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1. Basic facts of Fourier transform

Fourier transform in multi-D is defined by

f̂(k) =
1

(2π)
n
2

∫
Rn

f(x)e−ik·xdx

where k · x =
∑n

i=1 kixi.

We list here a series properties of Fourier transform without proof,

(1) (∂xjf)
∧(k) = ikj f̂(k), and (∂αf)∧(k) = i|α|kαf̂(k)

(2) (xf)∧(k) = i∂kj f̂(k), and (xαf)∧(k) = i|α|∂αf̂(k)

(3) f(x− a)∧(k) = e−ia·kf̂(k)

(4) (f(λx))∧(k) =
1

|λ|
f̂(
k

λ
), ∀λ ̸= 0.

(5) (f ∗ g)∧(k) = (2π)
n
2 f̂(k)ĝ(k)

1
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Example 1. For x ∈ R, the Fourier transform of e−a|x| is
1√
2π

2a

k2 + a2
.

f̂(k) =
1√
2π

∫
R
e−a|x|e−ixkdx =

1√
2π

∫
R
e−a|x|(cos(xk)− i sin(xk))dx

=
2√
2π

∫ ∞

0

e−ax cos(xk)dx =
1√
2π

2a

k2 + a2
.

Example 2. Fourier transform of Gaussian e−x2

in 1-d is
1√
2
e−

k2

2 . More general case in multi

dimension is ∀A > 0

(e−A|x|2)∧(k) =

n∏
1

(e−Ax2
i )∧(ki) =

1

(2A)
n
2
e−

|k|2
4A .

The inverse Fourier transform can be formally given by

f̆(x) =
1

(2π)
n
2

∫
Rn

f(k)eik·xdk.

Example 3. The inverse Fourier transform of
1√
2π
e−|k|2t can be obtained in the following discus-

sions. Let

I(x) = f̆(x) =
1√
2π

∫
R

1√
2π
e−|k|2teikxdk =

2

2π

∫ ∞

0

e−k2t cos(xk)dk.

We know from
∫∞
0
e−y2

dy =

√
π

2
that

I(0) =
1

2
√
πt

On the other hand, differentiate I(x) once and do integral by parts, we have

I ′(x) +
x

2t
I(x) = 0.

Therefore, by solving this ODE, we have

I(x) =
1

2
√
πt
e−

x2

4t .

2. Cauchy Problem

The initial value problem of heat equation is

ut −△u = f(x, t), x ∈ Rn, t > 0, (2.1)

u|t=0 = u0(x). (2.2)

2.1. Solution formula of the problem. We will find the formal solution of Cauchy problem by

Fourier transform. Take Fourier transform in x for equation (2.1) and its initial variable (2.2),

ût + |k|2û = f̂(k, t), k ∈ Rn, t > 0,

û|t=0 = û0(k).

This ODE problem is easy to solve by Duhamel formula with solution

û(k, t) = e−|k|2tû0(k) +

∫ t

0

e−|k|2(t−τ)f̂(k, τ)dτ,
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Now taking the inverse Fourier transform and using its property for convolutions, we have

u(x, t) =
1

(4πt)
n
2
e−

|x|2
4t ∗ u0(x) +

∫ t

0

1

(4π(t− τ))
n
2
e−

|x|2
4(t−τ) ∗ f(x, τ)dτ

=
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy +

∫ t

0

∫
Rn

1

(4π(t− τ))
n
2
e−

|x−y|2
4(t−τ) f(y, τ)dydτ.

One can get formally the solution of (2.1)(2.2) by Fourier transform.

u(x, t) =
1

(4πt)
n
2
e−

|x|2
4t ∗ u0(x) +

∫ t

0

1

(4π(t− τ))
n
2
e−

|x|2
4(t−τ) ∗ f(x, τ)dτ

=
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy +

∫ t

0

∫
Rn

1

(4π(t− τ))
n
2
e−

|x−y|2
4(t−τ) f(y, τ)dydτ,

It can be seen from here that the function, so called heat kernel

K(x, t) =
1

(4πt)
n
2
e−

|x|2
4t , (2.3)

is very important in getting the solution of heat equation. Actually, the solution can be written in

the following form

u(x, t) = K(x, t) ∗ u0 +
∫ t

0

K(x, t− τ) ∗ f(x, τ)dτ. (2.4)

which is called Poisson formula.

Now take f ≡ 0, let’s understand the property of u(x, t) given by Poisson formula.

Theorem 2.1. f ≡ 0, if u0 is a bounded function in C(R), then u(x, t) given by (2.4) is a bounded

classical solution of (2.1)(2.2).

Proof. It is easy to see that ∀t > 0, u(x, t) = K(x, t) ∗u0(x) is infinitely differentiable. Another fact

is that

Kt −△K = 0, ∀t > 0.

From these, we can obtain ut −△u = 0 in Rn × (0,∞). Now we are left to prove ∀x0 ∈ Rn,

lim
x→x0,t→0+

u(x, t) = u0(x0).

By changing of variables, we have

u(x, t) =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy

=
1

π
n
2

∫
Rn

e−|z|2u0(x+ 2
√
tz)dz

Since u0 is bounded, this integral is uniformly convergence in x and t. Now taking limit inside of

the integral implies that

lim
x→x0,t→0+

u(x, t) =
1

π
n
2

∫
Rn

e−|z|2u0(x0)dz = u0(x0).

�

Remark 2.1. Some basic properties of solution u(x, t) =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t u0(y)dy can be obtained

directly from this formula.

(1) If u0 is periodic (or odd, or even) in x, then so is u(x, t).
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(2) Infinite speed of propagation. If u0(x) ≥ 0 has support in a small domain, say Ω0 ⊂ Rn,

u(x, t) is positive everywhere in Rn.

