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1. FUNDAMENTAL SOLUTION

The Poisson’s equation in R” reads

—Au= fin R"™. (1.1)

We will first try to find some special solution formally. Since Laplace operator is radially symmet-
ric, it is natural to find radially symmetric solutions. Assume u(z) = v(|z|) = v(r), where r = |z,
then

o or B Zz x?
Ug; _Uraxi —vr77 Ug,z; —U'rrﬁ‘f'vr(;_ ﬁ)’
thus ) )
n— -n .
Au = v + v, =0, = (logv,), = — > in che case of v, # 0.

Consequently, there exist constants C' and C’ such that v, = Cr'~" and
Clogr+C" n=2
v(r) = C
(r) +C" n>3

rn—2
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Definition 1. Let

1
o log || n=2
O(x) = " 1
n(n — 2)a(n) |z|n—2
where a(n) is the volumn of n dimension ball. ®(x) is called the fundamental solution of Poisson
equation.

n>3

Properties
C

|1- n—1"

C
|D?®| < PO for z # 0.
€T n
(2) A® =0 for x # 0 and A®(x —y) =0 for x # y, Yy € R”
Then we are able to represent the solution of Poisson equation by using fundamental solution.
More precisely we have the following theorem.

(1) [Ve| <

Theorem 1.1. If f € CZ(R"), then u = ® x f is a solution of problem (1.1)

Proof. First we prove that u € C?(R"). In fact,

u(z + he;) —ulx x+ he; —y) — f(x —
( ) —u( ):/ q)(y)f( y) — f( y)dy.
h n h
Since we know that f has compact support and 8f(g —y) = %ir% fl@+hei = z) —flz- y)’ com-
—

Tq
bined with the fact that ® is locally integrable, we have that, by letting h — 0,
ou of
= (b — d .
o= | oW vy
By similar discussions, we have that u is twice differential and

0%u 92 f
81‘731173 o ‘/Rn (I)(y) 61’18I] (LU - y)dy

Next we will prove —Awu = f. Ve > 0 small enough,

_Auz) = /n<1>(y)Axf(w—y)dy

= [ ewadfa-pdy+ [ Sw)Afe - iy
B<(0) R™\ B (0)
= I.+ J..
where
Ce?|loge| n=2
< 2 700 <
Lzl [ e <{ G5 12
Integral by parts for J,
Jo= - / Y, ()Y, (z — y)dy — / B(y)Vy f(x — y) - dS, == K. + L,
R”\ B (0) 0B (0)

L. can be estimated by

Celloge| n=2

L.| <||D oo
|Le| < IDflL /a Cs n>3

[2()as, < {

€
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K. contributes the main part of the calculation. When e goes to 0, this term practiced like a Delta
function applied on f. Due to the fact that A®(y) = 0 for y # 0, we have

K. = RS-y + [ Veerfa-yds, = [ Toeafa- s,
R™\ B¢ (0) 0B:(0) 0B:(0)
Now we can calculate that on 9B (0),
1 Yy oy 1
V,o(y) - v=-— =
O S B Tl mamen

Thus we have

1
na(n)en—1 /@BE(O) flo—y)dS, =  na(n)en—1 /BBE(QJ) Fw)dSy.

Taking € — 0, we know that

K. =

K. — f(x).
O

Remark 1.1. From the above proof, we understand the constants appeared in definition of funda-
mental solution.

By using the same method, we can prove that —A® = §(z) in the sense of distribution.
Theorem 1.2.

1
—glog|x—y| n=2
P(z,y) = P(x—y) = 1 1 (1.2)
n(n —2)a(n) |z —y[*—2

is a solution of
—A® =§(z —y)

in the sense of distribution. More precisely, Vo € C3°(R™), it holds
(—AD(z —y), p(x)) = —/ O(z —y)Ap(x)dy = ¢(y) = (0(z —y),(z)).

