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7. INITIAL VALUE PROBLEMS:  

THE STRAIGHTFORWARD EXPANSION 

  
 

We show that the straightforward expansion method, successfully applied 

in static problems, does not work in initial value problems.  

 
� Example: The Raileigh-Duffing oscillator  
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� Rescaling: 

µ εµ→ , 
1/ 2

x xε→ . 
 

� Series expansion: 
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� Perturbation equations: 
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� Generating solution: 

0 0( / 2)e . .i t
x a c c

ω= +  

� ε -order equation: 
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� Solution to the ε -order equation: 

 

( )1 3
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The secular term diverges in time. The series is not uniformly valid, 

since 1 0O( / ) 1x xε ≥  , i.e. x1 is not a small correction of x0. Therefore, the 

straightforward method  has not practical utility in initial value problems.  
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8.  THE MULTIPLE SCALE METHOD: BASIC ASPECTS 
 

The MSM is probably the most powerful perturbation method able to 

furnish uniformly valid expansions for oscillatory problems. 
 

 

� Basic idea 
 

The response of a weekly nonlinear system, can be considered as a periodic 

signal slowly modulated on slower scales. Example in nature: the 

temperature in a fixed site varies periodically on a daily-scale, but it is 

modulated, in amplitude and phase, on a yearly-scale, and, in turn, on a 

century-scale.  
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� Introducing independent time-scales 
 

• Rayleigh-Duffing oscillator : 
 

( ) ( )
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� We assume that the variable ( )x t depends on several independent time 

scales, defined as: 
2

0 1 2: , : , : ,t t t t t tε ε= = = �  
 

� Rules for derivatives: 

Since 0 1 2( ) ( ( ), ( ), ( ), )x t x t t t t t t= � , the chain rule furnishes: 
 

2
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∂ ∂ ∂

= + + +
∂ ∂ ∂

� �
    

Hence, formally: 
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Similarly, for second-order derivative: 

 
2 1 2 2 2 2 2

0 1 2 0 0 1 1 0 2(d d d ) d 2 d d (d 2d d )D ε ε ε ε= + + + = + + + +� �  

 

 

� Rescaling: 

µ εµ→ ,   
1/ 2

x xε→   

 

 

� Series expansion: 

 

0 0 1 2 1 0 1 2( ; ) ( , , , ) ( , , , )x t x t t t x t t tε ε= + +� � �  
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� Perturbation equations: 
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where (0)kx is a shortening for (0,0, )
k

x � . 

 

� Note: the perturbation equations are partial differential equations, 

although the original equations are ordinary differential equations.  
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� Introducing a time-dependent amplitude 
  

� Generating solution:  
 

( ) 0
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where: 

( ) ( ) ( )1 2, ,...

1 2 1 2
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2

i t t
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� Note: x0 is periodic on the fast t0- scale, and modulated on the slower 

scales by a complex quantity A or, equivalently, by two real unknowns, 

a and θ. 

 

� By enforcing the initial conditions, it follows: 

 

0(0) , (0) 0a a θ= =  
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� ε-order equations: 
 

Since: 
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then: 
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where: 
 

( ) ( )3 2 3 3

1 1 3: 2 d 3 , :f i A i A i b c A A f i b c Aω ω µ ω ω= − + − + = −  
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� Eliminating secular terms: 
 

The resonant forcing-term of frequency-ω would lead to secular terms  

0 0exp( )t i tω  to appear in the solution. To remove them, 1 0f =  must be 

enforced, i.e.: 
 

2 2

1

1 3
d

2 2

c
A A b i A Aµ ω

ω

 
= + − + 

   
 

This is a nonlinear differential equation governing the modulation on the 

1t -scale; it is called the (first-order) Amplitude Modulation Equation 

(AME).  

 

� Real form of AME: 
 

Since ( )1 1 1
d (1/ 2) ed d

iA a ia θϑ= + , by separating real and imaginary 

parts, the complex AME furnishes two real equations:  
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2 2

1

3

1

1 3
d

2 4

3
d

8

a a ba

c
a a

µ ω

ϑ
ω

  
= −   


 =


 

 

to be sided by 0(0) , (0) 0a a θ= = .  

 

� Coming back to the original variables: 

 

By truncating the analysis at this order  (first-order perturbation 

solution): 
 

o The dependence on 2 3, ,t t �must be ignored, i.e. 1 1( ), ( )a a t tθ θ= = .  

o By multiplying the real AME’s by 
3/ 2ε and using 

1/ 2

1, , d Da aε εµ µ ε→ → → , the perturbation parameter is 

reabsorbed and return to the true time t is performed. 
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� Reduced dynamical system: 
 

The two real AME can be solved in sequence; first, the amplitude a(t) is 

drawn by integrating: 

2 21 3

2 4
a a baµ ω

 
= − 

 
�

 
 

which represents a one-dimensional reduced dynamical system, of type 
( , )a F a µ=� . 