(3) Infinite differentiability of u(x, t) for t > 0.

Now we consider the inhomogeneous equation with homogeneous initial data.

ut −∆u = f in Rn × (0,+∞) (2.5)

u|t=0 = 0.

The solution is

u(x, t) =

∫ t

0

∫
Rn

K(x− y, t− s)f(y, s)dyds =

∫ t

0

1

(4π(t− s))
n
2

∫
Rn

e−
|x−y|2
4(t−s) f(y, s)dyds.

Theorem 2.2. If f ∈ C2,1(Rn × [0,∞)) and has compact support, then u ∈ C2,1(Rn × [0,∞)) is

the solution of (2.5).

Proof. By the regularity of f , we have

u(x, t) =

∫ t

0

∫
Rn

K(y, s)(ft −∆f)(x− y, t− s)dyds+

∫
Rn

K(y, t)f(x− y, 0)dy

=

∫ ε

0

∫
Rn

+

∫ t

ε

∫
Rn

+

∫
Rn

K(y, t)f(x− y, 0)dy := Jε + Iε + L.

We deal with the right hand side term by term,

|Jε| ≤ (∥ft∥L∞ + ∥D2f∥L∞)

∫ ε

0

∫
Rn

K(y, s)dyds ≤ εC.

Iε =

∫ t

ε

∫
Rn

K(y, s)(ft −∆f)(x− y, t− s)dyds

=

∫ t

ε

∫
Rn

(∂s −∆y)K(y, s)f(x− y, t− s)dyds+

∫
Rn

K(y, ε)f(x− y, t− ε)dy −
∫
Rn

K(y, t)f(x− y, 0)dy

=

∫
Rn

K(y, ε)f(x− y, t− ε)dy − L.

Thus we have

ut −∆u = lim
ε→0

∫
Rn

K(y, ε)f(x− y, t− ε)dy = f(x, t), ∀t > 0.

and

|u(x, t)| =
∣∣∣ ∫ t

0

∫
Rn

K(y, s)f(x− y, t− s)dyds
∣∣∣ ≤ t∥f∥L∞ , as t→ 0.

�

Remark 2.2. By superposition principle for linear equations, we have

u(x, t) =

∫
Rn

K(x− y, t)u0(y)dy +

∫ t

0

∫
Rn

K(x− y, t− s)f(y, s)dyds

is the solution of

ut −∆u = f, u|t=0 = u0.



HEAT EQUATION 5

2.2. Fundamental solution. Before introducing the fundamental solution, let’s give a basic un-

derstanding of Delta function, which was mathematically defined as a distribution. But we will not

give a definition here. For those who are interested, please check the detail in the appendix for

distributions. Apart from the mathematical definition, we can understand Delta function as a limit

of those functions whose integral is 1 and whose limit is +∞ at x = 0, 0 at x ̸= 0. For example,

such functions can be taken as follows.

Example 4. Heat kernel K(x, t) =
1

2
√
πt
e−

x2

4t → δ(x) as t→ 0+.∫
R
K(x, t)dx = 1 and ∀ϕ ∈ C∞

0 ,∫
R
K(x, t)ϕ(x)dx =

∫ +∞

−∞

1√
π
e−y2

ϕ(2
√
ty)dy → ϕ(0).

by dominated convergence.

Example 5. Qn(x) =

{
n
2 |nx| < 1,

0 |nx| ≥ 1.
→ δ(x) as n→ ∞.∫

R
Qn(x)dx = 1 and ∀ϕ ∈ C∞

0 ,

∫
R
Qn(x)ϕ(x)dx =

∫ 1
n

− 1
n

n

2
ϕ(x)dx→ ϕ(0).

Example 6. Dirichlet kernel Dn(x) =
sin(n+ 1

2 )x

sin x
2

= 1 + 2
∑n

k=1 cos kx→ 2πδ(x) as n→ ∞ .∫
R
Dn(x)dx = 2π and ∀ϕ ∈ C∞

0 ,∫ π

−π

Dn(x)ϕ(x)dx =

∫ π

−π

sin(n+ 1
2 )x

sin x
2

ϕ(x)dx→ 2πϕ(0),

which can be proved by using Riemann’s lemma and similar argument to the proof of Fourier inverse

transform we did for L1 ∩ C1 functions in the appendix.

Next we give some motivations in defining fundamental solutions. Formally, the right hand side

function f(x, t), the heat source, can be represented by, ∀t > 0

f(x, t) =

∫
Rn

∫ ∞

0

δ(x− ξ, t− τ)f(ξ, τ)dξdτ,

which means that f(x, t) can be treated as a summation of δ(x− ξ, t− τ)f(ξ, τ)dξdτ , the point heat
source. Then we can expect that if K(x, t; ξ, τ) is the solution of ut − △u = δ(x − ξ, t − τ), then

K(x− ξ, t− τ)f(ξ, τ)dξdτ is the solution with point heat source. Then we can imagine that in the

case of heat source f(x, t), the solution is

u(x, t) =

∫
Rn

∫ ∞

0

K(x− ξ, t− τ)f(ξ, τ)dξdτ.

Basically, the fundamental solution of heat equation is to find the temperature distribution with a

point heat source at (ξ, τ).

Definition 1. K(x, t; ξ, τ) = K(x− ξ, t− τ) is called the fundamental solution of heat equation.
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Let Q = Rn × (0,∞). ∀(ξ, τ) ∈ Q. K(x, t; ξ, τ) is a solution (in the sense of distribution) of the

following Cauchy problem

ut −△u = δ(x− ξ, t− τ),

u|t=0 = 0.

For an introduction of distribution, the readers are referred to appendix.

