w2b + iij A%A]
2 2 10

1 3 ¢ 45 c* 9 3 —
+&[—i— P A—=— UA’ A+ (mi——+i—b'@ —=bc)A’A* ]+
[ 8(0/1 4 w “ +C 48 @ 16 2 ) ]
This is the second-order AME. By multiplying both members by £'"*and
using €A — A, & — u, the perturbation parameter is reabsorbed. Finally,

by letting A =a/2exp(if), the real form follows:
a= 1 Y7, —éa)zba2 a—ii(,u +la)2baz)a3
16 w 2

2
ad= éi613—l’ll—a+i(3192603 SC—)a5
\ 8w 8 w 256 0]
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m The response

Once the AME have been solved, the solution to the Rayleigh-Duffing
equations reads:

x(t) =a(t)cos(wt+6(t))+

Lcﬁ(t}{é cos[3(wr + 0(r)] + wb sin[3(wrt + B(£)]} +---

32

where a(0),2(0) follow from the initial conditions x(0)=q,, x(0)=0 .
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m Limit cycles and their stability

e Limit-cycles
The limit-cycles are the fixed points a(f) =const = a, of the (real) AME.
They satisfy the following algebraic equation:

1 3 o) 2 3 C 1 2 2N\ 3
—|U——wba” la———(U+—wba")a" =0
2 (,u 4 ) 16 @’ (v 2 )

which implicitly defines a curve on the (4, a) -plane, for given values of

the auxiliary parameters. By solving it:

_3 Abar® +bcas2 PRy
Sy —3ca’ '

or, by expanding for small amplitudes:

Y7, zéba)zazs2 +1—5bcaf + e
4 32
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m Numerical results

» The most interesting case is ¢ <0 (soft elastic nonlinearities), in which
the second-order term subtracts in modulus from the first-order term.

» Since equilibrium of the Raileigh-Duffing oscillator is governed by:
@’x, +cx, =0
two nontrivial equilibrium points X, =ta@/ \/H exist in this case.

» The two points are connected by separatrices which prevent the limit
cycle to increase unboundedly (as instead occurs in the case ¢>0).

» These properties are not captured by the reduced dynamical system,
since x, =O(1) is too large for the asymptotic analysis (x =0(£"*)) to
hold.
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e Bifurcation diagram

[ A

0.08

0.006

0.04

0.02

e ..|....|...}
0.0 0.10 0.15 020 025 030 0.35

Bifurcation diagram for @®=1,0=1,¢ =-10; - exact second-order solution, --- expanded

second-order solution, — first-order solution, + numerical solutions;
heteroclinic bifurcation: a=0.316
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e Numerical integrations of the original system:

j.

(a) (b)
Time-histories and orbits of the original system; @®=1,b=1,c =—-10: (a) £ =0.02; (b)
1 =0.035
O Note: when the limit cycle collides with the non-trivial equilibrium
points, it disappears. Such a phenomenon is called a heteroclinic
bifurcation.
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