 

Successively, the phase θ(t) is determined by integrating: 
 

33

8

c
a aϑ

ω
=�  

 

� Note: the real amplitude-equation captures the essential dynamics of 

the system; the phase equation describes a complementary aspect. 
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� Steady-solutions 
 

� The AME admit two steady solutions ( ) const :
s

a t a= = : 
 

o Trivial solution: 

0 ,sa µ ϑ= ∀ ∀  

which describes the trivial equilibrium path x=0 ∀ µ. 

 

o Periodic solution: 
 

2 2 23 3
, :

4 8
s sba t caµ ω ϑ κ κ= = =  

 

which describes the limit cycle ( )0( ) cosx t a tω κ = +  , where κ   is 

the frequency correction, and ω κΩ = +  the nonlinear frequency.  

 

� Note: The MSM filters the fast dynamics, so that a periodic x-motion 

appears as an equilibrium a-position 
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� Stability of steady-state solutions 
 

� Introducing a perturbation: 
 

To analyze stability of the steady solutions, we put: 
 

( ) ( )sa t a a tδ= +  
 

with ( )a tδ a small perturbation superimposed to the steady amplitude.  

 

� Variational equation: 
 

By linearizing the equation in ( )a tδ , the variational equation follows:  

 

2 21 9
( ) ( ) ( )

2 4
sa t ba a tδ µ ω δ= −�

 

whose solution is: 

2 21 9
( ) (0)exp[ ( ) ]

2 4
sa t a ba tδ δ µ ω= −    
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• Stability of the trivial solution: 

By substituting 0
s

a =  in the solution of the variational equation, it follows: 

1
( ) (0)exp[ ]

2
a t a tδ δ µ=

 

When t → ∞ : 
 

� ( ) (0)a t aδ δ→ if 0µ < , i.e. the equilibrium is (asymptotically) stable;  

� ( )a tδ → ∞ if 0µ > , i.e. the equilibrium is unstable. 

 
 

Bifurcation diagrams and orbits for (a) supercritical and (b) subcritical Hopf bifurcations. 
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• Stability of the periodic solution: 

By substituting 
24 /(3 )sa bµ ω= in the solution of the variational equation, it 

follows: 
 

( ) (0) exp( )a t aδ δ µ= − . 
 

Hence, the limit-cycle is stable if the bifurcation is supercritical (a) and 

unstable if the bifurcation is subcritical (b). 
 

 

x2 

x2 x2 x2 

x2 x2 

x1 

x1 x1 x1 

x1 x1 

µ<0 µ=0 µ>0 

a) 

b) 

 

x(t ; µ) 

x 

µ 
R

N
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9. THE MULTIPLE SCALE METHOD: ADVANCED 

TOPICS 

 

 Usually, a first-order solution is sufficient to describe limit-cycles and their 

stability. However, there exist problems in which a higher-order solution is 

necessary to describe qualitatively new aspects. We illustrate how to get a 

second-order solution for the Rayleigh-Duffing oscillator. 

 

� Moving to higher-orders 

 

� ε-order perturbation equation: 

 

( )

0 032 2

0 1 1 1 3

1 0 1 1

d e e . .

0 0, d (0) d (0) . .

i t i t
x x f f c c

x x A c c

ω ωω + = + +


= = − +
 

 

 where 1 0f =  to avoid secular terms. By solving it: 
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( ) 0 033

1 1 2 2

1
, ,... e e . .

8

i t i tc
x B t t i b A c c

ω ωω
ω

 
= + − + 

      

where ( )1 2, ,...B t t is an arbitrary function of the slower scales, constrained 

to satisfy the initial condition. 

 

o To simplify the analysis, we ignore this arbitrary function, by letting 

B=0.  Indeed, ( ) 0

1 2, ,... e
i t

B t t
ω

+c.c. repeats the generating solution. 
 

o Since the initial conditions cannot be enforced at any order, we will 

enforce them, as a whole, on the final solution (although this is an 

inconsistent method). 

 

� ε2
-order perturbation equation: 

 

2 2 2

0 2 2 0 2 0 1 0 0 1 1

2 2

1 0 0 1 0 0 1 0 0 1 0 1

d (2d d d 2d d )

(d d ) 3 (d ) (d d ) 3

x x x x x

x x b x x x cx x

ω

µ

+ = − + +

+ + − + −  
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By ignoring the non-resonant terms (NRT), the various contributions are:  
 

0 0

0

0

0
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0 2 0 2 1 0 1

0 1 1

1 0 1 0 1

0 0

2 2 2

0 0 1 0 1 1

2 3 3 2
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d d d e . . , d d e . . ,

d d ,

d d e . . , d ,

d e . .,

(d ) d (2 d d )e . . ,

3
(d ) d [ ]e

8

i t i t

i t

i t

i t

i t

x i A c c NRT x A c c NRT

x NRT

x A c c NRT x NRT

x i A c c

x x AA A A A c c NRT

c
x x i i b A A

ω ω

ω

ω

ω

ω

ω

ω

ω

ω ω
ω

= + + = + +

=

= + + = +

= +

= − + +

 
= − − 

 