Remark 2.3. We also know that K(x, t; ξ, τ) is a solution of

ut −△u = 0, ∀x ∈ Rn, t ≥ τ,

u|t=τ = δ(x− ξ).

Some properties of fundamental solution

(1) K(x, t; ξ, τ) > 0 for t > τ .

(2) K(x, t; ξ, τ) = K(ξ, t;x, τ).

(3) ∀x ∈ Rn, t > τ , ∫
Rn

K(x, t; ξ, τ)dξ = 1.

(4) ∀x, ξ ∈ Rn, t > τ ,

(∂t −△x)K(x, t; ξ, τ) = 0

(∂τ +△ξ)K(x, t; ξ, τ) = 0

(5) If φ(x) is a bounded continuous function in Rn, then

lim
t→0+

∫
Rn

K(x, t; ξ, 0)φ(ξ)dξ = φ(x).

(6) K(x, t; ξ, τ) is infinitely differentiable and ∃M > 0 s.t. in the case of t > τ ,

|K(x, t; ξ, τ)| ≤ M

(t− τ)
n
2
.

Remark 2.4. There is another derivation of fundamental solution instead of using Fourier transform.

Once can check this method in Evan’s book.

2.3. viscous Burger’s equation-Cole Hopf transformation in 1950’s. In 1950’s Cole and

Hopf found a transformation independently to reduce the viscous Burger’s equation into a heat

equation. This transformation is now called Cole-Hopf transformation. Then by using the funda-

mental solution of heat equation, an exact solution of viscous Burger’s equation can be obtained.

Viscous Burger’s equation is

ut + uux = εuxx, x ∈ R, t > 0.

which can be rewritten into

ut +
(1
2
u2 − εux

)
x
= 0.

This formula means that the 2−D vector valued function (−u, 12u
2 − εux) is curl free. Therefore,

there exists a potential ψ(x, t) such that

ψx = −u, ψt =
1

2
u2 − εux.
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So ψ solves the equation

ψt =
1

2
ψ2
x + εψxx.

Now a way to avoid the quadratic term is using a new function φ such that ψ = g(φ) with relation

g to be determined later.

ψt = g′(φ)φt, ψx = g′(φ)φx, ψxx = g′′(φ)(φx)
2 + g′(φ)φxx

Then the equation for φ is

g′(φ)[φt − εφxx] = [
1

2
(g′(φ))2 + εg′′(φ)](φx)

2.

Now we choose g such that the right hand side vanish. g(s) = 2ε log s, then the equation for φ

reduce to heat equation,

φt − εφxx = 0.

Then the relation between u and φ is

u = −ψx = −2ε
φx

φ

which is called the Cole-Hopf transformation.

The initial data for u(x, 0) = u0(x) is transformed into

φ0(x) = exp
{
−
∫ x

a

u0(z)

2ε
dz

}
, a ∈ R.

If
1

x2

∫ x

a

u0(z)dz → 0, as |x| → ∞,

Then the Cauchy problem for φ has a unique smooth solution,

φ(x, t) =
1√
4πεt

∫ +∞

−∞
φ0(y) exp

{
− (x− y)2

4εt

}
dy.

Changing back to the original variables, we know that the Cauchy problem for viscous Burger’s

equation has solution

u(x, t) =

∫ +∞

−∞

x− y

t
φ0(y) exp

{
− (x− y)2

4εt

}
dy∫ +∞

−∞
φ0(y) exp

{
− (x− y)2

4εt

}
dy

.

3. Half space problem and its Green’s function

The main purpose of this section is to give a first insight on how to build up a Green’s function

on general problem.

Consider the problem

ut − uxx = 0, x ∈ (0,+∞), t > 0

u|t=0 = φ, x ∈ (0,+∞) (3.1)

u|x=0 = 0, t > 0.

We want to find a function G(x, t, ξ, 0) such that the solution of (3.1) can be represented by

u(x, t) =

∫ ∞

0

G(x, t; ξ, 0)φ(ξ)dξ.
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The important thing here is that we must make sure the solution satisfies boundary condition

u|x=0 = 0. ∀ξ ∈ (0,+∞), if the initial data is δ(x− ξ), we need to find the odd extension of it, i.e.

−δ(x+ ξ) to balance the boundary condition. Now we can choose the initial data is

δ(x− ξ)− δ(x+ ξ),

and solve the Cauchy problem with this initial data. Since the problem is linear, our the solution

should be

K(x, t; ξ, 0)−K(x, t;−ξ, 0).

Thus the Green’s function for half space problem (3.1) can be chosen to be

G(x, t; ξ, 0) = K(x, t; ξ, 0)−K(x, t;−ξ, 0),

and the solution of (3.1) is expected to be u(x, t) =

∫ ∞

0

G(x, t; ξ, 0)φ(ξ)dξ.

Theorem 3.1. φ is a bounded smooth function on (0,+∞) and φ(0) = 0, u(x, t) =

∫ ∞

0

G(x, t; ξ, 0)φ(ξ)dξ

is the solution of (3.1).

The proof of this theorem is easy...

Remark 3.1. For inhomogeneous problem

ut − uxx = f, x ∈ (0,+∞), t > 0

u|t=0 = φ. x ∈ (0,+∞)

u|x=0 = 0. t > 0

The formal solution is

u(x, t) =

∫ ∞

0

G(x, t; ξ, 0)φ(ξ)dξ +

∫ t

0

dτ

∫ ∞

0

G(x, t; ξ, τ)f(ξ, τ)dξ.

Remark 3.2. Similarly, one can find the Green’s function for half space problem with homogeneous

Neumann boundary condition.

4. Initial boundary value problem

Heat equation with initial boundary value problem in 1-d space variable is

ut − uxx = f, x ∈ (0, 1), t > 0,

u|t=0 = φ. x ∈ (0, 1), (4.1)

u|x=0 = u|x=1 = 0. t > 0.