2. PROPERTIES OF HARMONIC FUNCTION

Let Q be an open subset of R™.
Definition 2. If Au =0 in Q with v € C%(Q), then u is called a harmonic function.

2.1. Mean Value theorem.

Theorem 2.1. If u € C?(Q) is harmonic, then ¥V ball B(z,r) € Q, it holds that
u(z) :][ udSy z][ udy. (2.1)
OB (z,r) B(z,r)
Proof. Let

w(r) = ]é uly)as, - ]é w(z + r2)dS.

(z,r) B(0,1)
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Then by taking derivative with respect to r, we have

w'(r) = ][ Vu(z +rz) - 2dS,
aB(0,1)

y—x r
= Vu(y) - ds, = /
aB(z,r)( ) r Y 77,|B(.’£,7’)| B(z,r)

which implies that w(r) is a constant. Thus we have

Au(y)dy = 0,

w(r) = lim w(s) = lim u(y)dS, = u(z).
s—0 s—0 aB(I,S)

For the mean value on B(z, ), we know that

/B(z,r) uly)dy = /OT (/aB(m) U(y)dSy)ds

= u(x) /OT na(n)s"tds = a(n)r"u(z),

which is exactly

uw) = £, )y

z,r)

Theorem 2.2. (Converse to the mean value property) If u € C?(2) such that
u(z) :][ u(y)dSy, VB(z,r)CQ,
OB(z,r)

Then u is harmonic in € i.e. Au =0 in Q.

Proof. If Au # 0, there must exist a ball B(z,r) C Q such that Au > 0 in B(x,r). On the other
hand,

0=w'(r)=— Au(y)dy > 0,
" JB(x,r)
which gives a contradiction. O

2.2. Strong maximum principle.

Theorem 2.3. If u € C?(Q) N C(Q) is harmonic in Q, then
(1) maxqu = maxgq u
(2) If Q is connected and Jxg € Q such that

u(xo) = max u(x),
then w is constant within €.

Proof. The first statement is easy, we only prove that second one here. Suppose that dzy € €2 such
that u(xg) = maxqu = M, then V0 < r < dist(xg, 0f2), the mean value property implies that

M = u(wo) = 7[ u(y)dy < M,
B(z,r)
which means that u is constant within B(zg,r), i.e. v = M in B(xo,r). Hence the set
Uv ={z € Qu(z) =M}

is both open and close in . So if 2 is connected, then Uy, = €. (]
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Corollary 2.1. If u € C?(Q) N C(Q) is harmonic and u > 0 on 9, then u > 0 in Q.

Corollary 2.2. (Uniqueness) Dirichlet boundary value problem —Au = f in Q and u = g on 9N
has at most one C?(2) N C(Q) solution.

2.3. Regularity.
Theorem 2.4. If u € C () satisfies mean value property for all ball B(x,r) in Q, then u € C*(Q)

Remark 2.1. The smoothness up to 9f) usually is not true, which depends on the regularity of the
boundary.

Proof. *** The proof of regularity will use mollification, which appeared in the appendix of heat
equation. For those who are interested, please read this proof by yourself. Ve > 0, let

Q. = {x € Q|dist(z,00) > e}.

Let’s study u.(x) = j.(x) * u(z), by direct calculation and mean value property, we have

us(r) = /B LY yu(y)dy

(ze) "7 €

O, wwasar

e™ Jo

Thus u(z) = u:(z) € C>* (), Ve > 0. O
2.4. Liouville theorem.

Theorem 2.5. If u: R™ — R is harmonic and bounded, then u is a constant.