02 3 2

0 1 2

. . ,

1
[ ]e . .
8

i t

c c NRT

c
x x i b A A c c NRT

ωω
ω

+ +

 
= − + + + 

 

 

 

where 1d A is known from the first-order AME, and 
2

1d A  1 1d (d )A≡ is 

evaluated by differentiation: 
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2 2

1

2
2 2 2 2 2 4 3 2

1 2

1 3
d

2 2

1 9
d 3 ( ) (3 4 )

4 4

c
A A b i A A

c c
A A b i A A b ibc A A

µ ω
ω

µ µ ω ω ω
ω ω

 
= + − + 

 

= − − + − −  

 

The 
2ε -order perturbation equation reads: 

0

2 2 2 2

0 2 2 2

2
2 4 3 2

2

1 3
d [ 2 d

4 2

45 9
( 3 ) ]e . .
24 8

i t

c
x x i A A i A A

c
b ibc A A c c NRT

ω

ω ω µ µ
ω

ω ω
ω

+ = − + −

+ − − + +  

 

� Elimination of the secular terms: 
 

2
2 2 2 3 3 2

2 2 3

1 3 45 9 3
d ( )

8 4 48 16 2

c c
A i A A A i i b bc A Aµ µ ω

ω ω ω
= − − + − + −  

 

which governs the evolution of A on the t2-scale. 
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� The reconstitution method 

To come back to the true time t, the t1- and t2-derivatives of A are 

recombined as follows: 
 

2

1 2

2 2

2
2 2 2 2 3 3 2

2 3

d d

1 3
[ ]
2 2

1 3 45 9 3
[ ( ) ]

8 4 48 16 2

A A A

c
A b i A A

c c
i A A A i i b bc A A

ε ε

ε µ ω
ω

ε µ µ ω
ω ω ω

= + +

 
= + − + 

 

+ − − + − + − +

� �

�

 

 

This is the second-order AME. By multiplying both members by 1/ 2ε and 

using 
1/ 2 ,A Aε εµ µ→ → , the perturbation parameter is reabsorbed. Finally, 

by letting / 2exp( )A a iθ= , the real form follows: 
 

2 2 2 2 3

2

2 2
3 2 3 5

3

1 3 3 1
( )

2 4 16 2

3 1 3
(3 5 )

8 8 256

c
a ba a ba a

c c
a a a b a

µ ω µ ω
ω

µ
ϑ ω

ω ω ω

  
= − − + 

  

 = − + −

�

�   
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� The response 
 

Once the AME have been solved, the solution to the Rayleigh-Duffing 

equations  reads: 

 

3

2

( ) ( ) cos( ( ))

1
( ){ cos[3( ( )] sin[3( ( )]}

32

x t a t t t

c
a t t t b t t

ω θ

ω θ ω ω θ
ω

= + +

+ + + +�    

 

where (0), (0)a ϑ  follow from the initial conditions ( ) ( )00 , 0 0x a x= =� . 
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� Limit cycles and their stability 
 

••••  Limit-cycles 
 

The limit-cycles are the fixed points ( ) const : sa t a= =  of the (real) AME.  

They satisfy the following algebraic equation: 
 

2 2 2 2 3

2

1 3 3 1
( ) 0

2 4 16 2

c
ba a ba aµ ω µ ω

ω

 
− − + = 

   
 

which  implicitly defines a curve on the ( , )aµ -plane, for given values of 

the auxiliary parameters. By solving it: 
 

2 2
2 2

2 2

43

2 8 3

s
s

s

b bca
a

ca

ω
µ ω

ω

+
=

−  

 

or, by expanding for small amplitudes: 
 

2 2 43 15

4 32
s sb a bcaµ ω= + +�  
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� Numerical results 
 

� The most interesting case is 0c <  (soft elastic nonlinearities), in which 

the second-order term subtracts in modulus from the first-order term. 

� Since equilibrium of the Raileigh-Duffing oscillator is governed by: 
 

2 3 0E Ex cxω + =  

two nontrivial equilibrium points : /
E

x cω= ± exist in this case.  

� The two points are connected by separatrices which prevent the limit 

cycle to increase unboundedly (as instead occurs in the case 0c > ). 

� These properties are not captured by the reduced dynamical system, 

since O(1)Ex =  is too large for the asymptotic analysis (
1/2O( )x ε= ) to 

hold. 
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•••• Bifurcation diagram 
 

 

 

Bifurcation diagram for 1, 1, 10b cω = = = − ; --- exact second-order solution, --- expanded 

second-order solution,      first-order solution,  + numerical solutions;  
heteroclinic bifurcation: a=0.316 
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•••• Numerical integrations of the original system: 
 

 
Time-histories and orbits of the original system; 1, 1, 10b cω = = = − : (a) 0.02µ = ; (b) 

0.035µ =  

� Note: when the limit cycle collides with the non-trivial equilibrium 

points, it disappears. Such a phenomenon is called a heteroclinic 

bifurcation. 