The method of separation of variable is easy to be applied here. It was Fourier who first used this

method to solve heat equation, which was the beginning of Fourier analysis.
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4.1. Separation of variable. First by solving the eigenvalue problem

X ′′ + λX = 0, x ∈ (0, 1)

X(0) = X(1) = 0,

We have that

λn = (nπ)2, Xn = sinnπx.

Then if the solution u(x, t) has form

u(x, t) =
∞∑

n=1

Tn(t) sinnπx,

Tn(t) will solve the initial value problem of an ODE

T ′
n + (nπ)2Tn = fn(t),

Tn(0) = φn,

where

fn(t) = 2

∫ 1

0

f(x, t) sinnπxdx, φn = 2

∫ 1

0

φ(x) sinnπxdx.

This ODE problem has a solution

Tn(t) = e−(nπ)2tφn +

∫ t

0

e−(nπ)2(t−τ)fn(τ)dτ, n = 1, 2, · · ·

Thus our formal solution for problem (4.1) can be written as

u(x, t) =
∞∑

n=1

sinnπx
(
e−(nπ)2tφn +

∫ t

0

e−(nπ)2(t−τ)fn(τ)dτ
)
. (4.2)

A natural question is to ask under which condition is (4.2) a C2,1((0, 1)× (0,∞)) solution. Left to

reader...

Basic properties of the solution of heat (or more generally, parabolic) equation,

“Infinitely differentiable inside of the domain”. It is mainly due to the exponential decay in time

t > 0. More precisely, ∀(x, t) ∈ (0, 1) × (0,∞), for any nonnegative integer k, l, the solution given

by (4.2) is (k + l)-differentiable at (x, t). For example, in the case of f = 0, we know that

∂k+lu(x, t)

∂xk∂tl
=

∞∑
n=1

(−1)l(nπ)k+2lφne
−(nπ)2t sin(nπx+

kπ

2
).

The discussion for the case f ̸= 0 is the same, but the formula is a bit mass, we omit it here.

4.2. Energy estimates. We will give the energy estimate for initial boundary value problem of

heat equation in multi-dimension. Ω is a bounded open subset of Rn. Let QT = Ω× (0, T ).

ut −△u = f, (x, t) ∈ QT ,

u|t=0 = φ. x ∈ Ω, (4.3)

u|∂Ω = 0. t > 0.
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Theorem 4.1. If u ∈ C2,1(QT )∩C(Q̄T ) is a solution of problem (4.3), then ∃M > 0 depends only

on T , s.t.

sup
0≤t≤T

∥u(·, t)∥L2(Ω) + ∥∇u∥L2(QT ) ≤M(∥φ∥L2(Ω) + ∥f∥L2(QT )). (4.4)

Proof. Multiplying the equation by u and integrating it in Qt, doing integral by parts, we have

1

2

∫
Ω

u2dx− 1

2

∫
Ω

φ2dx+

∫ t

0

∫
Ω

|∇u|2dxdt =
∫ t

0

∫
Ω

fudxdt.

Young’s inequality gives∫
Ω

u2dx+ 2

∫ t

0

∫
Ω

|∇u|2dxdt ≤
∫ t

0

∫
Ω

u2dxdt+

∫
Ω

φ2dx+

∫ t

0

∫
Ω

f2dxdt

Then (4.4) can be obtained directly from Gronwall’s inequality.

�

Remark 4.1. The discuss on uniqueness and stability of solution by energy estimates is similar to

what we have done for wave equation.

Remark 4.2. For homogeneous Neumann boundary condition u ·γ|∂Ω = 0, where γ be the unit outer

normal vector of ∂Ω, the energy estimate is similar.

Remark 4.3. For nonhomogeneous boundary condition, i.e. u|∂Ω = ψD, one can try to homogenize

it or just use u− ψD as test function.

5. Maximum Principle

Ω is a bounded open subset of Rn. Let QT = Ω × (0, T ] and the parabolic boundary of QT be

∂pQT = Ω× {t = 0} ∪ ∂Ω× (0, T ]. Lu = ut −△u.

5.1. Weak maximum principle.

Theorem 5.1. If u ∈ C2,1(QT ) ∩ C(Q̄T ) and Lu ≤ 0 in QT , then the maximum of u in Q̄T must

be achieved on ∂pQT , i.e.

max
Q̄T

u(x, t) = max
∂pQT

u. (5.1)

Proof. We first assume Lu < 0 in QT . If (5.1) is not true, which means ∃(x0, t0) ∈ QT s.t.

u(x0, t0) = max
Q̄T

u(x, t),

then we know that ∇u(x0, t0) = 0, △u(x0, t0) ≤ 0 and ut(x0, t0) ≥ 0. Thus,

f(x0, t0) = Lu(x0, t0) ≥ 0,

which is a contradiction with the assumption Lu < 0.

If Lu is non-positive. ∀ε > 0, we will use auxiliary function v(x, t) = u(x, t)− εt. Now

Lv = Lu− ε = f − ε < 0.

By the conclusion we obtained above, we have

max
Q̄T

v = max
∂pQT

v.
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Going back to the variable u, it gives

max
Q̄T

u(x, t) = max
Q̄T

(v + εt) ≤ max
Q̄T

v + εT

≤ max
∂pQT

v + εT = max
∂pQT

(u− εt) + εT

≤ max
∂pQT

u+ εT.

Let ε→ 0, we have (5.1). �

By the same discussion or just let v = −u, we will have

Corollary 5.1. If Lu ≥ 0, then

min
Q̄T

u(x, t) = min
∂pQT

u.

Furthermore,

Corollary 5.2. If Lu = 0, then both maximum and minimum of u are achieved on the parabolic

boundary.