Proof. *** The proof will use local regularity estimates for harmonic function which was not talked
about in this course. Vxg € R™, r > 0,

Cia(n)

&
| Du(o)| < ) lull 21 (B(zo,r)) < l|lu]| oo (mny — 0, as 7 — oo.
Then Du = 0, which implies u is a constant. ]

Corollary 2.3. f € C3(R™), n > 3, then any bounded solution of —Au = f in R™ has the form
u(w) = [ Ba =)o)y C

Proof. First we know that / ®(x —y)f(y)dy is a bounded solution since ®(z) — 0 as |z| — oo. If

R”

there is another bounded solution @, then w = u — @ is harmonic, thus by Liouville’s theorem, w is
a constant. (]
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3. GREEN’S FUNCTION
The main goal is to get the representation formula for the solution of boundary value problem
—Au=f inQ (3.1)
ulon =g

The natural question to ask is that is it possible to have solution formula for this problem? Is our
the fundamental solution useful?
Let’s start from a formal calculation, Vz € €,

u(z)

{0z —y),uly)) = (=2y2(z,y), u(y)) = - /Q Ay®(z, y)uly)dy

/é(w,y)(—AyU(y))dy—/ Vyfb(x,y)WU(y)dSer/ ®(z,y)Vyuly) - vdS,.
Q o0 o0

Then formally, if u|sgo = g and —Au = f, we have

ulz) = /Q B (z,y) f(y)dy — /8 V() 9()dS, + /a (o) Vula) S,

where the last term is still unknown. We will try to consider another function G(z,y) to replace
the fundamental solution ®(z,y). And this G(z,y) satisfies

-AyG(z,y) =0(y — )
G(:E7y)‘y€89 =0.

A good candidate of G(z,y) is ®(x,y) + g(z,y) with g(x,y) satisfies

—Ayg(z,y) =0
gloa = —®(x,y)|oq

Once we can solve the above problem for g(x,y), we will have the solution representation of (3.1),

u(w) = [ Gl iy~ [ V,6) 29w)ds,
Q a0
We will give a proof of the above discussion after the definition.
Definition 3. (Green’s function)
G(z,y) = ®(z,y) + g(z,y)
is called the Green’s function of (3.1), where g(z,y) € C%(Q x Q) is a solution of

—Ayg(z,y) =0, in Q
g(z7y)‘y€3ﬂ = 7@(1‘7y)

Theorem 3.1. Q is an open subset of R™, 9 is piecewise smooth, u € C*(Q)NCL(Q), then Vx € 0,

ulz) = /Q Dz, y)(—Ayuly))dy — /8 V() Ju(s)dS, + /8 B y)Vyu) 1S, (32)
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Proof. Ve > 0 small enough, we have

[ o)(-au()dy = lim Dz, ) (—Ayu(y))dy

Q e=0% JO\ B, (2)

= lim —Ay®(z, y)u(y)dy — lim (@(x,y)Vu(y) - v — VO(x,y) - yu(y))dS,
e—0t O\ B, (z) e=0t Jon
— lim (®(x,y)Vuly) - v — VO(x,y) - yu(y))dS,

e=0" JoaB(z,e)

0— lim [ (®(z,y)Vuly) v~ Ve(z,y) - yuly))dSy +u(z).
E—r BQ

where we have used facts

< Ce max |Vu|— 0,

OB(z,e)

/ B(z,y)Vu(y) - 7dS,
OB(z,e)

/ u(y)wu,y)-vdsyzf u(y)dS, — u(x).
OB(z,e) OB(z,e)

Theorem 3.2. (Green’s function is symmetric with its two variables)
G(z,y) = Gy, x).

We give the main idea of the prove here. The technical point is the same as the proof of the
above theorem. Ve > 0 small enough such that B(z,e)UB(y,e) C Q, let Q. = Q\(B(x,¢) UB(y,¢)).
Notice that G(z, z) = G(y,2) =0 on z € 99,

0 = / (Gly, 2)D.G(, 2) — G, 2)ACly, 2))d
Qe
= /8Q (G(y,2)V.G(x,z) - v — G(x,2)V,G(y, z) - v)dS,
(G(y, Z)sz(mv Z) Y= G(ZL’, Z)VZG(yv Z) ’ ’Y)dsz

/6B(w,8)UaB(yx5)

We just take dB(y,¢) as an example, the same discussion for the term on 0B(z,¢),

/ G(y, 2)V.G(z,2) -vdS.| < Cle + " 1) =0,
9B(ye)

—/ G(z,2)V,.G(y,z) -vdS, = G(x,2)dS, +o(e" ) = —G(z,y).

