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Introduction.
.

Linear elasticity:

Simpli�ed model in the case of small deformations

Validity domain : stress states that do not produce yielding.

Structural analysis and engineering design
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Variational approach applied to the resolution of the system.

Modelisation

Let Ω be an open set of RN

f (x) a volumic force function from Ω to RN

the tensor of deformation e(u):

e(u) = 1

2
(∇u + (∇u)t) = 1

2
( ∂ui

∂xj
+

∂uj
∂xi

) i = j = 1...N.

the tensor of constraint σ(u):

σ = 2µe(u) + λ tr(e(u))Id
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Deriving the system of equations.

Using the sum of all the forces in the solid we obtain :

−div(σ) = f in Ω

Using the fact that tr(u) = divu, we can deduce the following
equation :

−
N

∑
j=1

∂

∂xj
(µ(

∂ui

∂xj
+

∂uj

∂xi
) + λ (divu)δij) = fi in Ω

With ui , fi the components of f and u in the canonical basis of RN .
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Problem with mixed boundaries conditions.

Now we consider a system of linear elasticity with mixed boundaries
conditions, Dirichlet and Neumann i.e

−div(2µe(u) + λ tr(e(u))Id) = f in Ω
u = 0on ∂ ΩD

σn = g on∂ ΩN

(1)

where (∂ ΩN ,∂ ΩD) is a partition of ∂ Ω of non zero measure.
Existence and uniqueness can be proved using Korn Inequality.
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Korn Inequality interpretation

Lemma (Korn Inequality)
Let Ω be open bounded and regular set of class C 1 of RN . There
exists a constant C> 0 such that for all function v∈H1(Ω)N we have
:||v ||H1(Ω)≤C (||v ||2

L2(Ω)+ ||e(v)||2
L2(Ω))1/2.

Theorem
Let Ω an open bounded connected regular set of class C 1 of RN .
Let f ∈L2(Ω) g∈L2(∂ ΩN)N we define the space
V = {v∈ H1(Ω)N such that v = 0 on ∂ ΩD}
There exists a unique weak solution u ∈ V of (1 ) which depends
linearly on f and g
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Minimun point of the energy.

Proposition

Let j(v) the energy de�ned for all v ∈ V by :

j(v) =
1

2

∫
Ω

(2µ|e(v)|2 + λ |divv |2)dx−
∫

Ω
f .vdx−

∫
∂ΩN

g .vds

Let u be the unique solution of the variational formulation of (1),
thenu is the unique minimum point of the above energy in V.
Reciprocally if u ∈ V is the minimum point of the energy j(v) then
u is the unique solution of the variational formulation.
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Description of the physical model

Figure : Beam �xed on one side
Displacement under the in�uence of the gravity
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Smith factorization

Theorem Let n be an positive integer and A an invertible n×n

matrix with polynomial entries with respect to the variable λ :
A = (aij(λ ))1≤i ,j≤n. Then, there exist matrices E , D and F with
polynomial entries satisfying the following properties:

det(E ) and det(F ) are constants,

D is a diagonal matrix uniquely determined up to a
multiplicative constant,

A = EDF .
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Application of the Smith factorization to the system of
linear elasticity

The two dimensional system of linear elasticity is given by :

S2

(
u

v

)
=(

(2µ + λ )∂xx + µ∂yy λ∂xy + µ∂yx

µ∂xy + λ∂yx µ∂xx + (2µ + λ )∂yy

)(
u

v

)
=

(
f1
f2

)
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Application of the Smith factorization to the system of
linear elasticity

We transform this equations as follows :
we perform Fourier transform in the y-direction with the dual
variable k ,
we perform Laplace transform in the x-direction with dual variable
Λ,
we obtain the following equation :