Now we will have the very useful tool, the comparison principle, as a corollary

Corollary 5.3. If u, v ∈ C2,1(QT ) ∩ C(Q̄T ), Lu ≤ Lv and u|∂pQT
≤ v|∂pQT

, then

u(x, t) ≤ v(x, t) in Q̄T .

5.2. Dirichlet Boundary Condition. The initial boundary value problem of heat equation with

Dirichlet BC

ut −△u = f(x, t) in QT

u|t=0 = φ(x) (5.2)

u|∂Ω = g(x, t).

Theorem 5.2. If u ∈ C2,1(QT ) ∩ C(Q̄T ) is a solution of (5.2), then

max
Q̄T

|u| ≤ FT +B, (5.3)

where F = maxQ̄T
|f |, B = max{maxΩ |φ|,max∂Ω×[0,T ] |g|}.

Proof. We will use comparison principle and introduce auxiliary function w(x, t) = Ft+B±u(x, t).
It is easy to check that

Lw = F ± f ≥ 0,

w|∂pQT
≥ Ft+B ± g|∂pQT

≥ 0.

By comparison principle, corollary 5.3, we have w(x, t) ≥ 0 in QT , which implies

|u| ≤ FT +B, in QT .

�

This maximum estimate can be used to prove the uniqueness and stability of classical solutions.

Corollary 5.4. C2,1(QT ) ∩ C(Q̄T ) solution of (5.2) is unique.
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Corollary 5.5. C2,1(QT ) ∩ C(Q̄T ) solution of (5.2) is stable in the following sense. If u1, u2 ∈
C2,1(QT ) ∩ C(Q̄T ) are solutions separately with data φ1, f1, g1 and φ2, f2, g2, then

max
Q̄T

|u1 − u2| ≤ ∥f1 − f2∥∞T + ∥φ1 − φ2∥∞ + ∥g1 − g2∥∞.

6. Problems

(1) Find the formal solution of the following problem by Fourier transform

i∂tu+△u = 0, (x, t) ∈ Rn × (0,+∞),

u|t=0 = g(x), x ∈ Rn.

(2) (a) Find the formal solution of the following problems

ut −△u+ 2u = f(x, t), (x, t) ∈ Rn × (0,∞),

u|t=0 = φ(x), x ∈ Rn.

(b)

ut − uxx + xu = 0, (x, t) ∈ R× (0,∞),

u|t=0 = φ(x), x ∈ R.

(c)

ut = a2uxx, (x, t) ∈ (0,+∞)× (0,∞),

u|t=0 = 0, x ∈ (0,+∞),

ux|x=0 = −1, t > 0.

(3) Find the Green’s function of half line problem

ut − uxx = f, x ∈ (0,+∞), t > 0,

u|t=0 = φ, x ∈ (0,+∞),

ux|x=0 = 0, t > 0.

And give the formal solution formula of this problem.

(4) Ω is a bounded open subset of Rn, Q = Ω × (0, T ]. If u ∈ C2,1(Q) ∩ C(Q̄) is a solution of

the following initial boundary value problem,

ut −△u = f(x, t), (x, t) ∈ Q,

u|t=0 = φ(x), x ∈ Ω,

u|∂Ω = 1.

Try to prove there exists a constant C (depends on T and |Ω| =
∫
Ω
dx) such that the

following inequality holds

sup
0≤t≤T

∫
Ω

u2(x, t)dx+

∫ T

0

∫
Ω

|∇u|2dxdt ≤ C
(∫

Ω

φ2dx+

∫ T

0

∫
Ω

f2dxdt+ 1
)
.

(5) Find the formal solution of the following problem by using separation of variable

ut = a2uxx, (x, t) ∈ (0, 1)× (0,∞),

u|t=0 = x2(1− x), x ∈ (0, 1),

ux|x=0 = u|x=1 = 0, t > 0.
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(6) Ω is a bounded open subset of Rn, QT = Ω× [0, T ). c(x, t) ≥ −c0 with constant c0 > 0. If

u ∈ C(Q̄T ) ∩ C2,1(QT ) satisfies

ut − a2△u+ c(x, t)u ≤ 0, (x, t) ∈ QT .

u|∂pQ ≤ 0.

Try to prove that u ≤ 0 in QT . (Hint: try to use auxiliary function e−ctu)
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7. *Appendix: Short review of Fourier transform and distribution

The contents in appendix is not required in this course. I list it here for those who are interested.

7.1. Fourier transform. Let’s remind first the Fourier series, ∀f ∈ L1(−l, l), which is defined by

f(x) ∼ A0

2
+

∞∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
).

where

An =
1

l

∫ l

−l

f(x) cos
nπx

l
dx, n = 0, 1, 2, · · ·

Bn =
1

l

∫ l

−l

f(x) sin
nπx

l
dx, n = 1, 2, · · ·

Let

SN (x) =
A0

2
+

N∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
).

Theorem 7.1. (Convergence in L2 norm)

lim
N→∞

∥f − SN∥L2 = 0, for L2(−l, l).

Theorem 7.2. (Bessel inequality) For f ∈ L2(−l, l), it holds

A2
0

2
+

∞∑
n=1

(A2
n +B2

n) ≤
1

l

∫ l

−l

f2dx.

Theorem 7.3. (Parseval’s equality) For f ∈ L2(−l, l), it holds

A2
0

2
+

∞∑
n=1

(A2
n +B2

n) =
1

l

∫ l

−l

f2dx.

By Euler formula, we can change the items in summation into

An cos
nπx

l
+Bn sin

nπx

l
= A′

ne
inπx

l +B′
ne

−inπx
l .