OB(y,e) OB(y,e)

3.1. Half space problem. The half space we study here is R} = {z = (z1,--- ,2,) € R"|z, > 0}.
Vo = (21, - ,Tp1,2,) € R}, we call Z = (x1,-- ,2p_1,—T,) is 2’s reflection in the plane

{z, =0}.

We study the following boundary value problem
—Au=f, inR%.

u|6]R7jr' =9,
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Our goal here is to find Green’s function G(x,y) of this problem and write the solution by using

formula
uw) = [ G sy~ [ V,6m)29)s),
Vo € R%, the Green’s function should be a solution of

-AG=0y—z) yeRY

Glyecorn = 0.
The the Green’s function of half space problem is easy to obtain, i.e.

G(:z:,y):@(:c,y)fq)(fc,y), .T,yGR:L_,II}%y.

Then
oG 0P 0P - —1 Yn — Tn Yn + Tn
— () =—@W—2)—=—W—2)= — — ).
B, ) = 5y, 0= = 5 =0 = s (o~ =)
Therefore, Vy € ORY,
O )= S gy = L
oy Oy’ na(n) [z -yl

Then the solution of boundary value problem can be represented by

2zy
u(z) = :v / 9() dy, VreRL.
na(n) Joms T2 - yI"

which is called the Poisson formula of half space problem.
The function
2z, 1
na(n) |z —y["

K(z,y) = , T € RYyedRY

is called the Poisson kernel for RY.

Theorem 3.3. Assume g € C(R"™1) N L>®(R"™1), u is defined by the Poisson formula.

uwe C®RE)NL®RY), —Au=0 in R and Vz" € OR?,

li = g(z°).
IER;}{;I%DU(%) g(x”)

Proof. —Au = 0 is easy to check. Notice that Vz € R,

K(z,y)dy = 1.
OR?

Since Vx # y, K(x,y) is a smooth function in x, we know directly that v € C*°(R"}) and

Au(z) = - A K(z,y)g(y)dy =0, VzeR].
+

Then

For boundary condition, Vg € R}, Ve > 0, choose § > 0 small enough such that Vy € OR"} and

ly — 29| < §, we have

lg(y) — g(2")] < e.
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Then Vz € RY and |z — 2°| < 6/2, we have

[u(@) = g(wo) = | [ K(@,9)(g() - 9a"))]
IR
< / Kz, 9)lg() — 9()|dy + / K(z,1)|g() — 9()ldy
OR” NB(°,5) OR\B(z°,0)
<

e +2llgllo~ / K(z,y)dy
OR™\ B(9,0)

22 g e

/ —mdy —0, asz, > 0+.
na(n) R\ B(20,5) ly — 9]

3.2. problem in a ball. We will give an exact formula for the Green’s function in a ball.
Vz € B™(0,1). We need that G(z,y) = 0, Vy € 9B™(0,1). Let Z be the inversion of z, i.e.

. x
xr = W, thus
and

G(z,y) = O(lz —y|) — 2(ly — «]) = ®(ly — z[) — ®(|z| - |y — Z[), Vy € IB"(0,1)
Since @ is the fundamental solution,

—Ay®(jz] |y —F[) =0, Vy#L.
As a consequence,
G(z,y) = ®(ly —z|) — ([ - [y — Z]), Vye B"(0,1),

is called the Green’s function on B™(0, 1).
Now we will give the Poisson’s formula for B™(0,r).

—Au=0, in B"(0,1)
U|8B(0,1) = h.

By Green’s formula we have the solution is
u@ == [ h)VG(y) S,
8B(0,1)

We will explicitly calculate this formula.