A

(
û

v̂

)
:=

(
(2µ + λ )Λ2−k2µ (λ + µ)ikΛ

(µ + λ )ikΛ µλ 2− (2µ + λ )k2

)(
û

v̂

)
= f̂
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Result

A = EDF

E=

(
−µk2 0

iµΛ((λ+2µ)Λ2−(2λ+3µ)k2)
(λ+µ)k 1

)
D=

(
1 0
0 −(Λ2−k2)2

)
F=

 −(λ+2µ)Λ2

µk2
+1 −i(λ+µ)Λ

µk
i(λ+2µ)2Λ
(λ+µ)k3

λ+2µ

k2


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An e�cient (optimal) algorithm for the system of linear

We consider the following problem : Find φ : R2 → R such that
-42φ= f in R2, |φ(−→x )| →0 for |x|→ ∞

where f is given right hand side. The domain Ω is decomposed into
two halfplanes Ω1 = R−×R and Ω2 = R+×R . Let the interface
{0} ×R be denoted by Γ and (n i )i=1,2 be the outward normal of
(Ωi )i=1,2. The algorithm, we propose, is given as follows:
Algorithm3 .1 . We choose the initial values φ0

1
and φ0

2
such that

φ0
1
= φ0

2
and 4φ0

1
=4φ0

2
on Γ. We obtain (φn+1

i )i=1,2 from
(φn

i )i=1,2 by the following
iterative procedure:
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Iterative procedure

Correction step. We compute the corrections (φ̃
n+1
i )i=1,2 as the

solution of the homogeneous local problems
−42φ̃

n+1
i = 0 inΩi ,

lim|x|→0|φ̃n+1
i |= 0,

∂ φ̃
n+1
i

∂ni
= γn

1
onΓ,

∂4φ̃
n+1
i

∂ni
= γn

2
onΓ,

where γn
1
= −1

2
(

∂φn
1

∂n 1
+

∂φn
2

∂n 2
) andγn

2
=-1

2
(

∂4φn
1

∂n 1
+

∂4φn
2

∂n 2
).
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Iterative procedure

Udapting step. We update (φ
n+1
i )i=1,2 by solving the local

problems
−4φ

n+1
i = f inΩi

lim|x|→0|φn+1
i |= 0,

φ
n+1
i = φn

i + δ
n+1
1

onΓ

4φ
n+1
i =4φn

i + δ
n+1
2

onΓ

where δ
n+1
1

=1

2
(φ̃n+1
1

+ φ̃
n+1
2

) and δ
n+1
2

=1

2
(4φ̃

n+1
1

+ 4φ̃
n+1
2

).
Proposition
Algorithm 3.1. converges in two iterations
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optimal algorithm for the system of linear elasticity

After having found an optimal algorithm which convergers in two
steps for the fourth order operator -42 problem, we focus on the
linear elasticity system .

Algorithm3 .2 . We choose the initial values (u0
1
,v0
1

)and (u0
2
,v0
2

)
such that
(F(u0

1
,v0
1

)T )2 = (F(u0
2
,v0
2

)T )2 and 4(F(u0
1
,v0
1

)T )2 =
4(F(u0

2
,v0
2

)T )2 on Γ. We compute ((un+1
i ,vn+1

i ))i=1,2 from
((uni ,v

n
i ))i=1,2 by the following iterative procedure :
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optimal algorithm

Corrrection step. We compute the corrections ((ũn+1
i ,ṽn+1

i ))i=1,2
as the solution of the homogeneous local problems

S2(ũn+1
i , ṽn+1

i ) = 0 inΩi

Lim|x|→∞|ũ n+1
i |= 0,

∂(F (ũn+1
i ,ṽn+1

i )T )2
∂ni

= γn
1
onΓ,

∂4(F (ũn+1
i ,ṽn+1

i )T )2
∂ni

= γn
2
onΓ,

where
γn
1
=−1

2
(

∂(F (un1 ,vn1 )T )2
∂n1

+
∂ (F (un2 ,vn2 )T )2

∂n2
)