Thus the Fourier series can be rewritten into

f(x) ∼
∞∑
−∞

ane
inπx

l , an =
1

2l

∫ l

−l

f(x)e−inπx
l dx

i.e.

f(x) ∼ 1

2l

∞∑
−∞

∫ l

−l

f(y)e−inπy
l dyei

nπx
l .

Now let k = nπ
l , the formula is

f(x) ∼ 1

2π

∞∑
−∞

∫ l

−l

f(y)e−ikydyeikx
π

l
.

As l → ∞, one could expect that

f(x) ∼ 1

2π

∫ ∞

−∞

∫ ∞

−∞
f(y)e−ikydyeikxdk.
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These formal computations will give the motivation of Fourier transform on R.

Definition 2. ∀f ∈ L1(R), its Fourier transform is defined by

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx,

A result which can be obtained directly from the definition is f̂(k) ∈ L∞(R), i.e.

|f̂(k)| = 1√
2π

∣∣∣∣∫ ∞

−∞
f(x)e−ikxdx

∣∣∣∣ ≤ 1√
2π

∥f∥L1 .

So by definition, Fourier transform is a continuous linear mapping from L1 to L∞. Moreover, if

f ≥ 0, then ∥f̂∥L∞ = ∥f∥L1 .

Theorem 7.4. If f ∈ L1(R), then f̂(k) is uniformly continuous in R.

Proof. (For those who are interested) ∀ε > 0, ∃A > 0, such that

1√
2π

∫
|x|>A

2|f |dx ≤ ε

2
.

∀0 < h <

√
2πε

4A∥f∥L1

, we have

|f̂(k + h)− f̂(k)| =
1√
2π

∣∣∣∣∫ ∞

−∞
f(x)e−ixk[e−ixh − 1]dx

∣∣∣∣
≤ 1√

2π

∫
|x|>A

2|f |dx+
1√
2π

∫ A

−A

|x| · |h| · |f |dx

≤ 1

2ε
+

1

2ε
= ε.

�

Remark 7.1. Similarly, one can define Fourier transform in multi-D case, ∀f ∈ L2(Rn),

f̂(k) =
1

(2π)
n
2

∫
Rn

f(x)e−ik·xdx

where k · x =
∑n

i=1 kixi. It is also a continuous linear mapping from L1(Rn) to L∞(Rn).

We list here a series properties of Fourier transform here without proof,

(1) (∂xjf)
∧(k) = ikj f̂(k), and (∂αf)∧(k) = i|α|kαf̂(k)

(2) (xf)∧(k) = i∂kj f̂(k), and (xαf)∧(k) = i|α|∂αf̂(k)

(3) f(x− a)∧(k) = e−ia·kf̂(k)

(4) (f(λx))∧(k) =
1

|λ|
f̂(
k

λ
), ∀λ ̸= 0.

(5) (f ∗ g)∧(k) = (2π)
n
2 f̂(k)ĝ(k)

Example 7. Fourier transform of Gaussian e−x2

in 1-d is
1√
2
e−

k2

2 . More general case in multi

dimension is ∀A > 0

(e−A|x|2)∧(k) =
n∏
1

(e−Ax2
i )∧(ki) =

1

(2A)
n
2
e−

|k|2
4A .
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The inverse Fourier transform can be formally given by

f̆(x) =
1

(2π)
n
2

∫
Rn

f(k)eik·xdk.

Theorem 7.5. If f ∈ L1(R) ∩ C1(R), then

lim
N→∞

1

(2π)
1
2

∫ N

−N

f̂(k)eikxdk = f(x).

Proof. (For those who are interested) We know that f̂(k) is uniformly bounded and continuous in

k ∈ R, by the definition of Fourier transform, we have

1

(2π)
1
2

∫ N

−N

f̂(k)eikxdk

=
1

2π

∫ N

−N

∫ ∞

−∞
f(y)e−ikydyeikxdk

=
1

2π

∫ ∞

−∞

(∫ N

−N

eik(x−y)dk
)
f(y)dy

where ∫ N

−N

eik(x−y)dk = 2
sinN(x− y)

x− y
.

This is similar to the Dirichlet kernel, one can expect that the whole integral will converge to f(x)

as N → ∞. Next we will prove it in detail.

Change variable x = y − x gives

1

(2π)
1
2

∫ N

−N

f̂(k)eikxdk

=
1

π

∫ ∞

−∞

sinN(x− y)

x− y
f(y)dy =

1

π

∫ ∞

−∞
f(z + x)

sinNz

z
dz

Now we should separate the integral on R into two parts I1 =

∫
|z|≤M

and I2 =

∫
|z|≥M

, where M to

be determined later. In the next, we will estimate I1 by Riemann’ lemma, and estimate I2 by 1/M .

∀ε > 0, choose M =
2∥f∥L1

πε
, we have

I2 =
1

π

∫
|z|≥M

f(z + x)
sinNz

z
dz ≤ 1

πM
∥f∥L1 =

ε

2
.

The way to estimate I1 is by using ∫ ∞

−∞

sinx

x
dx = π,

from which we know that ∃N ≥ 0 s.t.∣∣∣f(x)
π

∫ MN

−MN

sin z

z
dz − f(x)

∣∣∣ ≤ ε

4
.
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Now I1 is

I1 =
1

π

∫
|z|≤M

f(z + x)
sinNz

z
dz

=
1

π

∫
|z|≤M

f(z + x)− f(x)

z
sinNzdz +

f(x)

π

∫
|z|≤M

sinNz

z
dz

=
1

π

∫
|z|≤M

∫ 1

0

f ′(x+ τz)dτ sinNzdz +
f(x)

π

∫
|z|≤M

sinNz

z
dz

≤ ∥f ′∥L∞

π

∫
|z|≤M

sinNzdz +
f(x)

π

∫
|z|≤M

sinNz

z
dz

By Riemann’s lemma, we know ∃N1 > 0 s.t. when N ≥ N1, we have

∥f ′∥L∞

π

∫
|z|≤M

sinNzdz ≤ ε

4
.