Vyely—z) = -

x
V,® DY
y@(|7|(y \x|2)) no(n) ¥ |z 2y — ﬁwiz

-1 1 Y= e -1 ylz|? —

~ na(n) 22y = = na(n) [2l(y — 2

—1 yla]?—a

na(n) |z -yl
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Where we have used the fact y € 9B(0,1), |z| - |y — ‘x%| =z —y

—1 Yy—x y|r 2 _ x
VyG(z,y) V0o = ( -

na(m)\|lz —y|* |z —y|" ) ' }yeaB(O,l)
1 JyP—z-y—lylPleP+z-y
na(n) |z —y|" ly|=1

-1yl - IfBIQ)‘ e T e i
na(n) |r—y* ly=1  na(n) |z -y
Thus the solution formula is

na(n) Jopo1) [T —yl™ .

For problems on B(0,7), by doing scaling @(z) = u(rz), h(x) = h(rz), we will have the Poisson’s
formula

7"Q—JL“IQ/ h(y)
u(xr) = ———— ds,, Vzr e B(0,r). 3.3
)=t Jopo Tz — o™ (07) (33

We call
r? — |z|? 1

na(n)r [z — y|"

the Poisson’s kernel for B(0,r).

Theorem 3.4. If h € C(9B), then u € C®(B), —Au =0 and lim u(z) = h(2°), V2° € 9B.

z—z0
4. MAXIMUM PRINCIPLE
For more general equations. Let €2 be a bounded open subset of R™.
Lu=—-Au+c(z)u=f, in Q
Theorem 4.1. (Weak mazimum principle) Let 0 < c(x) < & in Q, if u € C?(Q)NC(Q) and Lu <0
in Q, then

supu(z) < suput (),
Q Q

where u™ (x) = max{u(z),0}.
Proof. Assume Lu < 0 in Q. If 3¢ € 2 such that
0 < u(zg) = max u,
then
— Ay, + c(xo)u(zg) > 0,

which is a contradiction.
If Lu <0 in 2, we introduce an auxiliary function

w(z) = u(z) + ee*™*
where a is to be determined later, then we can choose a such that —a? + & < 0, and
Lw = Lu + ce®* (—a® + ¢(z)) < 0.

Our above discussion applies supw < supw™, then the results hold by taking & — 0.
Q Fle)
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Remark 4.1. If ¢ = 0, then supu™ in the theorem can be replaced by sup u.

o0 o0
Remark 4.2. If Lu > 0, then igfu > iang(—u_).
We will consider the problem
—Au=f, inQ
u=¢ on Jf (4.1)

Theorem 4.2. If u € C?(Q) N C(Q) is a solution of (4.1), then
m(e)mx|u| <&+ CF,

where ® = max ||, F =sup|f|, C ~ n,diamQ.
on o)
Proof. Without loss of generality, let x =0 € €, let

F
=dut —(d* — |z]?) +
w(z) = Fu+ o ( z|°) + @,

then
—Aw==xf+F >0, ’w|aQZ(I)i<pZO.

By comparison principle, we have w > 0 in €2, which implies
F
max |u| < ® + —d>.
Q 2n
5. VARIATIONAL PROBLEM

We show in this part that the boundary value problem of Poisson equation is equivalent to a
variational problem. Namely

—Au=f inQ (5.1)
u=g¢g on Jf)
is equivalent to the following problem in some sense,

J(u) = ming J(v) (5.2)

veEM

J(v) = 1/ |Vv|2da:—/fvd:c
2 Ja 0

M, = {ve C'(Q)v=gon dQ}.

5.1. Dirichlet principle.

Theorem 5.1. (Dirichlet principle) Assume u € C*(2) N C1(Y), then u is a solution of (5.1) if
and only if u is a solution of (5.2).

Proof. “=". Yv € M, we choose u — v as test function in (5.1),

/Q—Au(u—v):/ﬂf(u—v).