γn
2
=−1

2
(

∂4(F (un1 ,vn1 )T )2
∂n1

+
∂4(F (un2 ,vn2 )T )2

∂n2
)
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optimal algorithm

Updating step. We update ((un+1
i ,vn+1

i ))i=1,2 by solving the local
problems:

S2(un+1
i ,vn+1

i ) = f inΩi ,

Lim|x|→∞|u n+1
i |= 0,

(F (un+1
i ,vn+1

i )T )2 = (F (uni ,v
n
i )T )2 + δ

n+1
1

onΓ

4(F (un+1
i ,vn+1

i )T )2 =4(F (uni ,v
n
i )T )2 + δ

n+1
2

onΓ
where
δ
n+1
1

= 1

2
[(F (ũn+1

1
, ṽn+1
1

)T )2 + (F (ũn+1
2

, ṽn+1
2

)T )2]

δ
n+1
2

= 1

2
[4(F (ũn+1

1
, ṽn+1
1

)T )2 +4(F (ũn+1
2

, ṽn+1
2

)T )2]
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An e�cient algorithm for the system of linear elasticity

Algorithm3 .3 . We choose the initial values (u0
1
,v0
1
) and (u0

2
,v0
2
)

such that v0
1

= v0
2
and

∂u01
∂
−→n1

=
∂u02
∂
−→n2

on Γ. We compute

((un+1
i ,vn+1

i ))i=1,2 from ((uni ,v
n
i ))i=1,2 by the following iterative

procedure :
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e�cient algorithm

Correction step. We compute the corrections ((ũn+1
i , ṽn+1

i ))i=1,2 as
the solution of the homogeneous local problems :

S2(ũn+1
1

, ṽn+1
1

) = 0 inΩ1,
∂ ũn+1

1
∂x

=−1

2
(

∂un1
∂x
− ∂un2

∂x
)onΓ,

∂ ũn+1
1

∂x
+

∂ ṽn+1
1

∂y
= γn

2,1 onΓ

and


S2(ũn+1

2
, ṽn+1
2

) = 0 inΩ2,
∂ ũn+1

2
∂x

= 1

2
(

∂un1
∂x
− ∂un2

∂x
)onΓ,

− ∂ ũn+1
2

∂x
− ∂ ṽn+1

2
∂y

= γn
2,1 onΓ

where
γn
2,1 =−1

2
(

∂un1
∂x

+
∂vn1
∂y
− ∂un2

∂x
− ∂vn2

∂y
)
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An e�cient algorithm

Updating step. We update ((un+1
i ,vn+1

i ))i=1,2 by solving the local
problems

S2(un+1
i ,vn+1

i ) =
−→
f inΩi ,

un+1
i = uni + 1

2
(ũn+1
1

+ ũn+1
2

)onΓ
∂un+1

i

∂y
− ∂vn+1

i

∂x
=

∂uni
∂y
− ∂vni

∂x
+ δ n

2,1onΓ

where
δ n
2,1 = 1

2
(

∂ ũn+1
1

∂y
− ∂ ṽn+1

1
∂x

+
∂ ũn+1

2
∂y
− ∂ ṽn+1

2
∂x

)
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Schwarz overlap scheme applied to the system of linear
elasticity

We want to solve

S2(w) = f inΩ1

⋃
Ω2

where w = (u,v).
The schwarz algorithm runs like this :
Start from (u0

1
,v0
1
), (u0

2
,v0
2
) we compute wn+1

1
, wn+1

2
from wn

1
,

wn
2
as follows :{

S2(wn+1
1

) = f inΩ1

wn+1
1

= wn
2
on∂ Ω1

⋂
Ω2

and{
S2(wn+1

2
) = f inΩ2

wn+1
2

= wn
1
,on∂ Ω2

⋂
Ω1
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Application

Here we take 1 and 2 to be rectangle, we apply the algorithm
starting from zero.
Figure : The 2 overlapping mesh TH and th
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Solution

Figure :Displacement �elds during the iterations
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Solution

Figure : Final con�guration of the bean after convergence
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