�

Fourier transform for L2 functions

Theorem 7.6. If f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R) and

∥f̂∥L2(R) = ∥f∥L2(R)

Furthermore, f → f̂ has a unique extension to a continuous, linear map from L2(R) to L2(R) which
is isometry.

Proof. ∀f ∈ L1 ∩ L2, ∀ε > 0, consider∫
R
|f̂(k)|2e−ε|k|2dk.

By the definition of Fourier transform, we have∫
R
|f̂(k)|2e−ε|k|2dk =

1

2π

∫
R

∫
R

∫
R
f(x)f(y)eik(x−y)e−ε|k|2dxdydk

We know that
1√
2π

∫
R
e−εk2

eik(x−y)dk = (e−εk2

)∨(x− y), by Fubini theorem, the above integral is

1√
2π

∫
R

∫
R

1√
2ε
e−

(x−y)2

4ε f(x)f(y)dxdy

Since

1√
π

∫
R
e
−( x

2
√

ε
)2
d(

x

2
√
ε
) = 1,

by theorem ??, we have for f ∈ L2,

1√
2π

∫
R

1√
2ε
e−

(x−y)2

4ε f(y)dy → f(x) strongly in L2(R).

Thus,

lim
ε→0

∫
R
|f̂(k)|2e−ε|k|2dk =

∫
R
|f |2dx.

Then monotone convergence shows f̂ ∈ L2 and

∥f̂∥L2 = ∥f∥L2 .
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If f ∈ L2 but not in L1 ∩ L2, since L1 ∩ L2 is dense in L2, there exists {fj} ⊂ L1 ∩ L2 such that

∥fj − f∥L2 → 0.

On the other hand, since Fourier transform is linear, we have

∥f̂j − f̂m∥L2 = ∥fj − fm∥L2 → 0, as j,m→ ∞

Hence, {f̂j} is a Cauchy sequence in L2. L2 is complete, so ∃g ∈ L2 such that f̂j → g strongly in

L2.

Now we define f̂ = g then we have

∥f̂∥L2 = lim
j→∞

∥f̂j∥L2 = lim
j→∞

∥fj∥L2 = ∥f∥L2 .

Continuity and linearity are left for reader. �

Remark 7.2. Fourier transform can be extended for Lp in similar way, and

∥f̂∥Lq ≤ C(p, q)∥f∥Lp ,
1

p
+

1

q
= 1.

7.2. Distribution and weak derivative. Ω is an open subset of Rn.

7.2.1. Distribution.

Definition 3. Test function space D(Ω) consists of all the functions in C∞
0 (Ω) supplemented by

the following convergence: ϕm → ϕ ∈ C∞
0 (Ω) iff

(1) ∃ a compact set K ⊂ Ω such that suppϕm ⊂ K, ∀m.

(2) ∀α multi-index,

sup
k

|∂αϕm − ∂αϕ| → 0. (m→ ∞).

Remark 7.3. D(Ω) is a linear space.

Definition 4. Distribution is the dual space of D(Ω). i.e. is a continuous linear functional on D(Ω).

we denoted it by D′(Ω). Namely, T : D(Ω) → C s.t.

(1) ⟨T, αϕ1 + βϕ2⟩ = α⟨T, ϕ1⟩+ β⟨T, ϕ2⟩
(2) If ϕm → ϕ in D(Ω), then ⟨T, ϕm⟩ → ⟨T, ϕ⟩.

Remark 7.4. It is usually nonsense to multiply two distributions, since it is not well defined.

Remark 7.5. A distribution multiplied by a smooth function can be defined by the following, T ∈ D′,

f ∈ C∞, then

⟨Tf, ϕ⟩ = ⟨T, fϕ⟩, ∀ϕ ∈ D.

Remark 7.6. The support of a distribution and convolution of two distributions can be also defined

with the help of test functions, since we will not use these in our course, we omit the detail here.

Example 8. L1
loc(Ω) ⊂ D′(Ω).

∀f ∈ L1
loc(Ω), Tf ∈ D′(Ω) is defined by

⟨Tf , ϕ⟩ =
∫
Ω

f(x)ϕ(x)dx, ∀ϕ ∈ D(Ω).

Remark 7.7. Similarly, Lp
loc(Ω) ⊂ D′(Ω). And Lp

loc(Ω) ⊂ Lq
loc(Ω), ∀q < p.
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Theorem 7.7. L1
loc functions are uniquely determined by distributions. More precisely, ∀f, g ∈

L1
loc(Ω) and ∫

Ω

fϕdx =

∫
Ω

gϕdx, ∀ϕ ∈ D(Ω),

Then f = g a.e. in Ω.

The proof is left to the readers.

Example 9. Probability distribution on R is a subset of D′(R).
For any probability distribution P , TP ∈ D′(R) is defined by

⟨TP , ϕ⟩ =
∫
R
ϕ(x)dP, ∀ϕ ∈ D(R).

Example 10. δ function.

Delta function δ(x) is defined by

⟨δ, ϕ⟩ = ϕ(0), ∀ϕ ∈ D(Ω).

Remark 7.8. δ /∈ L1
loc.

Proof. If not, there exists f ∈ L1
loc s.t. ∀ϕ ∈ C∞

0

⟨δ, ϕ⟩ =
∫
R
fϕdx.

Now we choose φn(x) =

{
e

1
|nx|2−1 |nx| < 1,

0 |nx| ≥ 1.
Then on the one hand, we have

⟨δ, ϕn⟩ = ϕn(0) = e−1,

on the other hand, since f ∈ L1
loc,∫

R
fφndx =

∫
|x|≤ 1

n

f(x)e
1

|nx|2−1 dx→ 0, n→ ∞.