Integral by parts with boundary condition v — v = 0 on 9€) shows

/QVU-V(u—v):/Qf(u—v).
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Equivalently,

/Q|V“|2—/qu:/QVu~Vv—/va§%/QIVuF—i—%/QWvF—/va.

Then we have ) )
o [l [ guss [wop- [ po
2 Jo Q 2 Jo Q

I(u) < I(v), Vve M,
“<” Yv € My, we have u+ecv € M,. Let j(e) = J(u + €v), since u is a solution of (5.2), we know
that j'(¢)|c=o = 0, more precisely,

d[/ ~|V(u+ev)? —/fu—Htv)}
/Vu+5v|eon—/fv—/Vu Vv—/fv—/ (—Au — f)v.

These holds true for any v € C§(Q). Thus u is a solution of (5.2

which implies directly that

O

—Au = f in Q is called the Euler-Lagrange equation of variational problem (5.2).

In the 19th century, it is thought that variational problem always has a solution. But Weierstrass
said sometimes the infimum couldn’t be achieved by a function in the function set. Here is an
example,

Example 1. (Weierstrass) Variational problem. Let M = {p(z) € C[0,1]|¢'(z) is continuous
except finite discontinuity point of the first kind, and ©(0) = 1,(1) = 0}. The functional is

1

Flo) = [ 1+ (e

It is obvious that rrél]\r/ll(ga) = 1. In fact, we only need to prove V§ > 0, dps € M such that
173
I(ps) <1+,

where we can choose

B 6%(62—33) 0<x<é?

¥s = 0 P <x<l1

On the other hand, we couldn’t find any ¢ € M such that I(p) = 1. Otherwise, ¢' = 0 a.e., then
w = C, which contradicts with ¢(0) =1, ¢(1) = 0.

Another fact is that even the boundary value problem (5.1) has a solution in C?(Q) N C(Q), it
may not be obtained by solving the variational problem (5.2). Here is an example by Hadamard,

. sinnto
Example 2. Q= B(0,1), f=0, p(0) = > 3 €C(092), 0< 0 <2m
n=1

We know that (5.1) has a unique solution ug € C(2) N C%(Q) with expression

>~ sinntd s
uo(ps 9) = Z P

n2

n=1
On the other hand we can prove that
J(up) = +o0.
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In fact,
Oup\2 1 /0up\2
i 2 = i il — (<20
sy = g [ [ vwrasay= g [ [ (G 5 () Jeame
_ ; "o 4 2n*—1, . = ont
= rlg{i%-/o Z:lnp dp—rlg{liﬂ 717“ = 400.

We call H!(€2) the Sobolev spaces such that
HY(Q) = {ulu, Du € L*(Q)}

with norm and inner product
lullzr = Jullpz + || Vullpz, (u,v)gr = / uv +/ Vu - V.
Q Q

H' is a Hilbert space. H}() is the subspace of H(Q), the completion of C§°(Q2) with H* norm.
For bounded (2 with uniform cone condition, H*() is compactly embedded in L?(2).
(—A)~! with homogenous Dirichlet boundary condition is a compact operator in L?(£2), since

(—A)"1: L2(Q) — HY(Q) s L2(9).

Definition 4. If Ju € H}(Q) such that

o=y (& 5 )

we call u is a solution of (5.2).

Definition 5. If Ju € H} such that Vv € H{(9),

/QVu~Vv:/va,

Theorem 5.2. If u € H}(Q), then u is a weak solution of (5.1) if and only if u is a solution of
(5.2).

then we call u a weak solution of (5.1)

The proof of this theorem is left to readers.

5.2. Lax-Milgram. We first list the Lax-Milgram theorem from functional analysis, then prove
the existence of weak solution of (5.1).

Theorem 5.3 (Lax-Milgram theorem). H is a Hilbert space, assume a(u,v) is a bi-linear mapping
from H to R, satisfies

e Bounded. M > 0 such that |a(u,v)| < M||ul| - ||v]|, Yu,v € H.
e Coercive. 36 > 0 such that a(u,u) > §||u|?, Vu € H.