Contradiction. �

In the following we will show some sequences which converge to δ-function in the sense of distri-

bution, to have more understanding of δ-function.

Example 11. Heat kernel ft(x) =
1

2
√
πt
e−

x2

4t .∫
R
ft(x)dx = 1 and ∀ϕ ∈ C∞

0 ,∫
R
ft(x)ϕ(x)dx =

∫ +∞

−∞

1√
π
e−y2

ϕ(2
√
ty)dy → ϕ(0).

by dominated convergence.

Example 12. Qn(x) =

{
n
2 |nx| < 1,

0 |nx| ≥ 1.
.∫

R
Qn(x)dx = 1 and ∀ϕ ∈ C∞

0 ,∫
R
Qn(x)ϕ(x)dx =

∫ 1
n

− 1
n

n

2
ϕ(x)dx→ ϕ(0).
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Example 13. Dirichlet kernel Dn(x) =
sin(n+ 1

2 )x

sin x
2

= 1 + 2
∑n

k=1 cos kx.∫
R
Dn(x)dx = 2π and ∀ϕ ∈ C∞

0 ,

∫ π

−π

Dn(x)ϕ(x)dx =

∫ π

−π

sin(n+ 1
2 )x

sin x
2

ϕ(x)dx→ 2πϕ(0),

which can be proved by using Riemann’s lemma and similar argument to the proof of Fourier inverse

transform we did for L1 ∩ C1 functions.

7.2.2. weak derivative of Distributions. The definition of weak derivative is enlightened by integral

by parts, if f ∈ C1, ∀ϕ ∈ C∞
0 , we have∫

Ω

∂ifϕdx = −
∫
Ω

f∂iϕdx.

Definition 5. ∀T ∈ D′(Ω), ∂iT is defined by

⟨∂iT, ϕ⟩ = −⟨T, ∂iϕ⟩, ϕ ∈ D(Ω).

Since −∂iϕ ∈ D′(Ω), we know that ∂iT is well defined. One can define the higher order derivative

in the same way, α is a multi-index,

⟨∂αT, ϕ⟩ = (−1)|α|⟨T, ∂αϕ⟩, ϕ ∈ D(Ω).

Remark 7.9. According to this definition, we know that all distributions are infinitely weakly dif-

ferentiable.

Example 14. The derivatives of δ-function. ∀ϕ ∈ D

⟨δ′, ϕ⟩ = −⟨δ, ϕ′⟩ = −ϕ′(0),
⟨δ(k), ϕ⟩ = (−1)k⟨δ, ϕ(k)⟩ = (−1)kϕ(k)(0),

Example 15. The derivatives of Heaviside function H =

{
1, x ≥ 0

0, x < 0
.

∀ϕ ∈ D

⟨H ′, ϕ⟩ = −⟨H,ϕ′⟩ = −
∫ ∞

0

ϕ′(x)dx = ϕ(0) = ⟨δ, ϕ⟩

Also enlightened by integral (changing variables), we can give the translation of distributions.

Definition 6.

⟨T (x− a), ϕ(x)⟩ = ⟨T (x), ϕ(x+ a)⟩.

For example, δa(x) = δ(x− a) is defined by

⟨δ, ϕ(x+ a)⟩ = ϕ(a)
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7.3. Tempered distribution and its Fourier transform.

Definition 7. Schwartz class function S(Rn), (Rapidly decreasing function)

S(Rn) = {ϕ ∈ C∞(Rn)| sup
x

|xγ∂αϕ| < +∞,∀ multi-index α, γ}

We call a sequence {ϕj} ⊂ S(Rn) convergent to ϕ ∈ S(Rn) if

sup
x

|xγ∂α(ϕj − ϕ)| → 0, ∀ multi-index α, γ

We will use the notation

Dj =
1

i
∂j .

Then the properties of Fourier transform are

(Djϕ)
∧ = kj ϕ̂(k), (xjϕ)

∧ = −Dj ϕ̂.

Theorem 7.8. If ϕ ∈ S(Rn), then ϕ̂ ∈ S(Rn)

Proof. ∀α, γ multi-index, we know from Fourier transform that

kαDγ ϕ̂(k) =
(
Dα

(
(−x)γϕ(x)

))∧
=

∫
Rn

e−ix·kDα
(
(−x)γϕ(x)

)
dx.

By taking sup in k,

sup
k

|kαDγ ϕ̂(k)| ≤ 1

(2π)
n
2

∫
Rn

|Dα
(
(−x)γϕ(x)

)
|dx

≤ 1

(2π)
n
2
C sup

x
(1 + |x|)n+1|Dα

(
(−x)γϕ(x)

)
| < +∞,

where C =

∫
Rn

1

(1 + |x|)n+1
dx.

�

Definition 8. Dual space of S(Rn) is called tempered distribution S ′(Rn).

Remark 7.10.

D(Rn) ⊂ S(Rn), S ′(Rn) ⊂ D′(Rn)

Definition 9. ∀T ∈ S ′(Rn), its Fourier transform is defined by ∀ϕ ∈ S(Rn),

⟨T̂ , ϕ⟩ = ⟨T, ϕ̂⟩

Example 16. δ̂ =
1

(2π)
n
2
.

∀ϕ ∈ S(Rn), by definition,

⟨δ̂, ϕ⟩ = ⟨δ, ϕ̂⟩ = ϕ̂(0) =
1

(2π)
n
2

∫
Rn

ϕ(x)e−i0·xdx =
1

(2π)
n
2

∫
Rn

ϕ(x)dx = ⟨ 1

(2π)
n
2
, ϕ⟩
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