Then for any bounded linear functional F(v) on H, there exists a unique u € H such that
F(v) = a(u,v), YveH.
and

1
lell < 5171
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Proof. For any fixed u € H, Riesz representation theorem implies that JAu € H such that
a(u,v) = (Au,v), Yo € H.
The linearity of Au in u is obvious due to the fact that a(u,v) is linear in u. Furthermore,
(Au,v) < Mlull - [lvo]l, = [[Aul| < M]ul].
Coercivity gives that Yu € H,
Sllull® < au,u) = (Au,u) < [Aul - JJul, = [[Au] > 8]u].

Thus A~ exists. We claim that R(A) = H.
First R(A) is closed. In fact, choose any Cauchy sequence {Auy} in R(A), then limg_,o0 Auyp = v.
By coercivity, we have

Slug — wil| < [|Aug — Al

which means {uy} is also a Cauchy sequence in H. Ju € H such that

lim ug = u.
k—o00

Thus
Au = lim Au = v.
k—o0
If R(A) # H, Jw # 0 in H such that
(Au,w) =0, Yu€ H,

which contradicts with coercivity if we choose w = . Thus R(A) = H.
For any linear functional F'(v) on H, by Riesz representation theorem, we have a unique w € H
s.t.

F(v) = (w,v).
Let u = A~ 'w, we have
_ 1
ull < ATH - wll < <[1F)|

and
F(v) = (Au,v).

Theorem 5.4. For f € L?(Q), there exists a solution u € HE () of (5.1).

Proof. Let the bilinear functional defined by

a(u,v) = / Vu - V.
Q
Then it is coercive
a(u,u) > [[Vullz2 = Cllullf.
Lax-Milgram theorem implies that Vf € L?(2), there exists a unique u € Hg(2) such that
a(u,v) = (f,v), Vv € H}(RQ).
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5.3. Solvability of variational problem. *** Our goal in this subsection is to prove the unique
solvability of variational problem (5.2).

Theorem 5.5. Solution of (5.2) in HZ () is unique.
Proof. Let uy,us € H}(Q) are two solutions of (5.2), i.e.

J(uy) = J(ug) =m = veib%f(ﬁ) J(v),

1 1
0:,/ |Vu1|2—f/ |vu2|2—/(u1—u2)f.
2 Q 2 Q Q

’V(ul — ug)

then

Notice that fact
2 ‘ V (U1 + UQ) 2
+ f

1 2 1 2_/ V(u1 + up)
/Qz\vw +/92\vu2| Q’ .

[ [wren [ B

— J(un) + J(us) — 272y < g

1 1
= 5|Vul|2 + §|Vu2|2,

we have
2

which implies that
[V (u1 — u2)lrz = 0.

Poincare inequality gives

||U1 — U2HL2 =0 = u; =usa.e. in Q.

Lemma 5.1. (Friedrich inequality for H}(2))

lullz2) < 2d|Vullz2(o),
where d = diamS.
Proof. Let u € C3(Q), without loss of generality assume

Qc{zl0<x; <2d,1<i<n}=Q.

Q _
Let & = { g i E 0\ - It is obvious that @ € C1(Q), piecewise C! function, and

By Newton-Leibnitz formula

then
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Integration in @ gives
2d
/MMgm//
Q QJ0

[ull22() < 2d[|VullL2q)-

ot
(9331

2
dadxg4d{/|vaﬁmu
Q

Thus we arrive at

If u € HE (), we can choose {u,, }5°_; C C}(Q) such that
|tm — ullgr — 0, m — oo,
and
[umllz> < 2d[[ V|| 2,
our result can be obtained by taking m — co. O

Theorem 5.6. (Ezistence) f € L?(2), then (5.2) has a solution u € Hg(£2).

Proof. First we prove that J(u) has a lower bound. In fact, by Holder and Friedrich inequality,
1 1 1
J(v) = 5[Vl —/va > 5 IVollze = 71Vollze = CliflIZ: = =CA)fIlZ:

Let

m= inf J(v).
veHL(Q)

Let {v,}22, C H} () be a minimizing sequence such that

1

We want to prove that {v;} is a Cauchy sequence in H'(Q), by using similar discussions to the
uniqueness proof, for k,l — oo,

2
v — V)

s

1 1 1 1
— TR+ T) =20 o S s —2m <~ 4= 0,
L 2 p z kT

Then there must Ju € H} () such that
v, —u  in HY(Q).

Taking limit in the energy, we have J(v;) — J(u) and J(u) = m.

6. ENERGY ESTIMATE

Energy methods for Poisson equation is easy. I will not talk about it here. But leave it as an
exercise. The energy estimate also shows that —Awu = f in Q and v = h on 9f) has at most one
solution in C%(Q) N C1(Q).
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7. PROBLEMS

(1) Try to derive energy estimates for Dirichlet problem of Possion equation.
(2) Modify the proof of the mean value formulas to show for n > 3 that

1 1 1
uO:][ gd5+7/ ()fd:c,
@ 8B(0,r) n(n—2)a(n) Jpoq \|z[*=2 -2

—Au=f x€B(0,r)

u=g z €9B(0,r)

(3) We say v € C%(Q) is subharmonic if —Av < 0 in €.
(a) Prove for subharmonic v that

provided {

v(z) S][ vdy, for all B(x,r) C Q.
B(z,r)

(b) Prove that therefore maxg v = maxggq v.
(c¢) Let ¢ : R — R be smooth and convex. Assume v is harmonic and v := ¢(u). Prove v
is subharmonic.

(d) Prove v := |Du|? is subharmonic, whenever u is harmonic.
(4) Let BT(R) = {(z,v) : 22 +y? < R%,y > 0}, try to find the Green’s function of the following
problem
—Au:f(x,y), (x,y) €B+(R)a
U|5~B+(R)m{y>o} = o(z,y),
Uyly=0 = ¥(z,0), —-R<z <R

Furthermore, give the representation formula of solution.
(5) Q is a bounded open subset of R™, u(z) is a classical solution of

{ —Au+ c(z)u = f(x), z € Q,
(VU Y+ a(sc)u)|rl = P15 U|F2 = ¥2
where Fl UFQ = 897 Fl ﬂFQ = @, FQ 7£ @

If ¢(z) > 0, a(xz) > ap > 0, try to prove the following estimate,

max |u(z)| < C(ay, diam) {sup |f] + sup |p1| + sup |902|]
Q Q Iy Iy

(6) Try to get the Euler-Lagrange equation of the following variational problem
J(u) = rg]l\? J(v), with My = {u € C*(Q) N C*(Q) : u|on = 0},
v 0

(a) J(v) = /Q <]§|w\p—fv>dx,p> 1

(b) J(v) = /Q(ﬁmmrl ~ fo)dz, m > 0

(© i) = [ (VIFFold + 0")da, p > 1
(7) If u € HX(D) gils a weak solution of
—Au+u=f,
prove that w is a solution of variational problem

J(u) = in J(v),
() = min, )
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1 1
where J(v) = 3 Jo V|2 da + 3 Jovidx — [, fodx.
(8) Assume f € L%(Q), ¢ € HY(Q), ¢(z) > 0 and c(z) € C(R), prove that variational problem

J(u) = Urélji\?w J(v)

has a unique solution in M, = {u € H*(Q) : u — ¢ € Hj(Q)}, where
1 2 2
J(v) = 5 (IVv]? + c(x)v* — fu)da.
Q
Furthermore, show that the solution of variational problem is a weak solution of
—Au+cx)u=finQ, wu=pon .
DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEWLJING, 100084, PEOPLE’S REPUBLIC OF

CHINA
E-mail address: 1chen@math.tsinghua.edu.cn



